1
|
Liu H, Yang H, Yin X, Wang S, Fang S, Zhang H. A novel pbd gene cluster responsible for pyrrole and pyridine ring cleavage in Rhodococcus ruber A5. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132992. [PMID: 37976859 DOI: 10.1016/j.jhazmat.2023.132992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Pyridine and pyrrole, which are regarded as recalcitrant chemicals, are released into the environment as a result of industrial manufacturing processes, posing serious hazards to both the environment and human health. However, the pyrrole degradation mechanism and the pyridine-degrading gene in Rhodococcus are unknown. Herein, a highly efficient pyridine and pyrrole degradation strain Rhodococcus ruber A5 was isolated. Strain A5 completely degraded 1000 mg/L pyridine in a mineral salt medium within 24 h. The pyridine degradation of strain A5 was optimized using the BoxBehnken design. The optimum degradation conditions were found to be pH 7.15, temperature 28.06 ℃, and inoculation amount 1290.94 mg/L. The pbd gene clusters involved in pyridine degradation were discovered via proteomic analysis. The initial ring cleavage of pyridine and pyrrole in strain A5 was carried out by the two-component flavin-dependent monooxygenase PbdA/PbdE. The degradation pathways of pyridine and pyrrole were proposed by the identification of metabolites and comparisons of homologous genes. Additionally, homologous pbd gene clusters were found to exist in different bacterial genomes. Our study revealed the ring cleavage mechanisms of pyrrole and pyridine, and strain A5 was identified as a promising resource for pyridine bioremediation.
Collapse
Affiliation(s)
- Hongming Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Hao Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Xiaye Yin
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Siwen Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Shangping Fang
- School of Anesthesiology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Hao Zhang
- Key Laboratory of Metallurgical Emission Reduction and Comprehensive Utilization of Resources, Ministry of Education (Anhui University of Technology), Ma'anshan 243002, Anhui, China.
| |
Collapse
|
2
|
Megur A, Daliri EBM, Balnionytė T, Stankevičiūtė J, Lastauskienė E, Burokas A. In vitro screening and characterization of lactic acid bacteria from Lithuanian fermented food with potential probiotic properties. Front Microbiol 2023; 14:1213370. [PMID: 37744916 PMCID: PMC10516296 DOI: 10.3389/fmicb.2023.1213370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
The present work aimed to identify probiotic candidates from Lithuanian homemade fermented food samples. A total of 23 lactic acid bacteria were isolated from different fermented food samples. Among these, only 12 showed resistance to low pH, tolerance to pepsin, bile salts, and pancreatin. The 12 strains also exhibited antimicrobial activity against Staphylococcus aureus ATCC 29213, Salmonella Typhimurium ATCC 14028, Streptococcus pyogenes ATCC 12384, Streptococcus pyogenes ATCC 19615, and Klebsiella pneumoniae ATCC 13883. Cell-free supernatants of isolate 3A and 55w showed the strongest antioxidant activity of 26.37 μg/mL and 26.06 μg/mL, respectively. Isolate 11w exhibited the strongest auto-aggregation ability of 79.96% as well as the strongest adhesion to HCT116 colon cells (25.671 ± 0.43%). The selected strains were tested for their synbiotic relation in the presence of a prebiotic. The selected candidates showed high proliferation in the presence of 4% as compared to 2% galactooligosaccharides. Among the strains tested for tryptophan production ability, isolate 11w produced the highest L-tryptophan levels of 16.63 ± 2.25 μm, exhibiting psychobiotic ability in the presence of a prebiotic. The safety of these strains was studied by ascertaining their antibiotic susceptibility, mucin degradation, gelatin hydrolysis, and hemolytic activity. In all, isolates 40C and 11w demonstrated the most desirable probiotic potentials and were identified by 16S RNA and later confirmed by whole genome sequencing as Lacticaseibacillus paracasei 11w, and Lactiplantibacillus plantarum 40C: following with the harboring plasmid investigation. Out of all the 23 selected strains, only Lacticaseibacillus paracasei 11w showed the potential and desirable probiotic properties.
Collapse
Affiliation(s)
- Ashwinipriyadarshini Megur
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Toma Balnionytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jonita Stankevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Science Center, Vilnius University, Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Fukuhara S, Watanabe S, Watanabe Y, Nishiwaki H. Crystal Structure of l-2,4-Diketo-3-deoxyrhamnonate Hydrolase Involved in the Nonphosphorylated l-Rhamnose Pathway from Bacteria. Biochemistry 2023; 62:524-534. [PMID: 36563174 DOI: 10.1021/acs.biochem.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
2,4-Diketo-3-deoxy-l-rhamnonate (L-DKDR) hydrolase (LRA6) catalyzes the hydrolysis reaction of L-DKDR to pyruvate and l-lactate in the nonphosphorylated l-rhamnose pathway from bacteria and belongs to the fumarylacetoacetate hydrolase (FAH) superfamily. Most of the members of the FAH superfamily are involved in the microbial degradation of aromatic substances and share low sequence similarities with LRA6, by which the underlying catalytic mechanism remains unknown at the atomic level. We herein elucidated for the first time the crystal structures of LRA6 from Sphingomonas sp. without a ligand and in complex with pyruvate, in which a magnesium ion was coordinated with three acidic residues in the catalytic center. Structural, biochemical, and phylogenetic analyses suggested that LRA6 is a close but distinct subfamily of the fumarylpyruvate hydrolase (FPH) subfamily, and amino acid residues at equivalent position to 84 in LRA6 are related to different substrate specificities between them (Leu84 and Arg86 in LRA6 and FPH, respectively). Structural transition induced upon the binding of pyruvate was observed within a lid-like region, by which a glutamate-histidine dyad that is critical for catalysis was arranged sufficiently close to the ligand. Among several hydroxylpyruvates (2,4-diketo-5-hydroxycarboxylates), L-DKDR with a C6 methyl group was the best substrate for LRA6, conforming to the physiological role. Significant activity was also detected in acylpyruvate including acetylpyruvate. The structural analysis presented herein provides a more detailed understanding of the molecular evolution and physiological role of the FAH superfamily enzymes (e.g., the FAH like-enzyme involved in the mammalian l-fucose pathway).
Collapse
Affiliation(s)
- Shota Fukuhara
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.,Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yasunori Watanabe
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Hisashi Nishiwaki
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
4
|
Tripathi D, Devalraju KP, Neela VSK, Mukherjee T, Paidipally P, Radhakrishnan RK, Dozmorov I, Vankayalapati A, Ansari MS, Mallidi V, Bogam AK, Singh KP, Samten B, Valluri VL, Vankayalapati R. Metabolites enhance innate resistance to human Mycobacterium tuberculosis infection. JCI Insight 2022; 7:152357. [PMID: 36509283 DOI: 10.1172/jci.insight.152357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
To determine the mechanisms that mediate resistance to Mycobacterium tuberculosis (M. tuberculosis) infection in household contacts (HHCs) of patients with tuberculosis (TB), we followed 452 latent TB infection-negative (LTBI-) HHCs for 2 years. Those who remained LTBI- throughout the study were identified as nonconverters. At baseline, nonconverters had a higher percentage of CD14+ and CD3-CD56+CD27+CCR7+ memory-like natural killer (NK) cells. Using a whole-transcriptome and metabolomic approach, we identified deoxycorticosterone acetate as a metabolite with elevated concentrations in the plasma of nonconverters, and further studies showed that this metabolite enhanced glycolytic ATP flux in macrophages and restricted M. tuberculosis growth by enhancing antimicrobial peptide production through the expression of the surface receptor sialic acid binding Ig-like lectin-14. Another metabolite, 4-hydroxypyridine, from the plasma of nonconverters significantly enhanced the expansion of memory-like NK cells. Our findings demonstrate that increased levels of specific metabolites can regulate innate resistance against M. tuberculosis infection in HHCs of patients with TB who never develop LTBI or active TB.
Collapse
Affiliation(s)
- Deepak Tripathi
- Department of Pulmonary Immunology and Center for Biomedical Research, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| | | | | | - Tanmoy Mukherjee
- Department of Pulmonary Immunology and Center for Biomedical Research, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| | - Padmaja Paidipally
- Department of Pulmonary Immunology and Center for Biomedical Research, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| | - Rajesh Kumar Radhakrishnan
- Department of Pulmonary Immunology and Center for Biomedical Research, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| | - Igor Dozmorov
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abhinav Vankayalapati
- Department of Pulmonary Immunology and Center for Biomedical Research, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| | - Mohammad Soheb Ansari
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| | - Varalakshmi Mallidi
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| | - Anvesh Kumar Bogam
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| | - Buka Samten
- Department of Pulmonary Immunology and Center for Biomedical Research, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| | - Vijaya Lakshmi Valluri
- Immunology and Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology and Center for Biomedical Research, School of Community and Rural Health, University of Texas Health Science Center, Tyler, Texas, USA
| |
Collapse
|
5
|
Genome mining of Burkholderia ambifaria strain T16, a rhizobacterium able to produce antimicrobial compounds and degrade the mycotoxin fusaric acid. World J Microbiol Biotechnol 2022; 38:114. [PMID: 35578144 DOI: 10.1007/s11274-022-03299-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.
Collapse
|