1
|
Volk M, Gundogdu O, Klančnik A. Temporal dynamics of gene expression during the development of Campylobacter jejuni biofilms. Microb Genom 2025; 11:001387. [PMID: 40327030 PMCID: PMC12056249 DOI: 10.1099/mgen.0.001387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/26/2025] [Indexed: 05/07/2025] Open
Abstract
Campylobacter jejuni, an important pathogen of bacterial gastrointestinal infections, forms biofilms that enable its survival in different environments. C. jejuni biofilm development is still poorly understood, and thus, in this study, we characterized gene expression changes at different biofilm stages using RNA sequencing. Early biofilms (after 16 and 24 h) showed increased expressions of genes involved in cysteine and methionine metabolism, whereas mature biofilms (after 48 and 72 h) showed decreased expression of genes encoding capsular polysaccharides and lipooligosaccharides. Both early and mature biofilms showed increased expressions of genes involved in flagella formation, leucine metabolism and the oxidative stress response and decreased expressions of genes involved in energy metabolism, iron acquisition and transmembrane transport. This study provides insights into the molecular mechanisms underlying C. jejuni biofilm maturation, environmental resistance and the dynamic nature of gene expression during biofilm development.
Collapse
Affiliation(s)
- Manca Volk
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Čukajne T, Štravs P, Sahin O, Zhang Q, Berlec A, Klančnik A. Campylobacter jejuni Biofilm Assessment by NanoLuc Luciferase Assay. Bio Protoc 2025; 15:e5192. [PMID: 40028012 PMCID: PMC11865840 DOI: 10.21769/bioprotoc.5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 03/05/2025] Open
Abstract
Campylobacter jejuni, a widespread pathogen found in birds and mammals, poses a significant risk for zoonosis worldwide despite its susceptibility to environmental and food-processing stressors. One of its main survival mechanisms is the formation of biofilms that can withstand various food-processing stressors, which is why efficient methods for assessing biofilms are crucial. Existing methods, including the classical culture-based plate counting method, biomass-staining methods (e.g., crystal violet and safranin), DNA-staining methods, those that use metabolic substrates to detect live bacteria (e.g., tetrazolium salts and resazurin), immunofluorescence with flow cytometry or fluorescence microscopy, and PCR-based methods for quantification of bacterial DNA, are diverse but often lack specificity, sensitivity, and suitability. In response to these limitations, we propose an innovative approach using NanoLuc as a reporter protein. The established protocol involves growing biofilms in microtiter plates, washing unattached cells, adding Nano-Glo luciferase substrate, and measuring bioluminescence. The bacterial concentrations in the biofilms are calculated by linear regression based on the calibration curve generated with known cell concentrations. The NanoLuc protein offers a number of advantages, such as its small size, temperature stability, and highly efficient bioluminescence, enabling rapid, non-invasive, and comprehensive assessment of biofilms together with quantification of a wide range of cell states. Although this method is limited to laboratory use due to the involvement of genetically modified organisms, it provides valuable insights into C. jejuni biofilm dynamics that could indirectly help in the development of improved food safety measures. Key features • Quantification of C. jejuni using NanoLuc luciferase. • The assay is linear in the range of 1.9 × 107 to 1.5 × 108 CFU/mL. • Following biofilm growth, less than 1 h is required for detection. • The assay requires genetically modified bacterial strains.
Collapse
Affiliation(s)
- Tjaša Čukajne
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Štravs
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Čukajne T, Štravs P, Sahin O, Zhang Q, Berlec A, Klančnik A. Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence. Appl Microbiol Biotechnol 2024; 108:546. [PMID: 39731621 PMCID: PMC11682011 DOI: 10.1007/s00253-024-13383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024]
Abstract
Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C. jejuni biofilms on various substrates, such as polystyrene plates, mucin-coated surfaces, and chicken juice matrices. Introduction of NanoLuc luciferase in a pathogenic C. jejuni strain enables rapid non-invasive holistic observation, capturing a spectrum of cell states that may comprise live, damaged, and viable but non-culturable populations. Our comparative analysis with established biofilm quantification methods highlights the specificity, sensitivity, and simplicity of the NanoLuc assay. The assay is efficient and offers precise cell quantification and thus represents an important complementary or alternative method to conventional biofilm monitoring methods. The findings of this study highlight the need for a versatile approach and suggest combining the NanoLuc assay with other methods to gain comprehensive insight into biofilm dynamics. KEY POINTS: • Innovative NanoLuc bioluminescence assay for sophisticated biofilm quantification. • Holistic monitoring of C. jejuni biofilm by capturing live, damaged and VBNC cells. • Potential for improving understanding of biofilm development and structure.
Collapse
Affiliation(s)
- Tjaša Čukajne
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Štravs
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Orhan Sahin
- College of Veterinary Medicine, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Qijing Zhang
- College of Veterinary Medicine, Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, Chair of Pharmaceutical Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Cohen EJ, Drobnič T, Ribardo DA, Yoshioka A, Umrekar T, Guo X, Fernandez JJ, Brock EE, Wilson L, Nakane D, Hendrixson DR, Beeby M. Evolution of a large periplasmic disk in Campylobacterota flagella enables both efficient motility and autoagglutination. Dev Cell 2024; 59:3306-3321.e5. [PMID: 39362219 PMCID: PMC11652260 DOI: 10.1016/j.devcel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
The flagellar motors of Campylobacter jejuni (C. jejuni) and related Campylobacterota (previously epsilonproteobacteria) feature 100-nm-wide periplasmic "basal disks" that have been implicated in scaffolding a wider ring of additional motor proteins to increase torque, but the size of these disks is excessive for a role solely in scaffolding motor proteins. Here, we show that the basal disk is a flange that braces the flagellar motor during disentanglement of its flagellar filament from interactions with the cell body and other filaments. We show that motor output is unaffected when we shrink or displace the basal disk, and suppressor mutations of debilitated motors occur in flagellar-filament or cell-surface glycosylation pathways, thus sidestepping the need for a flange to overcome the interactions between two flagellar filaments and between flagellar filaments and the cell body. Our results identify unanticipated co-dependencies in the evolution of flagellar motor structure and cell-surface properties in the Campylobacterota.
Collapse
Affiliation(s)
- Eli J Cohen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Tina Drobnič
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aoba Yoshioka
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Trishant Umrekar
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xuefei Guo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jose-Jesus Fernandez
- Spanish National Research Council (CINN-CSIC), Health Research Institute of Asturias (ISPA), Av Hospital Universitario s/n, Oviedo 33011, Spain
| | - Emma E Brock
- Department of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Laurence Wilson
- Department of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Bundurus IA, Balta I, Pet I, Stef L, Popescu CA, McCleery D, Lemon J, Callaway T, Douglas A, Corcionivoschi N. Mechanistic concepts involved in biofilm associated processes of Campylobacter jejuni: persistence and inhibition in poultry environments. Poult Sci 2024; 103:104328. [PMID: 39366290 PMCID: PMC11483643 DOI: 10.1016/j.psj.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Campylobacter species, predominantly Campylobacter jejuni, remains a significant zoonotic pathogen worldwide, with the poultry sector being the primary vector for human transmission. In recent years. there has been a notable rise in the incidence of human campylobacteriosis, necessitating a deeper understanding of the pathogen's survival mechanisms and transmission dynamics. Biofilm presence significantly contributes to C. jejuni persistence in poultry and subsequent food product contamination, and this review describes the intricate processes involved in biofilm formation. The ability of Campylobacter to form biofilms on various surfaces, including stainless steel, plastic, and glass, is a critical survival strategy. Campylobacter biofilms, with their remarkable resilience, protect the pathogen from environmental stresses such as desiccation, pH extremes, biocides and sanitizing agents. This review explores the molecular and genetic mechanisms of C. jejuni biofilm formation, highlighting regulatory genes involved in motility, chemotaxis, and stress responses. Flagellar proteins, particularly flaA, flaB, flaG, and adhesins like cadF and flpA, are identified as the main molecular components in biofilm development. The role of mixed-species biofilms, where C. jejuni integrates into existing biofilms of other bacteria to enhance pathogen resilience, is also discussed. This review also considers alternative interventions to control C. jejuni in poultry production, in the context of increasing antibiotic resistance. It explores the effectiveness of prebiotics, probiotics, synbiotics, bacteriocins, bacteriophages, vaccines, and organic acids, with a focus on their mechanisms of action in reducing bacterial colonization and biofilm formation. Studies show that mixtures of organic acids and compounds like Carvacrol and Eugenol significantly downregulate genes linked with motility and adhesion, thereby disrupting biofilm integrity. It discusses the impact of environmental factors, such as temperature and oxygen levels on biofilm formation, providing insights into how industrial conditions can be manipulated to reduce contamination. This paper stresses the need for a multifaceted approach to control Campylobacter in poultry, integrating molecular and genetic insights with practical interventions. By advancing our understanding of biofilm dynamics and gene regulation, we aim to inform the development of more effective strategies to enhance food safety and protect public health.
Collapse
Affiliation(s)
- Iulia A Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - David McCleery
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Joanne Lemon
- Chief Scientific Adviser's Office, Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, Northern Ireland BT3 9ED, UK
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Alastair Douglas
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania; Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK; Academy of Romanian Scientists, Bucharest 050044, Romania.
| |
Collapse
|
6
|
Pavlinjek N, Klančnik A, Sabotič J. Evaluation of physical and chemical isolation methods to extract and purify Campylobacter jejuni extracellular polymeric substances. Front Microbiol 2024; 15:1488114. [PMID: 39526143 PMCID: PMC11543439 DOI: 10.3389/fmicb.2024.1488114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The pathogenic bacterium Campylobacter jejuni is a major food safety concern as it can form biofilms that increase its survival and infective potential. Biofilms consist of microbial cells and extracellular matrix (ECM), which is made of water and extracellular polymeric substances (EPS), which are critical for structural integrity and pathogenicity. The aim of this study was to optimize a protocol for the isolation of C. jejuni ECM. We employed eight physical and chemical isolation methods to extract and purify ECM, followed by different qualitative and quantitative analyses using gel electrophoresis and spectroscopy. This comprehensive approach enabled the evaluation of ECM composition in terms of polysaccharides, proteins, and extracellular DNA. The isolation methods resulted in different yields and purities of the extracted ECM components. Centrifugation in combination with chemical treatments proved to be most effective, isolating higher concentrations of polysaccharides and proteins. Additionally, extraction with ether solution facilitated the recovery of high-molecular-weight extracellular DNA. Overall, we provide a refined methodology for ECM extraction from C. jejuni. As polysaccharides and proteins participate in biofilm stability and microbial communication, and extracellular DNA participates in genetic exchange and virulence, our study contributes towards a better understanding of the persistence of this pathogen in the food industry.
Collapse
Affiliation(s)
- Natalija Pavlinjek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
7
|
Loera-Muro A, Silva-Jara J, Hernández V, León-Montoya H, Angulo C. A perspective on nanomaterials against Campylobacter jejuni biofilm - New control strategies. Microb Pathog 2024; 197:107031. [PMID: 39427717 DOI: 10.1016/j.micpath.2024.107031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Campylobacter jejuni - a Gram-negative bacterium - is considered the fourth cause of diarrheic diseases that can form biofilms (mono and multi-species) or colonize pre-existing biofilms adhering to both, inert or biotic surfaces; its biofilms contribute to transmission through the food chain and survival under harsh environmental conditions. Thus, developing alternatives against this pathogen is compulsory. Nanomaterials have revolutionized the way of fighting infections related to biofilms due to their unique properties compared to traditional antibiotics. Nanomaterials have also been used against C. jejuni based on zinc, titanium, silver, molybdenum, magnesium, cobalt, erbium, lithium, nickel, hydroxide, polyethylene, graphene, lipids, chitosan, and poly(lactic-co-glycolic acid) (PLGA). Those organic and inorganic materials have synthesized nanoparticles, nanofillers, nanowires, nanoferrites, double layers, nanocomposites, and films that have encapsulated, entrapped, coated or doped molecules. Additionally, bare metal nanoparticles have been tested by their antimicrobial activity on planktonic and sessile forms. Therefore, the present review aimed to describe general biology, virulence factors, host-pathogen relationships and biofilm formation, as well as nanomaterials and nanoparticles fighting against C. jejuni biofilms. Considerations are presented and placed in perspective.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- CONAHCYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Jorge Silva-Jara
- Pharmacobiology Department, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara, Jalisco, 44430, Mexico
| | - Víctor Hernández
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Hassian León-Montoya
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico.
| |
Collapse
|
8
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Stephenson MM, Coleman ME, Azzolina NA. Trends in Burdens of Disease by Transmission Source (USA, 2005-2020) and Hazard Identification for Foods: Focus on Milkborne Disease. J Epidemiol Glob Health 2024; 14:787-816. [PMID: 38546802 PMCID: PMC11442898 DOI: 10.1007/s44197-024-00216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Robust solutions to global, national, and regional burdens of communicable and non-communicable diseases, particularly related to diet, demand interdisciplinary or transdisciplinary collaborations to effectively inform risk analysis and policy decisions. OBJECTIVE U.S. outbreak data for 2005-2020 from all transmission sources were analyzed for trends in the burden of infectious disease and foodborne outbreaks. METHODS Outbreak data from 58 Microsoft Access® data tables were structured using systematic queries and pivot tables for analysis by transmission source, pathogen, and date. Trends were examined using graphical representations, smoothing splines, Spearman's rho rank correlations, and non-parametric testing for trend. Hazard Identification was conducted based on the number and severity of illnesses. RESULTS The evidence does not support increasing trends in the burden of infectious foodborne disease, though strongly increasing trends were observed for other transmission sources. Morbidity and mortality were dominated by person-to-person transmission; foodborne and other transmission sources accounted for small portions of the disease burden. Foods representing the greatest hazards associated with the four major foodborne bacterial diseases were identified. Fatal foodborne disease was dominated by fruits, vegetables, peanut butter, and pasteurized dairy. CONCLUSION The available evidence conflicts with assumptions of zero risk for pasteurized milk and increasing trends in the burden of illness for raw milk. For future evidence-based risk management, transdisciplinary risk analysis methodologies are essential to balance both communicable and non-communicable diseases and both food safety and food security, considering scientific, sustainable, economic, cultural, social, and political factors to support health and wellness for humans and ecosystems.
Collapse
|
10
|
Ortega-Sanz I, Bocigas C, Melero B, Rovira J. Phase variation modulates the multi-phenotypes displayed by clinical Campylobacter jejuni strains. Food Microbiol 2024; 117:104397. [PMID: 37918995 DOI: 10.1016/j.fm.2023.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The high incidence and prevalence of Campylobacter spp. in the food supply chain entail the importance to understand their mechanisms developed to withstand harsh environmental conditions encountered. Different stress conditions and phenotypic approaches were evaluated to study the behaviour of five clinical C. jejuni isolates with different genotypes, including the tolerance to oxygen and the oxidants hydrogen peroxide and cumene hydroperoxide, the motility and the ability to form biofilm on polystyrene and stainless steel at different temperatures and atmospheres. Whole Genome Sequencing was performed to analyse the occurrence of 216 genes involved in these mechanisms plus phase variation. The isolates showed high tolerance to oxygen and peroxide stress with different swimming motility performances and biofilm formation abilities. Aerotolerance was related with a reduced sensitive to peroxide stress and a loss of motility that promotes biofilm formation depending on the material surface. Comparative genomics did not reveal any clear gene pattern, although phase variation occurring during host infection was observed to be crucial for the modulation of the different survival mechanisms adopted by the bacteria. These findings reveal that the bacteria can combine diverse and complex strategies in an efficient manner to survive and persist in the environment.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Carolina Bocigas
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain.
| |
Collapse
|
11
|
Sabotič J, Janež N, Volk M, Klančnik A. Molecular structures mediating adhesion of Campylobacter jejuni to abiotic and biotic surfaces. Vet Microbiol 2023; 287:109918. [PMID: 38029692 DOI: 10.1016/j.vetmic.2023.109918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Microaerophilic, Gram-negative Campylobacter jejuni is the causative agent of campylobacteriosis, the most common bacterial gastrointestinal infection worldwide. Adhesion is the crucial first step in both infection or interaction with the host and biofilm formation, and is a critical factor for bacterial persistence. Here we describe the proteins and other surface structures that promote adhesion to various surfaces, including abiotic surfaces, microorganisms, and animal and human hosts. In addition, we provide insight into the distribution of adhesion proteins among strains from different ecological niches and highlight unexplored proteins involved in C. jejuni adhesion. Protein-protein, protein-glycan, and glycan-glycan interactions are involved in C. jejuni adhesion, with different factors contributing to adhesion to varying degrees under different circumstances. As adhesion is essential for survival and persistence, it represents an interesting target for C. jejuni control. Knowledge of the adhesion process is incomplete, as different molecular and functional aspects have been studied for different structures involved in adhesion. Therefore, it is important to strive for an integration of different approaches to obtain a clearer picture of the adhesion process on different surfaces and to consider the involvement of proteins, glycoconjugates, and polysaccharides and their cooperation.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Manca Volk
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
12
|
Hull DM, Harrel E, Harden L, Thakur S. Detection of resistance and virulence plasmids in Campylobacter coli and Campylobacter jejuni isolated from North Carolina food animal production, 2018-2019. Food Microbiol 2023; 116:104348. [PMID: 37689422 DOI: 10.1016/j.fm.2023.104348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023]
Abstract
Campylobacter remains the leading cause of bacterial foodborne illness in the U.S. and worldwide. Campylobacter plasmids may play a significant role in antimicrobial resistance (AMR) and virulence factor distribution, and potentially drive rapid adaptation. C. coli (n = 345) and C. jejuni (n = 199) isolates collected from live cattle, swine, turkey, and chickens, poultry carcasses at production, and retail meat in N.C. were analyzed to determine plasmid prevalence, extrachromosomal virulence and AMR genes, and the phylogeny of assembled plasmids. Putative plasmids ranging from <2 kb to 237kb were identified with virulence factors present in 66.1% (228/345) C. coli and 88.4% (176/199) C. jejuni plasmids (promoting adherence, invasion, exotoxin production, immune modulation, chemotaxis, mobility, and the type IV secretion system). AMR genes were identified in 21.2% (73/345) C. coli and 28.1% C. jejuni plasmids (conferring resistance to tetracyclines, aminoglycosides, beta-lactams, nucleosides, and lincosamides). Megaplasmids (>100 kb) were present in 25.7% (140/544) of the isolates and carried genes previously recognized to be involved with interspecies recombination. Our study highlights the extensive distribution and diversity of Campylobacter plasmids in food animal production and their role in the dissemination of biomedically important genes. Characterizing Campylobacter plasmids within the food animal production niche is important to understanding the epidemiology of potential emerging strains.
Collapse
Affiliation(s)
- Dawn M Hull
- Department of Pathobiology and Population Health, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Erin Harrel
- Department of Pathobiology and Population Health, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Lyndy Harden
- Department of Pathobiology and Population Health, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Siddhartha Thakur
- Department of Pathobiology and Population Health, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA.
| |
Collapse
|
13
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
14
|
Silva RTC, Guidotti-Takeuchi M, Peixoto JLM, Demarqui FM, Mori AP, Dumont CF, Ferreira GRA, Pereira GDM, Rossi DA, Corbi PP, Pavan FR, Rezende Júnior CDO, Melo RTD, Guerra W. New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni. Molecules 2023; 28:molecules28093887. [PMID: 37175297 PMCID: PMC10179749 DOI: 10.3390/molecules28093887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023] Open
Abstract
This work describes the preparation, characterization and antimicrobial activity of four palladium(II) complexes, namely, [Pd(meg)(1,10-phen)] 1, [Pd(meg)(PPh3)2] 2, [Pd(og)(1,10-phen)] 3 and [Pd(og)(PPh3)2] 4, where meg = methyl gallate, og = octyl gallate, 1,10-phen = 1,10-phenanthroline and PPh3 = triphenylphosphine. As to the chemical structures, spectral and physicochemical studies of 1-4 indicated that methyl or octyl gallate coordinates a palladium(II) ion through two oxygen atoms upon deprotonation. A chelating bidentate phenanthroline or two triphenylphosphine molecules complete the coordination sphere of palladium(II) ion, depending on the complex. The metal complexes were tested against the Mycobacterium tuberculosis H37Rv strain and 2 exhibited high activity (MIC = 3.28 μg/mL). As to the tests with Campylobacter jejuni, complex 1 showed a significant effect in reducing bacterial population (greater than 7 log CFU) in planktonic forms, as well as in the biomass intensity (IBF: 0.87) when compared to peracetic acid (IBF: 1.11) at a concentration of 400 μg/mL. The effect provided by these complexes has specificity according to the target microorganism and represent a promising alternative for the control of microorganisms of public health importance.
Collapse
Affiliation(s)
| | - Micaela Guidotti-Takeuchi
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Jéssica Laura Miranda Peixoto
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Fernanda Manaia Demarqui
- Faculty of Pharmaceutical Sciences, Paulista State University-UNESP, Araraquara Campus, Araraquara 14800-060, SP, Brazil
| | - Ananda Paula Mori
- Institute of Chemistry, Federal University of Uberlândia-UFU, Santa Mônica Campus, Uberlândia 38402-018, MG, Brazil
| | - Carolyne Ferreira Dumont
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | | | | | - Daise Aparecida Rossi
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry, State University of Campinas-UNICAMP, Campinas 13083-872, SP, Brazil
| | - Fernando Rogério Pavan
- Faculty of Pharmaceutical Sciences, Paulista State University-UNESP, Araraquara Campus, Araraquara 14800-060, SP, Brazil
| | | | - Roberta Torres de Melo
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Federal University of Uberlândia-UFU, Santa Mônica Campus, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
15
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
16
|
Giaouris E. Relevance and Importance of Biofilms in the Resistance and Spreading of Campylobacter spp. Within the Food Chain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Ohadi E, Bakhshi B, Kalani BS, Talebi M, Irajian G. Transcriptome analysis of biofilm formation under aerobic and microaerobic conditions in clinical isolates of Campylobacter spp. Res Vet Sci 2021; 142:24-30. [PMID: 34847463 DOI: 10.1016/j.rvsc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
It has been well documented that Campylobacter is the leading cause of foodborne infections and bacterial enteritis in high-income countries. The gastrointestinal tract of most warm-blooded animals, such as mammals and poultry, is prone to this pathogen. Infections caused by this bacterium in humans have usually been associated with the consumption of contaminated poultry meat. The important point about Campylobacter is that this bacterium has adapted to harsh environmental conditions along the food chain (poultry digestive tract to the consumer's plate) and developed an adapted mechanism to those conditions. This study aimed to compare the ability of Campylobacter jejuni and Campylobacter coli strains to form biofilms under aerobic and microaerobic conditions. The presence and expression of flab, FliS, DnaK, luxs, CsrA, Cj0688, and cosR genes involved in biofilm formation were investigated. Finally, the correlation between the biofilm forming ability of Campylobacter isolates and the presence/expression of selected genes has been explored. A significant correlation was observed between the presence and expression of some genes and the degree of biofilm formation in C. jejuni and C. coli isolates. A strong biofilm production was detected in strains harboring all selected genes with greater expression levels. The ability of C. jejuni and C. coli strains in biofilm formation is associated with the coordinated function and convergent expression of the selected genes. Seemingly, stress response- and motility-related genes have the most involvement in biofilm formation of C. jejuni and C. coli strains, while other genes have an accessory role in this phenomenon.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Elgamoudi BA, Korolik V. Campylobacter Biofilms: Potential of Natural Compounds to Disrupt Campylobacter jejuni Transmission. Int J Mol Sci 2021; 22:12159. [PMID: 34830039 PMCID: PMC8617744 DOI: 10.3390/ijms222212159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.
Collapse
Affiliation(s)
- Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
19
|
Formation and development of biofilm- an alarming concern in food safety perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Anti-biofilm potential of Lavandula preparations against Campylobacter jejuni. Appl Environ Microbiol 2021; 87:e0109921. [PMID: 34319799 DOI: 10.1128/aem.01099-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New approaches for the control of Campylobacter jejuni biofilms in the food industry are being studied intensively. Natural products are promising alternative antimicrobial substances to control biofilm production, with particular emphasis on plant extracts. Dried flowers of Lavandula angustifolia were used to produce LEO, LEF, and LEW. The chemical compositions determined for these Lavandula preparations included seven major compounds that were selected for further testing. These were tested against C. jejuni, for biofilm degradation and removal. Next-generation sequencing was used to study the molecular mechanisms underlying LEO actions against C. jejuni adhesion and motility. Analysis of LEO revealed 1,8-cineol, linalool and linalyl acetate as the main components. For LEF and LEW, the main components were phenolic acid glycosides, with flavonoids rarely present. The minimal inhibitory concentrations of the Lavandula preparations and pure compounds against C. jejuni ranged from 0.2 mg/mL to 1 mg/mL. LEO showed the strongest biofilm degradation. The reduction of C. jejuni adhesion was by ≥1 log10 CFU/mL, which satisfies European Food Safety Authority recommendations. Lavandula preparations reduced C. jejuni motility by almost 50%, which consequently can impact upon biofilm formation. These data are in line with the transcriptome analysis of C. jejuni, where LEO down-regulated genes important for biofilm formation. LEW also showed good antibacterial and anti-biofilm effects, particularly against adhesion and motility mechanisms. This defines an innovative approach using alternative strategies and novel targets to combat bacterial biofilm formation, and hence the potential to develop new effective agents with biofilm-degrading activities. Importance The Lavandula preparations used in this study are found to be effective against C. jejuni, a common foodborne pathogen. They show anti-biofilm properties at sub-inhibitory concentrations in terms of promoting biofilm degradation and inhibiting cell adhesion and motility, which are involved in the initial steps of biofilm formation. These results are confirmed by transcriptome analysis, which highlights the effect of Lavandula essential oil on C. jejuni biofilm properties. We show that the waste material from the hydrodistillation of Lavandula has particular anti-biofilm effects, suggesting that it may find reuse for industrial purposes. This study highlights the need for efforts directed towards such innovative approaches and alternative strategies against biofilm formation and maintenance by developing new naturally derived agents with anti-biofilm activities.
Collapse
|
21
|
Foodborne Pathogen Campylobacter. Microorganisms 2021; 9:microorganisms9061241. [PMID: 34200984 PMCID: PMC8227710 DOI: 10.3390/microorganisms9061241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
|
22
|
A One Health Perspective on a Multi-hurdle Approach to Combat Campylobacter spp. in Broiler Meat. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00167-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Scheik LK, Volcan Maia DS, Würfel SDFR, Ramires T, Kleinubing NR, Haubert L, Lopes GV, da Silva WP. Biofilm-forming ability of poultry Campylobacter jejuni strains in the presence and absence of Pseudomonas aeruginosa. Can J Microbiol 2021; 67:301-309. [PMID: 33703923 DOI: 10.1139/cjm-2020-0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to evaluate the ability of Campylobacter jejuni isolated from a poultry slaughterhouse to form biofilm in the presence and absence of Pseudomonas aeruginosa, and the effect of surface (stainless steel, polystyrene), temperature (7, 25, and 42 °C), and oxygen concentration (microaerophilic and aerobic conditions) on the formation of biofilm. The genes ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, katA, kpsM, luxS, racR, and sodB, related to biofilm formation by C. jejuni, were also investigated. All isolates formed biofilm on stainless steel and on polystyrene, in both aerobic and microaerophilic atmospheres, including temperatures not optimal for C. jejuni growth (7 and 25 °C), and biofilm also was formed in the presence of P. aeruginosa. In dual-species biofilm on stainless steel, biofilm formation was 2-6 log CFU·cm-2 higher at 7 °C for all isolates, in comparison with monospecies biofilm. Ten genes (ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, luxS, racR, and sodB) were detected in all isolates, but katA and kpsM were found in four and six isolates, respectively. The results obtained are of concern because the poultry C. jejuni isolates form biofilm in different conditions, which is enhanced in the presence of other biofilm formers, such as P. aeruginosa.
Collapse
Affiliation(s)
- Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Darla Silveira Volcan Maia
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Simone de Fátima Rauber Würfel
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| |
Collapse
|
24
|
Abstract
Campylobacter jejuni and Campylobacter coli can be frequently isolated from poultry and poultry-derived products, and in combination these two species cause a large portion of human bacterial gastroenteritis cases. While birds are typically colonized by these Campylobacter species without clinical symptoms, in humans they cause (foodborne) infections at high frequencies, estimated to cost billions of dollars worldwide every year. The clinical outcome of Campylobacter infections comprises malaise, diarrhea, abdominal pain and fever. Symptoms may continue for up to two weeks and are generally self-limiting, though occasionally the disease can be more severe or result in post-infection sequelae. The virulence properties of these pathogens have been best-characterized for C. jejuni, and their actions are reviewed here. Various virulence-associated bacterial determinants include the flagellum, numerous flagellar secreted factors, protein adhesins, cytolethal distending toxin (CDT), lipooligosaccharide (LOS), serine protease HtrA and others. These factors are involved in several pathogenicity-linked properties that can be divided into bacterial chemotaxis, motility, attachment, invasion, survival, cellular transmigration and spread to deeper tissue. All of these steps require intimate interactions between bacteria and host cells (including immune cells), enabled by the collection of bacterial and host factors that have already been identified. The assortment of pathogenicity-associated factors now recognized for C. jejuni, their function and the proposed host cell factors that are involved in crucial steps leading to disease are discussed in detail.
Collapse
|
25
|
Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr Top Microbiol Immunol 2021. [PMID: 33620656 DOI: 10.1007/978-3-030-65481-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Collapse
|
26
|
Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial Biofilms in the Food Industry-A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042014. [PMID: 33669645 PMCID: PMC7922197 DOI: 10.3390/ijerph18042014] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Biofilms, present as microorganisms and surviving on surfaces, can increase food cross-contamination, leading to changes in the food industry’s cleaning and disinfection dynamics. Biofilm is an association of microorganisms that is irreversibly linked with a surface, contained in an extracellular polymeric substance matrix, which poses a formidable challenge for food industries. To avoid biofilms from forming, and to eliminate them from reversible attachment and irreversible stages, where attached microorganisms improve surface adhesion, a strong disinfectant is required to eliminate bacterial attachments. This review paper tackles biofilm problems from all perspectives, including biofilm-forming pathogens in the food industry, disinfectant resistance of biofilm, and identification methods. As biofilms are largely responsible for food spoilage and outbreaks, they are also considered responsible for damage to food processing equipment. Hence the need to gain good knowledge about all of the factors favouring their development or growth, such as the attachment surface, food matrix components, environmental conditions, the bacterial cells involved, and electrostatic charging of surfaces. Overall, this review study shows the real threat of biofilms in the food industry due to the resistance of disinfectants and the mechanisms developed for their survival, including the intercellular signalling system, the cyclic nucleotide second messenger, and biofilm-associated proteins.
Collapse
Affiliation(s)
- Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
- Correspondence: (C.C.); (A.R.)
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, 55142 Apartado, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (C.C.); (A.R.)
| |
Collapse
|
27
|
Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf B Biointerfaces 2021; 198:111465. [DOI: 10.1016/j.colsurfb.2020.111465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
|