1
|
Parra M, Aldabaldetrecu M, Arce P, Soto-Aguilera S, Vargas R, Guerrero J, Tello M, Modak B. Oral administration of a new copper (I) complex with coumarin as ligand: modulation of the immune response and the composition of the intestinal microbiota in Onchorhynchus mykiss. Front Chem 2024; 12:1338614. [PMID: 38807978 PMCID: PMC11131136 DOI: 10.3389/fchem.2024.1338614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.
Collapse
Affiliation(s)
- Mick Parra
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Maialen Aldabaldetrecu
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Pablo Arce
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Sarita Soto-Aguilera
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Rodrigo Vargas
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- Aquaculture Production Unit, Universidad de Los Lagos, Osorno, Chile
| | - Juan Guerrero
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Mario Tello
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
2
|
Wang J, Li Y, Jaramillo-Torres A, Einen O, Jakobsen JV, Krogdahl Å, Kortner TM. Exploring gut microbiota in adult Atlantic salmon (Salmo salar L.): Associations with gut health and dietary prebiotics. Anim Microbiome 2023; 5:47. [PMID: 37789427 PMCID: PMC10548677 DOI: 10.1186/s42523-023-00269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The importance of the gut microbiota for physiological processes in mammals is well established, but the knowledge of their functional roles in fish is still limited. The aims of this study were to investigate associations between variation in taxonomical composition of the gut microbiota and gut health status in Atlantic salmon and to explore possible modulatory effects of dietary prebiotics in one net-pen farm in open water. The fish with initial mean body weight of around 240 g were fed diets based on the same basal composition, either without (Ref diet) or with (Test diet) yeast cell wall based-prebiotics, during the marine production phase from December to September the following year. Sampling was conducted at three sampling time points: January, April, and September, with average water temperature of 3.9 ℃, 3.4 ℃ and 9.6 ℃, respectively. RESULTS As the fish progressed towards September, growth, brush border membrane enzyme activities, and the expression in the gut of most of the observed genes involved in immune (e.g., il8, cd4a, myd88, il1b, gilt, tgfb, cd8b and cd3), barrier (e.g., zo1, occludin, ecad, claudin25b and claudin15), and metabolism increased significantly. Lipid accumulation in pyloric enterocytes decreased remarkably, suggesting improvement of gut health condition. The growth of the fish did not differ between dietary treatments. Further, dietary prebiotics affected the gut health only marginally regardless of duration of administration. Regarding gut microbiota composition, a decrease in alpha diversity (Observed species, Pielou and Shannon) over time was observed, which was significantly associated with an increase in the relative abundance of genus Mycoplasma and decrease in 32 different taxa in genus level including lactic acid bacteria (LAB), such as Lactobacillus, Leuconostoc, and Lactococcus. This indicates that developmental stage of Atlantic salmon is a determinant for microbial composition. Multivariate association analysis revealed that the relative abundance of Mycoplasma was positively correlated with gut barrier gene expression, negatively correlated with plasma glucose levels, and that its relative abundance slightly increased by exposure to prebiotics. Furthermore, certain LAB (e.g., Leuconostoc), belonging to the core microbiota, showed a negative development with time, and significant associations with plasma nutrients levels (e.g., triglyceride and cholesterol) and gene expression related to gut immune and barrier function. CONCLUSIONS As Atlantic salmon grew older under large-scale, commercial farm settings, the Mycoplasma became more prominent with a concomitant decline in LAB. Mycoplasma abundance correlated positively with time and gut barrier genes, while LAB abundance negatively correlated to time. Dietary prebiotics affected gut health status only marginally.
Collapse
Affiliation(s)
- Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing, China.
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway.
| | - Yanxian Li
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| | | | - Olai Einen
- Cermaq Group AS, Dronning Eufemias gate 16, Oslo, 0191, Norway
| | - Jan Vidar Jakobsen
- Cargill Aqua Nutrition, Prof. Olav Hanssensvei 7A, Stavanger, 4021, Norway
| | - Åshild Krogdahl
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| | - Trond M Kortner
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| |
Collapse
|
3
|
Reinoso S, Gutiérrez MS, Reyes-Jara A, Toro M, García K, Reyes G, Argüello-Guevara W, Bohórquez-Cruz M, Sonnenholzner S, Navarrete P. Feed Regime Slightly Modifies the Bacterial but Not the Fungal Communities in the Intestinal Mucosal Microbiota of Cobia Fish ( Rachycentron canadum). Microorganisms 2023; 11:2315. [PMID: 37764158 PMCID: PMC10535204 DOI: 10.3390/microorganisms11092315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The bacterial community of the intestinal microbiota influences many host functions, and similar effects have been recently reported for the fungal community (mycobiota). Cobia is a tropical fish that has been studied for its potential in marine aquaculture. However, the study of its bacterial community has been underreported and the mycobiota has not been investigated. We analyzed the gut bacterial and fungal profile present in the intestinal mucosa of reared adult cobias fed two diets (frozen fish pieces (FFPs) and formulated feed (FF)) for 4 months by sequencing the 16S rRNA (V3-V4) and internal transcribed spacer-2 (ITS2) regions using Illumina NovaSeq 6000. No significant differences in the alpha diversity of the bacterial community were observed, which was dominated by the phyla Proteobacteria (~96%) and Firmicutes (~1%). Cobia fed FF showed higher abundance of 10 genera, mainly UCG-002 (Family Oscillospiraceae) and Faecalibacterium, compared to cobia fed FFPs, which showed higher abundance of 7 genera, mainly Methylobacterium-Methylorubrum and Cutibacterium. The inferred bacterial functions were related to metabolism, environmental information processing and cellular processes; and no differences were found between diets. In mycobiota, no differences were observed in the diversity and composition of cobia fed the two diets. The mycobiota was dominated by the phyla Ascomycota (~88%) and Basidiomycota (~11%). This is the first study to describe the gut bacterial and fungal communities in cobia reared under captive conditions and fed on different diets and to identify the genus Ascobulus as a new member of the core fish mycobiota.
Collapse
Affiliation(s)
- Samira Reinoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - María Soledad Gutiérrez
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
| | - Angélica Reyes-Jara
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Millenium Institute Center for Genome Regulation (CRG), Santiago 8331150, Chile
| | - Magaly Toro
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20910, USA
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile;
| | - Guillermo Reyes
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - Wilfrido Argüello-Guevara
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
- Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador
| | - Milton Bohórquez-Cruz
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - Stanislaus Sonnenholzner
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
- Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador
| | - Paola Navarrete
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
| |
Collapse
|
4
|
Vargas RA, Soto-Aguilera S, Parra M, Herrera S, Santibañez A, Kossack C, Saavedra CP, Mora O, Pineda M, Gonzalez O, Gonzalez A, Maisey K, Torres-Maravilla E, Bermúdez-Humarán LG, Suárez-Villota EY, Tello M. Analysis of microbiota-host communication mediated by butyrate in Atlantic Salmon. Comput Struct Biotechnol J 2023; 21:2558-2578. [PMID: 37122632 PMCID: PMC10130356 DOI: 10.1016/j.csbj.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Butyrate is a microbiota-produced metabolite, sensed by host short-chain fatty acid receptors FFAR2 (Gpr43), FFAR3 (Gpr41), HCAR2 (Gpr109A), and Histone deacetylase (HDAC) that promotes microbiota-host crosstalk. Butyrate influences energy uptake, developmental and immune response in mammals. This microbial metabolite is produced by around 79 anaerobic genera present in the mammalian gut, yet little is known about the role of butyrate in the host-microbiota interaction in salmonid fish. To further our knowledge of this interaction, we analyzed the intestinal microbiota and genome of Atlantic salmon (Salmo salar), searching for butyrate-producing genera and host butyrate receptors. We identified Firmicutes, Proteobacteria, and Actinobacteria as the main butyrate-producing bacteria in the salmon gut microbiota. In the Atlantic salmon genome, we identified an expansion of genes orthologous to FFAR2 and HCAR2 receptors, and class I and IIa HDACs that are sensitive to butyrate. In addition, we determined the expression levels of orthologous of HCAR2 in the gut, spleen, and head-kidney, and FFAR2 in RTgutGC cells. The effect of butyrate on the Atlantic salmon immune response was evaluated by analyzing the pro and anti-inflammatory cytokines response in vitro in SHK-1 cells by RT-qPCR. Butyrate decreased the expression of the pro-inflammatory cytokine IL-1β and increased anti-inflammatory IL-10 and TGF-β cytokines. Butyrate also reduced the expression of interferon-alpha, Mx, and PKR, and decreased the viral load at a higher concentration (4 mM) in cells treated with this molecule before the infection with Infectious Pancreatic Necrosis Virus (IPNV) by mechanisms independent of FFAR2, FFAR3 and HCAR2 expression that probably inhibit HDAC. Moreover, butyrate modified phosphorylation of cytoplasmic proteins in RTgutGC cells. Our data allow us to infer that Atlantic salmon have the ability to sense butyrate produced by their gut microbiota via different specific targets, through which butyrate modulates the immune response of pro and anti-inflammatory cytokines and the antiviral response.
Collapse
|
5
|
Muñoz C, González-Lorca J, Parra M, Soto S, Valdes N, Sandino AM, Vargas R, González A, Tello M. Lactococcus lactis Expressing Type I Interferon From Atlantic Salmon Enhances the Innate Antiviral Immune Response In Vivo and In Vitro. Front Immunol 2021; 12:696781. [PMID: 34475871 PMCID: PMC8406758 DOI: 10.3389/fimmu.2021.696781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
In salmon farming, viruses are responsible for outbreaks that produce significant economic losses for which there is a lack of control tools other than vaccines. Type I interferon has been successfully used for treating some chronic viral infections in humans. However, its application in salmonids depends on the proper design of a vehicle that allows its massive administration, ideally orally. In mammals, administration of recombinant probiotics capable of expressing cytokines has shown local and systemic therapeutic effects. In this work, we evaluate the use of Lactococcus lactis as a type I Interferon expression system in Atlantic salmon, and we analyze its ability to stimulate the antiviral immune response against IPNV, in vivo and in vitro. The interferon expressed in L. lactis, even though it was located mainly in the bacterial cytoplasm, was functional, stimulating Mx and PKR expression in CHSE-214 cells, and reducing the IPNV viral load in SHK-1 cells. In vivo, the oral administration of this L. lactis producer of Interferon I increases Mx and PKR expression, mainly in the spleen, and to a lesser extent, in the head kidney. The oral administration of this strain also reduces the IPNV viral load in Atlantic salmon specimens challenged with this pathogen. Our results show that oral administration of L. lactis producing Interferon I induces systemic effects in Atlantic salmon, allowing to stimulate the antiviral immune response. This probiotic could have effects against a wide variety of viruses that infect Atlantic salmon and also be effective in other salmonids due to the high identity among their type I interferons.
Collapse
Affiliation(s)
- Carlos Muñoz
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Josue González-Lorca
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mick Parra
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sarita Soto
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Natalia Valdes
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ana María Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,ActivaQ S.A., Santiago, Chile
| | - Rodrigo Vargas
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alex González
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de los Lagos, Osorno, Chile
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,IctioBiotic SpA, Santiago, Chile
| |
Collapse
|
6
|
Santibañez A, Paine D, Parra M, Muñoz C, Valdes N, Zapata C, Vargas R, Gonzalez A, Tello M. Oral Administration of Lactococcus lactis Producing Interferon Type II, Enhances the Immune Response Against Bacterial Pathogens in Rainbow Trout. Front Immunol 2021; 12:696803. [PMID: 34248997 PMCID: PMC8268009 DOI: 10.3389/fimmu.2021.696803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria are a powerful vehicle for releasing of cytokines and immunostimulant peptides at the gastrointestinal level after oral administration. However, its therapeutic application against pathogens that affect rainbow trout and Atlantic salmon has been little explored. Type II interferon in Atlantic salmon activates the antiviral response, protecting against viral infection, but its role against bacterial infection has not been tested in vivo. In this work, through the design of a recombinant lactic acid bacterium capable of producing Interferon gamma from Atlantic salmon, we explore its role against bacterial infection and the ability to stimulate systemic immune response after oral administration of the recombinant probiotic. Recombinant interferon was active in vitro, mainly stimulating IL-6 expression in SHK-1 cells. In vivo, oral administration of the recombinant probiotic produced an increase in IL-6, IFNγ and IL-12 in the spleen and kidney, in addition to stimulating the activity of lysozyme in serum. The challenge trials indicated that the administration of the IFNγ-producing probiotic doubled the survival in fish infected with F. psychrophilum. In conclusion, our results showed that the oral administration of lactic acid bacteria producing IFNγ managed to stimulate the immune response at a systemic level, conferring protection against pathogens, showing a biotechnological potential for its application in aquaculture.
Collapse
Affiliation(s)
- Alvaro Santibañez
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Diego Paine
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Mick Parra
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Carlos Muñoz
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Natalia Valdes
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Claudia Zapata
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Rodrigo Vargas
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alex Gonzalez
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas, Universidad de los Lagos, Osorno, Chile
| | - Mario Tello
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
- IctioBiotic SpA, Santiago, Chile
| |
Collapse
|