1
|
Karpenko A, Shelenkov A, Petrova L, Gusarov V, Zamyatin M, Mikhaylova Y, Akimkin V. Two multidrug-resistant Proteus mirabilis clones carrying extended spectrum beta-lactamases revealed in a single hospital department by whole genome sequencing. Heliyon 2024; 10:e40821. [PMID: 39687096 PMCID: PMC11648881 DOI: 10.1016/j.heliyon.2024.e40821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Proteus mirabilis bacteria is a component of normal intestinal microflora of humans and animals, but can also be found in hospital settings causing urinary tract infections and sepsis. The problem of treating such infections is complicated by multidrug-resistant isolates producing extended spectrum beta-lactamases (ESBL), and the number of ESBL-carrying P. mirabilis strains has significantly increased recently. This study presents a detailed analysis of 12 multidrug-resistant P. mirabilis isolates obtained from the wounds of different patients in one surgical department of a multidisciplinary hospital in Moscow, Russia, using the short- and long-read whole genome sequencing. The isolates under investigation divided into two clusters (clones) C1 and C2 based on their genomic profiles and carried antimicrobial resistance (AMR) genes corresponding well with phenotypic profiles, which was the first case of reporting two different P. mirabilis clones obtained simultaneously from the same specimens at one hospital, to the best of our knowledge. Some genes, including ESBL encoding ones, were specific for either C1 or C2 (aac(6')-Ib10, ant(2″)-Ia, qnrA1, bla VEB-6 and fosA3, bla CTX -M-65 , correspondingly). Additionally, the Salmonella genomic islands 1 were found that differed in composition of multiple antibiotic resistance regions between C1 and C2 groups. CRISPR-Cas system type I-E was revealed only in C2 isolates, while the same set of virulence factors was determined for both P. mirabilis clones. Diversity of all genetic factors found in case of simultaneous existence of two clones collected from the same source at one department indicates high pathogenic potential of P. mirabilis and poses a requirement of proper spreading monitoring. The data obtained will facilitate the understanding of AMR transfer and dynamics within clinical P. mirabilis isolates and contribute to epidemiological surveillance of this pathogen.
Collapse
Affiliation(s)
- Anna Karpenko
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Lyudmila Petrova
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Vitaly Gusarov
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Mikhail Zamyatin
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Yulia Mikhaylova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| |
Collapse
|
2
|
Murányi G, Szabó M, Acsai K, Kiss J. Two birds with one stone: SGI1 can stabilize itself and expel the IncC helper by hijacking the plasmid parABS system. Nucleic Acids Res 2024; 52:2498-2518. [PMID: 38300764 PMCID: PMC10954446 DOI: 10.1093/nar/gkae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
The SGI1 family integrative mobilizable elements, which are efficient agents in distribution of multidrug resistance in Gammaproteobacteria, have a complex, parasitic relationship with their IncC conjugative helper plasmids. Besides exploiting the transfer apparatus, SGI1 also hijacks IncC plasmid control mechanisms to time its own excision, replication and expression of self-encoded T4SS components, which provides advantages for SGI1 over its helpers in conjugal transfer and stable maintenance. Furthermore, SGI1 destabilizes its helpers in an unknown, replication-dependent way when they are concomitantly present in the same host. Here we report how SGI1 exploits the helper plasmid partitioning system to displace the plasmid and simultaneously increase its own stability. We show that SGI1 carries two copies of sequences mimicking the parS sites of IncC plasmids. These parS-like elements bind the ParB protein encoded by the plasmid and increase SGI1 stability by utilizing the parABS system of the plasmid for its own partitioning, through which SGI1 also destabilizes the helper plasmid. Furthermore, SGI1 expresses a small protein, Sci, which significantly strengthens this plasmid-destabilizing effect, as well as SGI1 maintenance. The plasmid-induced replication of SGI1 results in an increased copy-number of parS-like sequences and Sci expression leading to strong incompatibility with the helper plasmid.
Collapse
Affiliation(s)
- Gábor Murányi
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, H2100 Hungary
| | - Mónika Szabó
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, H2100 Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, H2100 Hungary
| | - Károly Acsai
- Ceva Animal Health, Ceva-Phylaxia, Budapest, H1107 Hungary
| | - János Kiss
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, H2100 Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, H2100 Hungary
| |
Collapse
|
3
|
Mao LY, Wang Q, Lin H, Wang HN, Lei CW. Novel multidrug resistance genomic islands and transposon carrying blaVEB-1 identified in mcr-positive Aeromonas strains from raw meat in China. J Antimicrob Chemother 2024; 79:678-682. [PMID: 38319867 DOI: 10.1093/jac/dkae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVES To characterize the genetic environments of ESBL gene blaVEB-1 in mcr-positive Aeromonas strains from raw meat in China. METHODS Whole genomes of Aeromonas strains were sequenced using the Illumina or Nanopore platforms. Genetic environments of blaVEB-1 were analysed using the BLAST program. RESULTS The blaVEB-1 gene was detected in five Aeromonas strains carrying the mcr-7-like gene. WGS revealed that all blaVEB-1 genes were located on Aeromonas chromosome, and were carried by two novel different genomic islands named Aeromonas veronii genomic islands AveGI1 and AveGI2, as well as one transposon named Tn7690. AveGI1 is a new member of the Salmonella genomic island 1 family, incorporated into the 3'-end of mnmE (trmE). AveGI2 is a novel genomic island that has a size of 23 180 bp and is incorporated into the 3'-end of syd. The MDR regions of AveGI1 and AveGI2 are two different class 1 integrons containing 10 and five resistance genes, respectively. Tn7690 is a Tn1722 derivative containing In4-type integron and Tn5393, which harbours 10 resistance genes and integrates into different positions on the chromosomes of three strains with the capacity for mobility. CONCLUSIONS We report chromosomally located novel MDR genomic islands and transposon that carry blaVEB-1 in mcr-positive Aeromonas strains. These genetic elements may mediate the spread of blaVEB-1 in Aeromonas, and may also evolve by capturing new antimicrobial resistance genes or other mobile genetic elements.
Collapse
Affiliation(s)
- Ling-Ya Mao
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, No. 29 Wangjiang Road, 610064 Chengdu, People's Republic of China
| | - Qin Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, No. 29 Wangjiang Road, 610064 Chengdu, People's Republic of China
| | - Heng Lin
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, No. 29 Wangjiang Road, 610064 Chengdu, People's Republic of China
| | - Hong-Ning Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, No. 29 Wangjiang Road, 610064 Chengdu, People's Republic of China
| | - Chang-Wei Lei
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, No. 29 Wangjiang Road, 610064 Chengdu, People's Republic of China
| |
Collapse
|
4
|
Benevides VP, Saraiva MMS, Nascimento CF, Delgado-Suárez EJ, Oliveira CJB, Silva SR, Miranda VFO, Christensen H, Olsen JE, Berchieri Junior A. Genomic Features and Phylogenetic Analysis of Antimicrobial-Resistant Salmonella Mbandaka ST413 Strains. Microorganisms 2024; 12:312. [PMID: 38399716 PMCID: PMC10893270 DOI: 10.3390/microorganisms12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, Salmonella enterica subsp. enterica serovar Mbandaka (S. Mbandaka) has been increasingly isolated from laying hens and shell eggs around the world. Moreover, this serovar has been identified as the causative agent of several salmonellosis outbreaks in humans. Surprisingly, little is known about the characteristics of this emerging serovar, and therefore, we investigated antimicrobial resistance, virulence, and prophage genes of six selected Brazilian strains of Salmonella Mbandaka using Whole Genome Sequencing (WGS). Multi-locus sequence typing revealed that the tested strains belong to Sequence Type 413 (ST413), which has been linked to recent multi-country salmonellosis outbreaks in Europe. A total of nine resistance genes were detected, and the most frequent ones were aac(6')-Iaa, sul1, qacE, blaOXA-129, tet(B), and aadA1. A point mutation in ParC at the 57th position (threonine → serine) associated with quinolone resistance was present in all investigated genomes. A 112,960 bp IncHI2A plasmid was mapped in 4/6 strains. This plasmid harboured tetracycline (tetACDR) and mercury (mer) resistance genes, genes contributing to conjugative transfer, and genes involved in plasmid maintenance. Most strains (four/six) carried Salmonella genomic island 1 (SGI1). All S. Mbandaka genomes carried seven pathogenicity islands (SPIs) involved in intracellular survival and virulence: SPIs 1-5, 9, and C63PI. The virulence genes csgC, fimY, tcfA, sscA, (two/six), and ssaS (one/six) were absent in some of the genomes; conversely, fimA, prgH, and mgtC were present in all of them. Five Salmonella bacteriophage sequences (with homology to Escherichia phage phiV10, Enterobacteria phage Fels-2, Enterobacteria phage HK542, Enterobacteria phage ST64T, Salmonella phage SW9) were identified, with protein counts between 31 and 54, genome lengths of 24.7 bp and 47.7 bp, and average GC content of 51.25%. In the phylogenetic analysis, the genomes of strains isolated from poultry in Brazil clustered into well-supported clades with a heterogeneous distribution, primarily associated with strains isolated from humans and food. The phylogenetic relationship of Brazilian S. Mbandaka suggests the presence of strains with high epidemiological significance and the potential to be linked to foodborne outbreaks. Overall, our results show that isolated strains of S. Mbandaka are multidrug-resistant and encode a rather conserved virulence machinery, which is an epidemiological hallmark of Salmonella strains that have successfully disseminated both regionally and globally.
Collapse
Affiliation(s)
- Valdinete P Benevides
- Postgraduate Program in Agricultural Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Camila F Nascimento
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Enrique J Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celso J B Oliveira
- Center for Agricultural Sciences, Department of Animal Science, Federal University of Paraiba (CCA/UFPB), Areia 58051-900, Brazil
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH 43210, USA
| | - Saura R Silva
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| |
Collapse
|
5
|
Vázquez X, García-Fierro R, Fernández J, Bances M, Herrero-Fresno A, Olsen JE, Rodicio R, Ladero V, García V, Rodicio MR. Incidence and Genomic Background of Antibiotic Resistance in Food-Borne and Clinical Isolates of Salmonella enterica Serovar Derby from Spain. Antibiotics (Basel) 2023; 12:1204. [PMID: 37508300 PMCID: PMC10376468 DOI: 10.3390/antibiotics12071204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Salmonella enterica serovar Derby (S. Derby) ranks fifth among nontyphoidal Salmonella serovars causing human infections in the European Union. S. Derby isolates (36) collected between 2006 and 2018 in a Spanish region (Asturias) from human clinical samples (20) as well as from pig carcasses, pork- or pork and beef-derived products, or wild boar (16) were phenotypically characterized with regard to resistance, and 22 (12 derived from humans and 10 from food-related samples) were also subjected to whole genome sequence analysis. The sequenced isolates belonged to ST40, a common S. Derby sequence type, and were positive for SPI-23, a Salmonella pathogenicity island involved in adherence and invasion of the porcine jejune enterocytes. Isolates were either susceptible (30.6%), or resistant to one or more of the 19 antibiotics tested for (69.4%). Resistances to tetracycline [tet(A), tet(B) and tet(C)], streptomycin (aadA2), sulfonamides (sul1), nalidixic acid [gyrA (Asp87 to Asn)] and ampicillin (blaTEM-1-like) were detected, with frequencies ranging from 8.3% to 66.7%, and were higher in clinical than in food-borne isolates. The fosA7.3 gene was present in all sequenced isolates. The most common phenotype was that conferred by the tet(A), aadA2 and sul1 genes, located within identical or closely related variants of Salmonella Genomic Island 1 (SGI1), where mercury resistance genes were also present. Diverse IncI1-I(α) plasmids belonging to distinct STs provided antibiotic [blaTEM-1, tet(A) and/or tet(B)] and heavy metal resistance genes (copper and silver), while small pSC101-like plasmids carried tet(C). Regardless of their location, most resistance genes were associated with genetic elements involved in DNA mobility, including a class one integron, multiple insertion sequences and several intact or truncated transposons. By phylogenetic analysis, the isolates were distributed into two distinct clades, both including food-borne and clinical isolates. One of these clades included all SGI1-like positive isolates, which were found in both kinds of samples throughout the entire period of study. Although the frequency of S. Derby in Asturias was very low (0.5% and 3.1% of the total clinical and food isolates of S. enterica recovered along the period of study), it still represents a burden to human health linked to transmission across the food chain. The information generated in the present study can support further epidemiological surveillance aimed to control this zoonotic pathogen.
Collapse
Affiliation(s)
- Xenia Vázquez
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 33300 Villaviciosa, Spain
| | - Raquel García-Fierro
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - Javier Fernández
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 30627 Madrid, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33001 Oviedo, Spain
| | - Margarita Bances
- Laboratorio de Salud Pública, Dirección General de Salud Pública, Consejería de Salud del Principado de Asturias, 33011 Oviedo, Spain
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - Víctor Ladero
- Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), 33300 Villaviciosa, Spain
- Grupo de Microbiología Molecular, Instituto de Investigación Sanitaria del Principado de Asturias (IAPA), 33011 Oviedo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - M Rosario Rodicio
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
6
|
Wang Y, Liu Y, Lyu N, Li Z, Ma S, Cao D, Pan Y, Hu Y, Huang H, Gao GF, Xu X, Zhu B. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China. Natl Sci Rev 2023; 10:nwac269. [PMID: 37035020 PMCID: PMC10076184 DOI: 10.1093/nsr/nwac269] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica is one of the most common bacterial pathogens in humans and animals. Systematic studies on the trends and geographical distribution of antimicrobial-resistant Salmonella and dominant serovars have been well studied in European and American countries while not in China. Here, taking the One-Health strategy, we used >35 000 Salmonella enterica isolates to explore the temporal and spatial dynamics of dominant serovars in China. We found that Salmonella Typhimurium was the dominant serovar causing human infection in China, which was consistent with Australia but inconsistent with North American and European countries. The proportion of Salmonella serovars Typhimurium, London, Rissen, Corvallis, Meleagridis, Kentucky, and Goldcoast showed an increasing trend during 2006-2019. We randomly selected 1962 isolates for comparative genomics and antimicrobial resistance studies and found that the number of antibiotic resistance genes (ARGs) per isolate increased 1.84 and 2.69 times of human and non-human origins, respectively, spanning 14 years. The proportion of antimicrobial-resistant Salmonella isolates had an increasing trend during 2006-2019, especially beta-lactam, quinolone, tetracycline, and rifampicin resistance. Moreover, we found that higher diversity of sequence types (STs) in S. Typhimurium than in other serovars, ST34 from pig and ST19 from chicken origin, were mainly associated with isolates causing child and adult gastro-infection, respectively. Our results fill in the data gap on the trends of dominant serovars and antimicrobial resistance of Salmonella enterica in China. These data provide useful information for public health decision-makers prioritizing interventions for foodborne diseases and food safety.
Collapse
Affiliation(s)
- Yanan Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Liu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Na Lyu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyuan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Demin Cao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanlong Pan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hua Huang
- Beijing Products Quality Supervision and Inspection Institute, Beijing 101300, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing 100101, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Pons MC, Praud K, Da Re S, Cloeckaert A, Doublet B. Conjugative IncC Plasmid Entry Triggers the SOS Response and Promotes Effective Transfer of the Integrative Antibiotic Resistance Element SGI1. Microbiol Spectr 2023; 11:e0220122. [PMID: 36472437 PMCID: PMC9927553 DOI: 10.1128/spectrum.02201-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The broad-host-range IncC plasmid family and the integrative mobilizable Salmonella genomic island 1 (SGI1) and its derivatives enable the spread of medically important antibiotic resistance genes among Gram-negative pathogens. Although several aspects of the complex functional interactions between IncC plasmids and SGI1 have been recently deciphered regarding their conjugative transfer and incompatibility, the biological signal resulting in the hijacking of the conjugative plasmid by the integrative mobilizable element remains unknown. Here, we demonstrate that the conjugative entry of IncC/IncA plasmids is detected at an early stage by SGI1 through the transient activation of the SOS response, which induces the expression of the SGI1 master activators SgaDC, shown to play a crucial role in the complex biology between SGI1 and IncC plasmids. Besides, we developed an original tripartite conjugation approach to directly monitor SGI1 mobilization in a time-dependent manner following conjugative entry of IncC plasmids. Finally, we propose an updated biological model of the conjugative mobilization of the chromosomal resistance element SGI1 by IncC plasmids. IMPORTANCE Antimicrobial resistance has become a major public health issue, particularly with the increase of multidrug resistance (MDR) in both animal and human pathogenic bacteria and with the emergence of resistance to medically important antibiotics. The spread between bacteria of successful mobile genetic elements, such as conjugative plasmids and integrative elements conferring multidrug resistance, is the main driving force in the dissemination of acquired antibiotic resistances among Gram-negative bacteria. Broad-host-range IncC plasmids and their integrative mobilizable SGI1 counterparts contribute to the spread of critically important resistance genes (e.g., extended-spectrum β-lactamases [ESBLs] and carbapenemases). A better knowledge of the complex biology of these broad-host-range mobile elements will help us to understand the dissemination of antimicrobial resistance genes that occurred across Gammaproteobacteria borders.
Collapse
Affiliation(s)
| | - Karine Praud
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - Sandra Da Re
- INSERM, Université de Limoges, CHU de Limoges, RESINFIT, Limoges, France
| | | | | |
Collapse
|
8
|
A Glimpse at the Anti-Phage Defenses Landscape in the Foodborne Pathogen Salmonella enterica subsp. enterica serovar Typhimurium. Viruses 2023; 15:v15020333. [PMID: 36851545 PMCID: PMC9958689 DOI: 10.3390/v15020333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Bacteriophages, which specifically infect and kill bacteria, are currently used as additives to control pathogens such as Salmonella in human food (PhageGuard S®) or animal feed (SalmoFREE®, Bafasal®). Indeed, salmonellosis is among the most important zoonotic foodborne illnesses. The presence of anti-phage defenses protecting bacteria against phage infection could impair phage applications aiming at reducing the burden of foodborne pathogens such as Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) to the food industry. In this study, the landscape of S. Typhimurium anti-phage defenses was bioinformatically investigated in publicly available genomes using the webserver PADLOC. The primary anti-phage systems identified in S. Typhimurium use nucleic acid degradation and abortive infection mechanisms. Reference systems were identified on an integrative and conjugative element, a transposon, a putative integrative and mobilizable element, and prophages. Additionally, the mobile genetic elements (MGEs) containing a subset of anti-phage systems were found in the Salmonella enterica species. Lastly, the MGEs alone were also identified in the Enterobacteriaceae family. The presented diversity assessment of the anti-phage defenses and investigation of their dissemination through MGEs in S. Typhimurium constitute a first step towards the design of preventive measures against the spread of phage resistance that may hinder phage applications.
Collapse
|
9
|
Siebor E, Neuwirth C. Overview of Salmonella Genomic Island 1-Related Elements Among Gamma-Proteobacteria Reveals Their Wide Distribution Among Environmental Species. Front Microbiol 2022; 13:857492. [PMID: 35479618 PMCID: PMC9035990 DOI: 10.3389/fmicb.2022.857492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to perform an in silico analysis of the available whole-genome sequencing data to detect syntenic genomic islands (GIs) having homology to Salmonella genomic island 1 (SGI1), analyze the genetic variations of their backbone, and determine their relatedness. Eighty-nine non-redundant SGI1-related elements (SGI1-REs) were identified among gamma-proteobacteria. With the inclusion of the thirty-seven backbones characterized to date, seven clusters were identified based on integrase homology: SGI1, PGI1, PGI2, AGI1 clusters, and clusters 5, 6, and 7 composed of GIs mainly harbored by waterborne or marine bacteria, such as Vibrio, Shewanella, Halomonas, Idiomarina, Marinobacter, and Pseudohongiella. The integrase genes and the backbones of SGI1-REs from clusters 6 and 7, and from PGI1, PGI2, and AGI1 clusters differed significantly from those of the SGI1 cluster, suggesting a different ancestor. All backbones consisted of two parts: the part from attL to the origin of transfer (oriT) harbored the DNA recombination, transfer, and mobilization genes, and the part from oriT to attR differed among the clusters. The diversity of SGI1-REs resulted from the recombination events between GIs of the same or other families. The oriT appeared to be a high recombination site. The multi-drug resistant (MDR) region was located upstream of the resolvase gene. However, most SGI1-REs in Vibrio, Shewanella, and marine bacteria did not harbor any MDR region. These strains could constitute a reservoir of SGI1-REs that could be potential ancestors of SGI1-REs encountered in pathogenic bacteria. Furthermore, four SGI1-REs did not harbor a resolvase gene and therefore could not acquire an integron. The presence of mobilization genes and AcaCD binding sites indicated that their conjugative transfer could occur with helper plasmids. The plasticity of SGI1-REs contributes to bacterial adaptation and evolution. We propose a more relevant classification to categorize SGI1-REs into different clusters based on their integrase gene similarity.
Collapse
Affiliation(s)
- Eliane Siebor
- Laboratory of Bacteriology, University Hospital of Dijon, Dijon, France
- UMR-CNRS 6249 Chrono-Environnement, University of Burgundy - Franche-Comté, Besançon, France
| | - Catherine Neuwirth
- Laboratory of Bacteriology, University Hospital of Dijon, Dijon, France
- UMR-CNRS 6249 Chrono-Environnement, University of Burgundy - Franche-Comté, Besançon, France
- *Correspondence: Catherine Neuwirth,
| |
Collapse
|
10
|
Suhadolnik MLS, Costa PS, Paiva MC, Salim ACDM, Barbosa FAR, Lobo FP, Nascimento AMA. Spatiotemporal dynamics of the resistome and virulome of riverine microbiomes disturbed by a mining mud tsunami. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150936. [PMID: 34678365 DOI: 10.1016/j.scitotenv.2021.150936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Aquatic ecosystems are highly vulnerable to anthropogenic activities. However, it remains unclear how the microbiome responds to press disturbance events in these ecosystems. We examined the impact of the world's largest mining disaster (Brazil, 2015) on sediment microbiomes in two disturbed rivers compared to an undisturbed river during 390 days post-disturbance. The diversity and structure of the virulome and microbiome, and of antibiotic and metal resistomes, consistently differed between the disturbed and undisturbed rivers, particularly at day 7 post-disturbance. 684 different ARGs were predicted, 38% were exclusive to the disturbed rivers. Critical antibiotic resistance genes (ARGs), e.g., mcr and ereA2, were significantly more common in the disturbed microbiomes. 401 different ARGs were associated with mobile genetic elements (MGEs), 95% occurred in the disturbed rivers. While plasmids were the most common MGEs with a broad spectrum of ARGs, spanning 16 antibiotic classes, integrative conjugative elements (ICEs) and integrons disseminated ARGs associated with aminoglycoside and tetracycline, and aminoglycoside and beta-lactam, respectively. A significant increase in the relative abundance of class 1 integrons, ICEs, and pathogens was identified at day 7 in the disturbed microbiomes, 72-, 14- and 3- fold higher, respectively, compared with the undisturbed river. Mobile ARGs associated with ESKAPEE group pathogens, while metal resistance genes and virulence factor genes in nonpathogenic hosts predominated in all microbiomes. Network analysis showed highly interconnected ARGs in the disturbed communities, including genes targeting antibiotics of last resort. Interactions between copper and beta-lactam/aminoglycoside/macrolide resistance genes, mostly mobile and critical, were also uncovered. We conclude that the mud tsunami resulted in resistome expansion, enrichment of pathogens, and increases in promiscuous and mobile ARGs. From a One Health perspective, mining companies need to move toward more environmentally friendly and socially responsible mining practices to reduce risks associated with pathogens and critical and mobile ARGs.
Collapse
Affiliation(s)
- Maria Luíza Soares Suhadolnik
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Patrícia Silva Costa
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | - Francisco Pereira Lobo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Andréa Maria Amaral Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
11
|
Li C, Tyson GH, Hsu CH, Harrison L, Strain E, Tran TT, Tillman GE, Dessai U, McDermott PF, Zhao S. Long-Read Sequencing Reveals Evolution and Acquisition of Antimicrobial Resistance and Virulence Genes in Salmonella enterica. Front Microbiol 2021; 12:777817. [PMID: 34867920 PMCID: PMC8640207 DOI: 10.3389/fmicb.2021.777817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a significant and phylogenetically diverse zoonotic pathogen. To understand its genomic heterogeneity and antimicrobial resistance, we performed long-read sequencing on Salmonella isolated from retail meats and food animals. A collection of 134 multidrug-resistant isolates belonging to 33 serotypes were subjected to PacBio sequencing. One major locus of diversity among these isolates was the presence and orientation of Salmonella pathogenic islands (SPI), which varied across different serotypes but were largely conserved within individual serotypes. We also identified insertion of an IncQ resistance plasmid into the chromosome of fourteen strains of serotype I 4,[5],12:i:- and the Salmonella genomic island 1 (SGI-1) in five serotypes. The presence of various SPIs, SGI-1 and integrated plasmids contributed significantly to the genomic variability and resulted in chromosomal resistance in 55.2% (74/134) of the study isolates. A total of 93.3% (125/134) of isolates carried at least one plasmid, with isolates carrying up to seven plasmids. We closed 233 plasmid sequences of thirteen replicon types, along with twelve hybrid plasmids. Some associations between Salmonella isolate source, serotype, and plasmid type were seen. For instance, IncX plasmids were more common in serotype Kentucky from retail chicken. Plasmids IncC and IncHI had on average more than five antimicrobial resistance genes, whereas in IncX, it was less than one per plasmid. Overall, 60% of multidrug resistance (MDR) strains that carried >3 AMR genes also carried >3 heavy metal resistance genes, raising the possibility of co-selection of antimicrobial resistance in the presence of heavy metals. We also found nine isolates representing four serotypes that carried virulence plasmids with the spv operon. Together, these data demonstrate the power of long-read sequencing to reveal genomic arrangements and integrated plasmids with a high level of resolution for tracking and comparing resistant strains from different sources. Additionally, the findings from this study will help expand the reference set of closed Salmonella genomes that can be used to improve genome assembly from short-read data commonly used in One Health antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- Cong Li
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Gregory H Tyson
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Lucas Harrison
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Thu-Thuy Tran
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Glenn E Tillman
- Food Safety and Inspection Service, United States Department of Agriculture, Athens, GA, United States
| | - Uday Dessai
- Food Safety and Inspection Service, United States Department of Agriculture, Washington, DC, United States
| | - Patrick F McDermott
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Shaohua Zhao
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
12
|
Nagy I, Szabó M, Hegyi A, Kiss J. Salmonella Genomic Island 1 requires a self-encoded small RNA for mobilization. Mol Microbiol 2021; 116:1533-1551. [PMID: 34784078 PMCID: PMC9299015 DOI: 10.1111/mmi.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022]
Abstract
The SGI1-family elements that are specifically mobilized by the IncA- and IncC-family plasmids are important vehicles of antibiotic resistance among enteric bacteria. Although SGI1 exploits many plasmid-derived conjugation and regulatory functions, the basic mobilization module of the island is unrelated to that of IncC plasmids. This module contains the oriT and encodes the mobilization proteins MpsA and MpsB, which belong to the tyrosine recombinases and not to relaxases. Here we report an additional, essential transfer factor of SGI1. This is a small RNA deriving from the 3'-end of a primary RNA that can also serve as mRNA of ORF S022. The functional domain of this sRNA named sgm-sRNA is encoded between the mpsA gene and the oriT of SGI1. Terminator-like sequence near the promoter of the primary transcript possibly has a regulatory function in controlling the amount of full-length primary RNA, which is converted to the active sgm-sRNA through consecutive maturation steps influenced by the 5'-end of the primary RNA. The mobilization module of SGI1 seems unique due to its atypical relaxase and the newly identified sgm-sRNA, which is required for the horizontal transfer of the island but appears to act differently from classical regulatory sRNAs.
Collapse
Affiliation(s)
- István Nagy
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Mónika Szabó
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Anna Hegyi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - János Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
13
|
Xiang G, Lan K, Cai Y, Liao K, Zhao M, Tao J, Ma Y, Zeng J, Zhang W, Wu Z, Yu X, Liu Y, Lu Y, Xu C, Chen L, Tang YW, Chen C, Jia W, Huang B. Clinical Molecular and Genomic Epidemiology of Morganella morganii in China. Front Microbiol 2021; 12:744291. [PMID: 34650543 PMCID: PMC8507844 DOI: 10.3389/fmicb.2021.744291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Ongoing acquisition of antimicrobial resistance genes has made Morganella morganii a new clinical treatment challenge. Understanding the molecular epidemiology of M. morganii will contribute to clinical treatment and prevention. Methods: We undertook a 6-year clinical molecular epidemiological investigation of M. morganii from three tertiary hospitals in China since 2014. Antimicrobial susceptibility testing was performed using a VITEK-2 system. All isolates were screened for β-lactam and plasmid-mediated quinolone resistance genes by PCR. Isolates carrying carbapenem-resistant genes were subjected to whole-genome sequencing (WGS). The variation and evolution of these mobile genetic elements (MGEs) were then systematically analyzed. Results: Among all M. morganii isolates (n = 335), forty (11.9%) were recognized as multidrug resistant strains. qnrD1, aac(6′)-Ib-cr, blaTEM–104, and blaCTX–M–162 were the top four most prevalent resistance genes. Notably, phylogenomic and population structure analysis suggested clade 1 (rhierBAPS SC3 and SC5) associated with multiple resistance genes seemed to be widely spread. WGS showed a blaOXA–181-carrying IncX3 plasmid and a Proteus genomic island 2 variant carrying blaCTX–M–3, aac(6′)-Ib-cr coexisted in the same multidrug resistant strain zy_m28. Additionally, a blaIMP–1-carrying IncP-1β type plasmid was found in the strain nx_m63. Conclusion: This study indicates a clade of M. morganii is prone to acquire resistance genes, and multidrug resistant M. morganii are increasing by harboring a variety of MGEs including two newly discovered ones in the species. We should be vigilant that M. morganii may bring more extensive and challenging antimicrobial resistance issue.
Collapse
Affiliation(s)
- Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Translational Medicine Research Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Lan
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yimei Cai
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei Zhao
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jia Tao
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yi Ma
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Weizheng Zhang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Zhongwen Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuyang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Caixia Xu
- Translational Medicine Research Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Yi-Wei Tang
- Medical and Scientific Affairs, Cepheid, Sunnyvale, CA, United States
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Wei Jia
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Durand R, Deschênes F, Burrus V. Genomic islands targeting dusA in Vibrio species are distantly related to Salmonella Genomic Island 1 and mobilizable by IncC conjugative plasmids. PLoS Genet 2021; 17:e1009669. [PMID: 34415925 PMCID: PMC8409611 DOI: 10.1371/journal.pgen.1009669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella Genomic Island 1 (SGI1) and its variants are significant contributors to the spread of antibiotic resistance among Gammaproteobacteria. All known SGI1 variants integrate at the 3’ end of trmE, a gene coding for a tRNA modification enzyme. SGI1 variants are mobilized specifically by conjugative plasmids of the incompatibility groups A and C (IncA and IncC). Using a comparative genomics approach based on genes conserved among members of the SGI1 group, we identified diverse integrative elements distantly related to SGI1 in several species of Vibrio, Aeromonas, Salmonella, Pokkaliibacter, and Escherichia. Unlike SGI1, these elements target two alternative chromosomal loci, the 5’ end of dusA and the 3’ end of yicC. Although they share many features with SGI1, they lack antibiotic resistance genes and carry alternative integration/excision modules. Functional characterization of IMEVchUSA3, a dusA-specific integrative element, revealed promoters that respond to AcaCD, the master activator of IncC plasmid transfer genes. Quantitative PCR and mating assays confirmed that IMEVchUSA3 excises from the chromosome and is mobilized by an IncC helper plasmid from Vibrio cholerae to Escherichia coli. IMEVchUSA3 encodes the AcaC homolog SgaC that associates with AcaD to form a hybrid activator complex AcaD/SgaC essential for its excision and mobilization. We identified the dusA-specific recombination directionality factor RdfN required for the integrase-mediated excision of dusA-specific elements from the chromosome. Like xis in SGI1, rdfN is under the control of an AcaCD-responsive promoter. Although the integration of IMEVchUSA3 disrupts dusA, it provides a new promoter sequence and restores the reading frame of dusA for proper expression of the tRNA-dihydrouridine synthase A. Phylogenetic analysis of the conserved proteins encoded by SGI1-like elements targeting dusA, yicC, and trmE gives a fresh perspective on the possible origin of SGI1 and its variants. We identified integrative elements distantly related to Salmonella Genomic Island 1 (SGI1), a key vector of antibiotic resistance genes in Gammaproteobacteria. SGI1 and its variants reside at the 3’ end of trmE, share a large, highly conserved core of genes, and carry a complex integron that confers multidrug resistance phenotypes to their hosts. Unlike members of the SGI1 group, these novel genomic islands target the 5’ end dusA or the 3’ end of yicC, lack multidrug resistance genes, and seem much more diverse. We showed here that, like SGI1, these elements are mobilized by conjugative plasmids of the IncC group. Based on comparative genomics and functional analyses, we propose a hypothetical model of the evolution of SGI1 and its siblings from the progenitor of IncA and IncC conjugative plasmids via an intermediate dusA-specific integrative element through gene losses and gain of alternative integration/excision modules.
Collapse
Affiliation(s)
- Romain Durand
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Florence Deschênes
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
15
|
Durand R, Huguet KT, Rivard N, Carraro N, Rodrigue S, Burrus V. Crucial role of Salmonella genomic island 1 master activator in the parasitism of IncC plasmids. Nucleic Acids Res 2021; 49:7807-7824. [PMID: 33834206 PMCID: PMC8373056 DOI: 10.1093/nar/gkab204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
IncC conjugative plasmids and the multiple variants of Salmonella Genomic Island 1 (SGI1) are two functionally interacting families of mobile genetic elements commonly associated with multidrug resistance in the Gammaproteobacteria. SGI1 and its siblings are specifically mobilised in trans by IncC conjugative plasmids. Conjugative transfer of IncC plasmids is activated by the plasmid-encoded master activator AcaCD. SGI1 carries five AcaCD-responsive promoters that drive the expression of genes involved in its excision, replication, and mobilisation. SGI1 encodes an AcaCD homologue, the transcriptional activator complex SgaCD (also known as FlhDCSGI1) that seems to recognise and activate the same SGI1 promoters. Here, we investigated the relevance of SgaCD in SGI1's lifecycle. Mating assays revealed the requirement for SgaCD and its IncC-encoded counterpart AcaCD in the mobilisation of SGI1. An integrative approach combining ChIP-exo, Cappable-seq, and RNA-seq confirmed that SgaCD activates each of the 18 AcaCD-responsive promoters driving the expression of the plasmid transfer functions. A comprehensive analysis of the activity of the complete set of AcaCD-responsive promoters of SGI1 and the helper IncC plasmid was performed through reporter assays. qPCR and flow cytometry assays revealed that SgaCD is essential to elicit the excision and replication of SGI1 and destabilise the helper IncC plasmid.
Collapse
Affiliation(s)
- Romain Durand
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Kévin T Huguet
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Rivard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Carraro
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Vincent Burrus
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
16
|
Identification of a novel genomic resistance island PmGRI1-STP3 and an SXT/R391 integrative conjugative element in Proteus mirabilis of swine origin in China. J Glob Antimicrob Resist 2021; 25:77-81. [PMID: 33667705 DOI: 10.1016/j.jgar.2021.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/27/2020] [Accepted: 02/17/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to determine the genetic environment of antimicrobial resistance genes in Proteus mirabilis strain STP3 isolated from a diarrhoeic pig on a swine farm in Sichuan Province, China. METHODS Strain STP3 was subjected to antimicrobial susceptibility testing. Illumina MiSeq (200× coverage) and Nanopore PromethION (100× coverage) platforms were used for genome sequencing. A conjugation experiment was performed to determine the transferability and stability of antimicrobial resistance genes in this strain. RESULTS The assembled circular genome of P. mirabilis STP3 was 4 115 975 bp with a GC content of 39.58%; no plasmid sequence was detected. A novel genomic resistance island (PmGRI1-STP3) and an SXT/R391 integrative conjugative element (ICE) variant (ICEPmiChnSTP3) were characterised in P. mirabilis STP3. PmGRI1-STP3 of 52.7 kb was located at the 3' end of tRNA-Sec and shared the greatest identity with PmGRI1-C55 (54% coverage, 99.99% identity). PmGRI1-STP3 carried 16 resistance genes, including the clinically important extended-spectrum β-lactamase (ESBL) gene blaCTX-M-3. ICEPmiChnSTP3 was inserted into the prfC gene. It carried 18 resistance genes, including the rRNA methyltransferase gene cfr and the fluoroquinolone resistance gene aac(6')-Ib-cr. A class 2 integron (dfrA1-sat2-aadA1) was also identified on transposon Tn7. Mobilisation experiments indicated that ICEPmiChnSTP3 was conjugally mobilised to Escherichia coli. However, PmGRI1-STP3 appeared to lose its mobilisation ability. CONCLUSION The identification of two genomic islands (GIs) in this study suggested that genetic elements might be key mediators for resistance gene acquisition in P. mirabilis and that IS26-mediated rearrangements promote the diversity of GIs.
Collapse
|
17
|
Li W, Wang A. Genomic islands mediate environmental adaptation and the spread of antibiotic resistance in multiresistant Enterococci - evidence from genomic sequences. BMC Microbiol 2021; 21:55. [PMID: 33602143 PMCID: PMC7893910 DOI: 10.1186/s12866-021-02114-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genomic islands (GIs) play an important role in the chromosome diversity of Enterococcus. In the current study, we aimed to investigate the spread of GIs between Enterococcus strains and their correlation with antibiotic resistance genes (ARGs). Bitsliced Genomic Signature Indexes (BIGSI) were used to screen the NCBI Sequence Read Archive (SRA) for multiple resistant Enterococcus. A total of 37 pairs of raw reads were screened from 457,000 whole-genome sequences (WGS) in the SRA database, which come from 37 Enterococci distributed in eight countries. These raw reads were assembled for the prediction and analysis of GIs, ARGs, plasmids and prophages. Results The results showed that GIs were universal in Enterococcus, with an average of 3.2 GIs in each strain. Network analysis showed that frequent genetic information exchanges mediated by GIs occurred between Enterococcus strains. Seven antibiotic-resistant genomic islands (ARGIs) were found to carry one to three ARGs, mdtG, tetM, dfrG, lnuG, and fexA, in six strains. These ARGIs were involved in the spread of antibiotic resistance in 45.9% of the 37 strains, although there was no significant positive correlation between the frequency of GI exchanges and the number of ARGs each strain harboured (r = 0. 287, p = 0.085). After comprehensively analysing the genome data, we found that partial GIs were associated with multiple mobile genetic elements (transposons, integrons, prophages and plasmids) and had potential natural transformation characteristics. Conclusions All of these results based on genomic sequencing suggest that GIs might mediate the acquisition of some ARGs and might be involved in the high genome plasticity of Enterococcus through transformation, transduction and conjugation, thus providing a fitness advantage for Enterococcus hosts under complex environmental factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02114-4.
Collapse
Affiliation(s)
- Weiwei Li
- School of Life Science,
- Ludong University, Yantai, 264025, China.
| | - Ailan Wang
- School of Life Science,
- Ludong University, Yantai, 264025, China
| |
Collapse
|
18
|
de Curraize C, Siebor E, Neuwirth C. Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids. Plasmid 2021; 114:102565. [PMID: 33582118 DOI: 10.1016/j.plasmid.2021.102565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/01/2022]
Abstract
Salmonella genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant Salmonella Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in Salmonella enterica and Proteus mirabilis. Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3'-end of the trmE gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, traN, traG, mpsB/mpsA genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs.
Collapse
Affiliation(s)
- Claire de Curraize
- Bacteriology Department, University Hospital Dijon, PBHU, BP 37013, 21070 Dijon Cedex, France; UMR 6249, Chrono-Environnement, PBHU, BP 37013, 21070 Dijon Cedex, France.
| | - Eliane Siebor
- Bacteriology Department, University Hospital Dijon, PBHU, BP 37013, 21070 Dijon Cedex, France; UMR 6249, Chrono-Environnement, PBHU, BP 37013, 21070 Dijon Cedex, France.
| | - Catherine Neuwirth
- Bacteriology Department, University Hospital Dijon, PBHU, BP 37013, 21070 Dijon Cedex, France; UMR 6249, Chrono-Environnement, PBHU, BP 37013, 21070 Dijon Cedex, France.
| |
Collapse
|
19
|
Emergence of Salmonella Genomic Island 1 Variant SGI1-C in a Multidrug-Resistant Clinical Isolate of Klebsiella pneumoniae ST485 from Egypt. Antimicrob Agents Chemother 2020; 64:AAC.01055-20. [PMID: 32660995 DOI: 10.1128/aac.01055-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Wyrsch ER, Chowdhury PR, Jarocki VM, Brandis KJ, Djordjevic SP. Duplication and diversification of a unique chromosomal virulence island hosting the subtilase cytotoxin in Escherichia coli ST58. Microb Genom 2020; 6:e000387. [PMID: 32519937 PMCID: PMC7371111 DOI: 10.1099/mgen.0.000387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
The AB5 cytotoxins are important virulence factors in Escherichia coli. The most notable members of the AB5 toxin families include Shiga toxin families 1 (Stx1) and 2 (Stx2), which are associated with enterohaemorrhagic E. coli infections causing haemolytic uraemic syndrome and haemorrhagic colitis. The subAB toxins are the newest and least well understood members of the AB5 toxin gene family. The subtilase toxin genes are divided into a plasmid-based variant, subAB1, originally described in enterohaemorrhagic E. coli O113:H21, and distinct chromosomal variants, subAB2, that reside in pathogenicity islands encoding additional virulence effectors. Previously we identified a chromosomal subAB2 operon within an E. coli ST58 strain IBS28 (ONT:H25) taken from a wild ibis nest at an inland wetland in New South Wales, Australia. Here we show the subAB2 toxin operon comprised part of a 140 kb tRNA-Phe chromosomal island that co-hosted tia, encoding an outer-membrane protein that confers an adherence and invasion phenotype and additional virulence and accessory genetic content that potentially originated from known virulence island SE-PAI. This island shared a common evolutionary history with a secondary 90 kb tRNA-Phe pathogenicity island that was presumably generated via a duplication event. IBS28 is closely related [200 single-nucleotide polymorphisms (SNPs)] to four North American ST58 strains. The close relationship between North American isolates of ST58 and IBS28 was further supported by the identification of the only copy of a unique variant of IS26 within the O-antigen gene cluster. Strain ISB28 may be a historically important E. coli ST58 genome sequence hosting a progenitor pathogenicity island encoding subAB.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Veronica M. Jarocki
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kate J. Brandis
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington 2052 NSW, Australia
| | - Steven P. Djordjevic
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|