1
|
Liu HD, Ma DY, Shi SR, Song SL, Li WL, Qi XH, Guo SD. Preparation and bioactivities of low-molecular weight fucoidans and fuco-oligosaccharides: A review. Carbohydr Polym 2025; 356:123377. [PMID: 40049959 DOI: 10.1016/j.carbpol.2025.123377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Fucoidans are a kind of naturally sulfated polysaccharides that are primarily derived from brown algae and marine invertebrates. They are mainly composed of L-fucose and sulphate group. In the past decades, fucoidans have been attracted much attention for its wide range of pharmacological activities. However, fucoidans are difficult to be absorbed due to their high molecular weight. Notably, low-molecular weight fucoidan (LMWF) and fuco-oligosaccharide are more readily absorbed and have equal or superior biological activities. Therefore, degradation of fucoidan has become a research hot spot in recent years. Presently, methods for fucoidan degradation primary include enzymatic degradation, chemical degradation, and physical degradation. Enzymatic degradation has advantages of mild hydrolysis conditions, good selectivity and few by-products. Chemical degradation is characterized by simple operation, low cost, and easy for industrial applications. This review article summarizes research progress on fucoidan-degrading enzymes, preparation of LMWF and fuco-oligosaccharides by enzymatic degradation, physical degradation, and chemical degradation, and biological activities of these products. This article provides information useful for chemists that are interested in preparation of LMWF and fuco-oligosaccharides, for pharmacologists that are devoted to develop fucoidan-derived bioactive molecules, and for manufacturers of fucoidan-derived products, thus promoting transformation of these products in food and pharmaceutical areas.
Collapse
Affiliation(s)
- Hai-Di Liu
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Dong-Yue Ma
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shi-Lin Song
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China.
| | - Xiao-Hui Qi
- College of Life Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Shou-Dong Guo
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Boukhchtaber DC, von Meijenfeldt FAB, Sahonero Canavesi DX, Dorhout D, Bale NJ, Hopmans EC, Villanueva L. Discovering Hidden Archaeal and Bacterial Lipid Producers in a Euxinic Marine System. Environ Microbiol 2025; 27:e70054. [PMID: 40016913 PMCID: PMC11868695 DOI: 10.1111/1462-2920.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 03/01/2025]
Abstract
Bacterial membrane lipids are typically characterised by fatty acid bilayers linked through ester bonds, whereas those of Archaea are characterised by ether-linked isoprenoids forming bilayers or monolayers of membrane-spanning lipids known as isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs). However, this understanding has been reconsidered with the identification of branched GDGTs (brGDGTs), which are membrane-spanning ether-bound branched alkyl fatty acids of bacterial origin, though their producers are often unidentified. The limited availability of microbial cultures constrains the understanding of the biological sources of these membrane lipids, thus limiting their use as biomarkers. To address this issue, we identified membrane lipids in the Black Sea using high-resolution accurate mass/mass spectrometry and inferred their potential producers by targeting lipid biosynthetic pathways encoded on the metagenome, in metagenome-assembled genomes and unbinned scaffolds. We also identified brGDGTs and highly branched GDGTs in the suboxic and euxinic waters, potentially attributed to Planctomycetota, Cloacimonadota, Desulfobacterota, Chloroflexota, Actinobacteria and Myxococcota-based on their lipid biosynthetic genomic potential. These findings introduce new possibilities for using specific brGDGTs as biomarkers of anoxic conditions in marine environments and highlight the role of these membrane lipids in microbial adaptation.
Collapse
Affiliation(s)
- Dina Castillo Boukhchtaber
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Diana X. Sahonero Canavesi
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Denise Dorhout
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Ellen C. Hopmans
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Researcht Horntjethe Netherlands
- Faculty of Sciences. Department of BiologyUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
3
|
Martin G, Rissanen AJ, Garcia SL, Peura S. Dark carbon fixation is a common process in the water column of stratified boreal lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177433. [PMID: 39522777 DOI: 10.1016/j.scitotenv.2024.177433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
CO2 fixation (i.e. primary production) is a key function of all ecosystems, providing the carbon and energy that fuel the entire food web. It also plays an important role in mitigating climate change as CO2 is the most important greenhouse gas. While photosynthesis is regarded as the most important carbon fixation pathway, prokaryotes able to fix carbon in the absence of light (chemolithoautotrophs) can also be a significant source of energy in a light-limited ecosystem. Boreal lakes, notoriously colored and stratified with respect to oxygen and nutrients, present ideal conditions for this so-called dark carbon fixation by the chemolithoautotrophs. However, the prevalence of dark carbon fixation in boreal lakes remains unknown. Here, we measured dark carbon fixation in Swedish lakes from the boreal and boreo-nemoral zones, during summer stratification. We detected dark carbon fixation in 16 out of the 17 lakes studied, and concluded that dark fixation is a widespread phenomenon in boreal lakes. Moreover, the average dark primary production ranged from 18.5 % in the epilimnion to 81.4 % in the hypolimnion of all tested lakes. Our data further suggests that chemolithoautotrophic activity is mostly driven by iron-oxidizing bacteria. The chemolithoautotrophic guild is diverse and seems to be composed of both ubiquitous bacteria, like Gallionellaceae or Chromatiaceae, and endemic taxa, such as Ferrovaceae, which appears to be favored by a low pH. These results are particularly exciting as they suggest that dark carbon fixation could partly compensate for the low photosynthetic capacity in lakes with dark-colored water.
Collapse
Affiliation(s)
- Gaëtan Martin
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, Honolulu, United States of America.
| | - Antti J Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Finland; Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden; Swedish Nuclear Fuel and Waste Management Co. (SKB), Solna, Sweden
| |
Collapse
|
4
|
Yadav S, Koenen M, Bale NJ, Reitsma W, Engelmann JC, Stefanova K, Damsté JSS, Villanueva L. Organic matter degradation in the deep, sulfidic waters of the Black Sea: insights into the ecophysiology of novel anaerobic bacteria. MICROBIOME 2024; 12:98. [PMID: 38797849 PMCID: PMC11129491 DOI: 10.1186/s40168-024-01816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Recent studies have reported the identity and functions of key anaerobes involved in the degradation of organic matter (OM) in deep (> 1000 m) sulfidic marine habitats. However, due to the lack of available isolates, detailed investigation of their physiology has been precluded. In this study, we cultivated and characterized the ecophysiology of a wide range of novel anaerobes potentially involved in OM degradation in deep (2000 m depth) sulfidic waters of the Black Sea. RESULTS We have successfully cultivated a diverse group of novel anaerobes belonging to various phyla, including Fusobacteriota (strain S5), Bacillota (strains A1T and A2), Spirochaetota (strains M1T, M2, and S2), Bacteroidota (strains B1T, B2, S6, L6, SYP, and M2P), Cloacimonadota (Cloa-SY6), Planctomycetota (Plnct-SY6), Mycoplasmatota (Izemo-BS), Chloroflexota (Chflx-SY6), and Desulfobacterota (strains S3T and S3-i). These microorganisms were able to grow at an elevated hydrostatic pressure of up to 50 MPa. Moreover, this study revealed that different anaerobes were specialized in degrading specific types of OM. Strains affiliated with the phyla Fusobacteriota, Bacillota, Planctomycetota, and Mycoplasmatota were found to be specialized in the degradation of cellulose, cellobiose, chitin, and DNA, respectively, while strains affiliated with Spirochaetota, Bacteroidota, Cloacimonadota, and Chloroflexota preferred to ferment less complex forms of OM. We also identified members of the phylum Desulfobacterota as terminal oxidizers, potentially involved in the consumption of hydrogen produced during fermentation. These results were supported by the identification of genes in the (meta)genomes of the cultivated microbial taxa which encode proteins of specific metabolic pathways. Additionally, we analyzed the composition of membrane lipids of selected taxa, which could be critical for their survival in the harsh environment of the deep sulfidic waters and could potentially be used as biosignatures for these strains in the sulfidic waters of the Black Sea. CONCLUSIONS This is the first report that demonstrates the cultivation and ecophysiology of such a diverse group of microorganisms from any sulfidic marine habitat. Collectively, this study provides a step forward in our understanding of the microbes thriving in the extreme conditions of the deep sulfidic waters of the Black Sea. Video Abstract.
Collapse
Affiliation(s)
- Subhash Yadav
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Wietse Reitsma
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Julia C Engelmann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Kremena Stefanova
- Institute of Oceanology "Fridtjof Nansen", Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands.
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Liu N, Kivenson V, Peng X, Cui Z, Lankiewicz TS, Gosselin KM, English CJ, Blair EM, O'Malley MA, Valentine DL. Pontiella agarivorans sp. nov., a novel marine anaerobic bacterium capable of degrading macroalgal polysaccharides and fixing nitrogen. Appl Environ Microbiol 2024; 90:e0091423. [PMID: 38265213 PMCID: PMC10880615 DOI: 10.1128/aem.00914-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2T from microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2T represents a novel species within the Pontiella genus in the Kiritimatiellota phylum (within the PVC superphylum). Strain NLcol2T is able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T (= DSM 113125T = MCCC 1K08672T) is proposed to be the type strain of a novel species in the Pontiella genus, and the name Pontiella agarivorans sp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of the Kiritimatiellota phylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2T expands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.
Collapse
Affiliation(s)
- Na Liu
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Xuefeng Peng
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, China
| | - Thomas S. Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kelsey M. Gosselin
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chance J. English
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Ecology Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Elaina M. Blair
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
- Biological Engineering Program, University of California, Santa Barbara, California, USA
| | - David L. Valentine
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
6
|
Peoples LM, Gerringer ME, Weston JNJ, León-Zayas R, Sekarore A, Sheehan G, Church MJ, Michel APM, Soule SA, Shank TM. A deep-sea isopod that consumes Sargassum sinking from the ocean's surface. Proc Biol Sci 2024; 291:20240823. [PMID: 39255840 PMCID: PMC11387067 DOI: 10.1098/rspb.2024.0823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae Sargassum. However, little is known about the deep-ocean organisms able to use this food source. Here, we encountered the isopod Bathyopsurus nybelini at depths 5002-6288 m in the Puerto Rico Trench and Mid-Cayman Spreading Center using the Deep Submergence Vehicle Alvin. In most of the 32 observations, the isopods carried fronds of Sargassum. Through an integrative suite of morphological, DNA sequencing, and microbiological approaches, we show that this species is adapted to feed on Sargassum by using a specialized swimming stroke, having serrated and grinding mouthparts, and containing a gut microbiome that provides a dietary contribution through the degradation of macroalgal polysaccharides and fixing nitrogen. The isopod's physiological, morphological, and ecological adaptations demonstrate that vertical deposition of Sargassum is a direct trophic link between the surface and deep ocean and that some deep-sea organisms are poised to use this material.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | | | | | | | - Abisage Sekarore
- Department of Biology, State University of New York at Geneseo, Geneseo, NY, USA
| | - Grace Sheehan
- Biology Department, Willamette University, Salem, OR, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - S. Adam Soule
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Timothy M. Shank
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
7
|
Oliver A, Podell S, Kelly LW, Sparagon WJ, Plominsky AM, Nelson RS, Laurens LML, Augyte S, Sims NA, Nelson CE, Allen EE. Enrichable consortia of microbial symbionts degrade macroalgal polysaccharides in Kyphosus fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568905. [PMID: 38076955 PMCID: PMC10705383 DOI: 10.1101/2023.11.28.568905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce foundational genomic work on the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzymes able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) suggest the potential for microbial transfer between marine sediment and Kyphosus digestive tracts. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Eric E. Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Cabrol L, Capo E, van Vliet DM, von Meijenfeldt FAB, Bertilsson S, Villanueva L, Sánchez-Andrea I, Björn E, G. Bravo A, Heimburger Boavida LE. Redox gradient shapes the abundance and diversity of mercury-methylating microorganisms along the water column of the Black Sea. mSystems 2023; 8:e0053723. [PMID: 37578240 PMCID: PMC10469668 DOI: 10.1128/msystems.00537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 08/15/2023] Open
Abstract
In the global context of seawater deoxygenation triggered by climate change and anthropogenic activities, changes in redox gradients impacting biogeochemical transformations of pollutants, such as mercury, become more likely. Being the largest anoxic basin worldwide, with high concentrations of the potent neurotoxic methylmercury (MeHg), the Black Sea is an ideal natural laboratory to provide new insights about the link between dissolved oxygen concentration and hgcAB gene-carrying (hgc+) microorganisms involved in the formation of MeHg. We combined geochemical and microbial approaches to assess the effect of vertical redox gradients on abundance, diversity, and metabolic potential of hgc+ microorganisms in the Black Sea water column. The abundance of hgcA genes [congruently estimated by quantitative PCR (qPCR) and metagenomics] correlated with MeHg concentration, both maximal in the upper part of the anoxic water. Besides the predominant Desulfobacterales, hgc+ microorganisms belonged to a unique assemblage of diverse-previously underappreciated-anaerobic fermenters from Anaerolineales, Phycisphaerae (characteristic of the anoxic and sulfidic zone), Kiritimatiellales, and Bacteroidales (characteristic of the suboxic zone). The metabolic versatility of Desulfobacterota differed from strict sulfate reduction in the anoxic water to reduction of various electron acceptors in the suboxic water. Linking microbial activity and contaminant concentration in environmental studies is rare due to the complexity of biological pathways. In this study, we disentangle the role of oxygen in shaping the distribution of Hg-methylating microorganisms consistently with MeHg concentration, and we highlight their taxonomic and metabolic niche partitioning across redox gradients, improving the prediction of the response of marine communities to the expansion of oxygen-deficient zones. IMPORTANCE Methylmercury (MeHg) is a neurotoxin detected at high concentrations in certain marine ecosystems, posing a threat to human health. MeHg production is mainly mediated by hgcAB gene-carrying (hgc+) microorganisms. Oxygen is one of the main factors controlling Hg methylation; however, its effect on the diversity and ecology of hgc+ microorganisms remains unknown. Under the current context of seawater deoxygenation, mercury cycling is expected to be disturbed. Here, we show the strong effect of oxygen gradients on the distribution of potential Hg methylators. In addition, we show for the first time the significant contribution of a unique assemblage of potential fermenters from Anaerolineales, Phycisphaerae, and Kiritimatiellales to Hg methylation, stratified in different redox niches along the Black Sea gradient. Our results considerably expand the known taxonomic diversity and ecological niches prone to the formation of MeHg and contribute to better apprehend the consequences of oxygen depletion in seawater.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix Marseille University, Univ. Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | - Eric Capo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, Spain
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen, the Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, Spain
| | - Lars-Eric Heimburger Boavida
- Aix Marseille University, Univ. Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| |
Collapse
|
9
|
Dionisi HM, Lozada M, Campos E. Diversity of GH51 α-L-arabinofuranosidase homolog sequences from subantarctic intertidal sediments. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
de Bruin S, Vasquez-Cardenas D, Sarbu SM, Meysman FJR, Sousa DZ, van Loosdrecht MCM, Lin Y. Sulfated glycosaminoglycan-like polymers are present in an acidophilic biofilm from a sulfidic cave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154472. [PMID: 35276175 DOI: 10.1016/j.scitotenv.2022.154472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Sulfated glycosaminoglycans (sGAG) are negatively charged extracellular polymeric substances that occur in biofilms from various environments. Yet, it remains unclear whether these polymers are acquired from the external environment or produced by microbes in the biofilm. To resolve this, we analyzed the presence of sGAGs in samples of an acidophilic biofilm collected from Sulfur Cave in Puturosu Mountain (Romania), an environment that is largely inaccessible to contamination. A maximum of 55.16 ± 2.06 μg sGAG-like polymers were recovered per mg of EPS. Enzymatic treatment with chondroitinase ABC resulted in a decrease of the mass of these polymers, suggesting the structure of the recovered sGAG is similar to chondroitin. Subsequent FT-IR analysis of these polymers revealed absorbance bands at 1230 cm-1, 1167 cm-1 and 900 cm-1, indicating a possible presence of polysaccharides and sulfate. Analysis of genomic sequences closely related to those predominant in the acidophilic biofilm, contained genes coding for sulfotransferase (an enzyme needed for the production of sGAG), which supports the hypothesis of microbial synthesis of sGAGs within the biofilm.
Collapse
Affiliation(s)
- S de Bruin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - D Vasquez-Cardenas
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - S M Sarbu
- Department of Biological Sciences, California State University, 400 West 1st St, Chico, CA 95926-515, USA; Emil G. Racoviță Institute, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - F J R Meysman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - D Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Y Lin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
11
|
Murillo T, Schneider D, Fichtel C, Daniel R. Dietary shifts and social interactions drive temporal fluctuations of the gut microbiome from wild redfronted lemurs. ISME COMMUNICATIONS 2022; 2:3. [PMID: 37938637 PMCID: PMC9723586 DOI: 10.1038/s43705-021-00086-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 05/06/2023]
Abstract
Animals living in highly seasonal environments adapt their diets accordingly to changes in food availability. The gut microbiome as an active participant in the metabolization of the host's diet should adapt and change with temporal diet fluctuations, but dietary shifts can be short-term and, hence, difficult to detect in cross-sectional studies. Therefore, we performed a longitudinal study combining repeated sampling of fecal samples with observations of feeding behavior in wild redfronted lemurs. We amplified taxonomical marker genes for assessing the bacteria, archaea, protozoa, helminths, and fungi, as well as the active bacterial community inhabiting their gut. We found that the most abundant protozoans were Trichostomatia and Trichomonadida, and the most abundant helminths were Chromadorea. We detected known members of the gut mycobiome from humans but in low abundances. The archaeal community is composed only of members of Methanomethylophilaceae. The predominant phyla in the entire bacterial community were Bacteroidota and Firmicutes while the most abundant genera harbor so far unknown bacteria. Temporal fluctuations at the entire community level were driven by consumption of fruits and flowers, and affiliative interactions. Changes in alpha diversity correlated only with the consumption of flowers and leaves. The composition of the entire and active bacterial community was not significantly different, but the most abundant taxa differed. Our study revealed that monthly changes in the bacterial community composition were linked to fruit and flower consumption and affiliative interactions. Thus, portraying the importance of longitudinal studies for understanding the adaptations and alterations of the gut microbiome to temporal fluctuations.
Collapse
Affiliation(s)
- Tatiana Murillo
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Hydrodynamic disturbance controls microbial community assembly and biogeochemical processes in coastal sediments. ISME JOURNAL 2021; 16:750-763. [PMID: 34584214 PMCID: PMC8857189 DOI: 10.1038/s41396-021-01111-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
The microbial community composition and biogeochemical dynamics of coastal permeable (sand) sediments differs from cohesive (mud) sediments. Tide- and wave-driven hydrodynamic disturbance causes spatiotemporal variations in oxygen levels, which select for microbial generalists and disrupt redox cascades. In this work, we profiled microbial communities and biogeochemical dynamics in sediment profiles from three sites varying in their exposure to hydrodynamic disturbance. Strong variations in sediment geochemistry, biogeochemical activities, and microbial abundance, composition, and capabilities were observed between the sites. Most of these variations, except for microbial abundance and diversity, significantly correlated with the relative disturbance level of each sample. In line with previous findings, metabolically flexible habitat generalists (e.g., Flavobacteriaceae, Woeseaiceae, Rhodobacteraceae) dominated in all samples. However, we present evidence that aerobic specialists such as ammonia-oxidizing archaea (Nitrosopumilaceae) were more abundant and active in more disturbed samples, whereas bacteria capable of sulfate reduction (e.g., uncultured Desulfobacterales), dissimilatory nitrate reduction to ammonium (DNRA; e.g., Ignavibacteriaceae), and sulfide-dependent chemolithoautotrophy (e.g., Sulfurovaceae) were enriched and active in less disturbed samples. These findings are supported by insights from nine deeply sequenced metagenomes and 169 derived metagenome-assembled genomes. Altogether, these findings suggest that hydrodynamic disturbance is a critical factor controlling microbial community assembly and biogeochemical processes in coastal sediments. Moreover, they strengthen our understanding of the relationships between microbial composition and biogeochemical processes in these unique environments.
Collapse
|
13
|
Plugge CM, Sousa DZ. Special Issue "Anaerobes in Biogeochemical Cycles". Microorganisms 2020; 9:microorganisms9010023. [PMID: 33374655 PMCID: PMC7822419 DOI: 10.3390/microorganisms9010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
|
14
|
Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2020; 70:5596-5600. [DOI: 10.1099/ijsem.0.004484] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|