1
|
Dakshayini E, Muthuramu S, Maragatham S, Anandham R, Balachandar D. Rhizosphere Microbiome and Functioning in Alternative Rice Cropping Methods: A Critical Review for Rice Sustainability. Front Biosci (Elite Ed) 2025; 17:25926. [PMID: 40150981 DOI: 10.31083/fbe25926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 03/29/2025]
Abstract
Rice is a staple crop worldwide, providing sustenance to over half the global population. The rice microbiome represents the complex interaction between rice plants and their surrounding microbial communities. Plants host various microorganisms in different regions, including the rhizosphere, surface tissues, such as the rhizoplane and phylloplane, and inner tissues (endosphere). These microorganisms engage in diverse interactions with the plants, ranging from beneficial to neutral or harmful. This rhizosphere microbiome plays a crucial role in improving the resilience and sustainability of rice cultivation. The relationship between the rice plants and their microbial communities is imperative for developing farming practices that maximize yields while minimizing biotic and abiotic stresses. Our examination underscores the diverse functions of rhizosphere microbiota within rice farming systems, particularly in nutrient uptake, drought resilience, pest and disease management, and tolerance to salinity. This review describes the different types of rice cultivation methods farmers use worldwide to improve the efficiency of rice production in various agro-ecological contexts. Moreover, the review details how alternate cropping methods influence the rhizosphere functioning of rice and techniques for managing the microbiome function for rice sustainability.
Collapse
Affiliation(s)
- Ejamani Dakshayini
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641003 Coimbatore, India
| | | | | | - Rangasamy Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641003 Coimbatore, India
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, 641003 Coimbatore, India
| |
Collapse
|
2
|
Misu IJ, Kayess MO, Siddiqui MN, Gupta DR, Islam MN, Islam T. Microbiome Engineering for Sustainable Rice Production: Strategies for Biofertilization, Stress Tolerance, and Climate Resilience. Microorganisms 2025; 13:233. [PMID: 40005600 PMCID: PMC11857137 DOI: 10.3390/microorganisms13020233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The plant microbiome, found in the rhizosphere, phyllosphere, and endosphere, is essential for nutrient acquisition, stress tolerance, and the overall health of plants. This review aims to update our knowledge of and critically discuss the diversity and functional roles of the rice microbiome, as well as microbiome engineering strategies to enhance biofertilization and stress resilience. Rice hosts various microorganisms that affect nutrient cycling, growth promotion, and resistance to stresses. Microorganisms carry out these functions through nitrogen fixation, phytohormone and metabolite production, enhanced nutrient solubilization and uptake, and regulation of host gene expression. Recent research on molecular biology has elucidated the complex interactions within rice microbiomes and the signalling mechanisms that establish beneficial microbial communities, which are crucial for sustainable rice production and environmental health. Crucial factors for the successful commercialization of microbial agents in rice production include soil properties, practical environmental field conditions, and plant genotype. Advances in microbiome engineering, from traditional inoculants to synthetic biology, optimize nutrient availability and enhance resilience to abiotic stresses like drought. Climate change intensifies these challenges, but microbiome innovations and microbiome-shaping genes (M genes) offer promising solutions for crop resilience. This review also discusses the environmental and agronomic implications of microbiome engineering, emphasizing the need for further exploration of M genes for breeding disease resistance traits. Ultimately, we provide an update to the current findings on microbiome engineering in rice, highlighting pathways to enhance crop productivity sustainably while minimizing environmental impacts.
Collapse
Affiliation(s)
- Israt Jahan Misu
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - Md. Omar Kayess
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - M. Nazrul Islam
- Centre for Plant and Soil Health, Regenerative Agri-Science Canada Inc., Winnipeg, MB R3T 5L2, Canada
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| |
Collapse
|
3
|
Sodhi GK, Wijesekara T, Kumawat KC, Adhikari P, Joshi K, Singh S, Farda B, Djebaili R, Sabbi E, Ramila F, Sillu D, Santoyo G, de los Santos-Villalobos S, Kumar A, Pellegrini M, Mitra D. Nanomaterials-plants-microbes interaction: plant growth promotion and stress mitigation. Front Microbiol 2025; 15:1516794. [PMID: 39881995 PMCID: PMC11774922 DOI: 10.3389/fmicb.2024.1516794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Soil salinization, extreme climate conditions, and phytopathogens are abiotic and biotic stressors that remarkably reduce agricultural productivity. Recently, nanomaterials have gained attention as effective agents for agricultural applications to mitigate such stresses. This review aims to critically appraise the available literature on interactions involving nanomaterials, plants, and microorganisms. This review explores the role of nanomaterials in enhancing plant growth and mitigating biotic and abiotic stresses. These materials can be synthesized by microbes, plants, and algae, and they can be applied as fertilizers and stress amelioration agents. Nanomaterials facilitate nutrient uptake, improve water retention, and enhance the efficiency of active ingredient delivery. Nanomaterials strengthen plant antioxidant systems, regulate photosynthesis, and stabilize hormonal pathways. Concurrently, their antimicrobial and protective properties provide resilience against biotic stressors, including pathogens and pests, by promoting plant immune responses and optimizing microbial-plant symbiosis. The synergistic interactions of nanomaterials with beneficial microorganisms optimize plant growth under stress conditions. These materials also serve as carriers of nutrients, growth regulators, and pesticides, thus acting like "smart fertilizers. While nanotechnology offers great promise, addressing potential environmental and ecotoxicological risks associated with their use is necessary. This review outlines pathways for leveraging nanotechnology to achieve resilient, sustainable, and climate-smart agricultural systems by integrating molecular insights and practical applications.
Collapse
Affiliation(s)
- Gurleen Kaur Sodhi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | | | - Kuldeep Joshi
- Centre for GMP Extraction Facility, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Smriti Singh
- Department of Anaesthesia and Operation Theatre Technology, College of Pharmacy, Chandigarh Group of Colleges Jhanjeri (Mohali), Sahibzada Ajit Singh Nagar, Punjab, India
| | - Beatrice Farda
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrico Sabbi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fares Ramila
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Laboratory Biotechnology, Water, Environment and Health, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Laboratory of Mycology, Biotechnology and Microbial Activity, Brothers Mentouri University of Constantine 1, Constantine, Algeria
| | - Devendra Sillu
- Department of Environmental Science and Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | | | - Ajay Kumar
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Zhang J, Jia F, Song K, Wang F, Li J, Huang L, Qu T. Enterobacter ludwigii b3 in the rhizosphere of wild rice assists cultivated rice in mitigating drought stress by direct and indirect methods. Biochem Biophys Res Commun 2024; 735:150489. [PMID: 39096883 DOI: 10.1016/j.bbrc.2024.150489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Drought is the primary factor limiting rice production in ecosystems. Wild rice rhizosphere bacteria possess the potential to assist in the stress resistance of cultivated rice. This study examines the impact of wild rice rhizosphere bacteria on cultivated rice under drought conditions. From the rhizosphere soil of wild rice, 20 potential drought-resistant strains were isolated. Subsequent to the screening, the most effective strain b3, was identified as Enterobacter ludwigii. Pot experiments were conducted on the cultivated Changbai 9 rice. It was found that inoculation with the E. ludwigii b3 strain improved the drought resistance of the rice, promotion of rice growth (shoot height increased by 13.47 %), increased chlorophyll content (chlorophyll a, chlorophyll b and carotenoid increased by 168.74 %, 130.68 % and 87.89 %), improved antioxidant system (content of glutathione was increased by 60.35 %), and accumulation of osmotic regulation substances (soluble sugar and soluble protein increased by 70.36 % and 142.03 %). Furthermore, E. ludwigii b3 had a transformative effect on the rhizosphere bacterial community of cultivated rice, increasing its abundance and diversity while simultaneously recruiting beneficial rhizosphere bacteria, resulting in a more complex community. Additionally, E. ludwigii b3 acted directly and indirectly on cultivated rice through its metabolites (organic acids, amino acids, flavonoids and other substances), which helped alleviate drought stress. In conclusion, the E. ludwigii b3 shows promise as a drought-resistant strain and has the potential to improve the growth and productivity of cultivated rice in arid agricultural ecosystems. This study represents the first investigation of E. ludwigii in the rhizosphere of wild rice under drought conditions on cultivated rice.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fang Jia
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Keji Song
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fudong Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Junchen Li
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Leye Huang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tongbao Qu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Long J, Liu D, Qiao W, Wang Y, Miao Y, Baosai H. Response of Elymus nutans Griseb. seedling physiology and endogenous hormones to drought and salt stress. Sci Rep 2024; 14:17810. [PMID: 39090163 PMCID: PMC11294584 DOI: 10.1038/s41598-024-68894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Elymus nutans Griseb. (E. nutans), a pioneer plant for the restoration of high quality pasture and vegetation, is widely used to establish artificial grasslands and ecologically restore arid and salinized soils. To investigate the effects of drought stress and salt stress on the physiology and endogenous hormones of E. nutans seedlings, this experiment configured the same environmental water potential (0 (CK), - 0.04, - 0.14, - 0.29, - 0.49, - 0.73, and - 1.02 MPa) of PEG-6000 and NaCl stress to investigate the effects of drought stress and salt stress, respectively, on E. nutans seedlings under the same environmental water potential. The results showed that although the physiological indices and endogenous hormones of the E. nutans seedlings responded differently to drought stress and salt stress under the same environmental water potential, the physiological indices of E. nutans shoots and roots were comprehensively evaluated using the genus function method, and the physiological indices of the E. nutans seedlings under the same environmental water potential exhibited better salt tolerance than drought tolerance. The changes in endogenous hormones of the E. nutans seedlings under drought stress were analyzed to find that treatment with gibberellic acid (GA3), gibberellin A7 (GA7), 6-benzyladenine (6-BA), 6-(y,y-dimethylallylaminopurine) (2.IP), trans-zeatin (TZ), kinetin (KT), dihydrozeatin (DHZ), indole acetic acid (IAA), and 2,6-dichloroisonicotininc acid (INA) was more effective than those under drought stress. By analyzing the amplitude of changes in the endogenous hormones in E. nutans seedlings, the amplitude of changes in the contents of GA3, GA7, 6-BA, 2.IP, TZ, KT, DHZ, IAA, isopentenyl adenosine (IPA), indole-3-butyric acid (IBA), naphthalene acetic acid (NAA), and abscisic acid was larger in drought stress compared with salt stress, which could be because the endogenous hormones are important for the drought tolerance of E. nutans itself. The amplitude of the changes in the contents of DHZ, TZR, salicylic acid, and jasmonic acid was larger in salt stress compared with drought stress. Changes in the content of melatonin were larger in salt stress compared with drought stress, which could indicate that endogenous hormones and substances are important for the salt tolerance of E. nutans itself.
Collapse
Affiliation(s)
- Jianting Long
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Dandan Liu
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Wei Qiao
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Yanwei Wang
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Yanjun Miao
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China.
| | - Henna Baosai
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China.
| |
Collapse
|
6
|
Pan Y, Liu B, Zhang W, Zhuang S, Wang H, Chen J, Xiao L, Li Y, Han D. Drought-induced assembly of rhizosphere mycobiomes shows beneficial effects on plant growth. mSystems 2024; 9:e0035424. [PMID: 38842321 PMCID: PMC11264929 DOI: 10.1128/msystems.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Beneficial interactions between plants and rhizosphere fungi can enhance plant adaptability during drought stress. However, harnessing these interactions will require an in-depth understanding of the response of fungal community assembly to drought. Herein, by using different varieties of wheat plants, we analyzed the drought-induced changes in fungal community assembly in rhizosphere and bulk soil. We demonstrated that drought significantly altered the fungal communities, with the contribution of species richness to community beta diversity increased in both rhizosphere and bulk soil compartments during drought stress. The stochastic processes dominated fungal community assembly, but the relative importance of deterministic processes, mainly homogeneous selection, increased in the drought-stressed rhizosphere. Drought induced an increase in the relative abundance of generalists in the rhizosphere, as opposed to specialists, and the top 10 abundant taxa that enriched under drought conditions were predominantly generalists. Notably, the most abundant drought-enriched taxon in rhizosphere was a generalist, and the corresponding Chaetomium strain was found capable of improving root length and activating ABA signaling in wheat plants through culture-based experiment. Together, these findings provide evidence that host plants exert a strong influence on rhizospheric fungal community assembly during stress and suggest the fungal communities that have experienced drought have the potential to confer fitness advantages to the host plants. IMPORTANCE We have presented a framework to integrate the shifts in community assembly processes with plant-soil feedback during drought stress. We found that environmental filtering and host plant selection exert influence on the rhizospheric fungal community assembly, and the re-assembled community has great potential to alleviate plant drought stress. Our study proposes that future research should incorporate ecology with plant, microbiome, and molecular approaches to effectively harness the rhizospheric microbiome for enhancing the resilience of crop production to drought.
Collapse
Affiliation(s)
- Yanshuo Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land, Beijing, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Binhui Liu
- Key Laboratory of Crop Drought Resistance Research of Hebei Province/Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, Hebei, China
| | - Wenying Zhang
- Key Laboratory of Crop Drought Resistance Research of Hebei Province/Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, Hebei, China
| | - Shan Zhuang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongzhe Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuzhong Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land, Beijing, China
| |
Collapse
|
7
|
Linda TM, Aliska J, Feronika N, Melisa I, Juliantari E. Production of Exopolysaccharides and İndole Acetic Acid (IAA) by Rhizobacteria and Their Potential against Drought Stress in Upland Rice. J Microbiol Biotechnol 2024; 34:1239-1248. [PMID: 38783698 PMCID: PMC11239409 DOI: 10.4014/jmb.2401.01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Peatlands are marginal agricultural lands due to highly acidic soil conditions and poor drainage systems. Drought stress is a big problem in peatlands as it can affect plants through poor root development, so technological innovations are needed to increase the productivity and sustainability of upland rice on peatlands. Rhizobacteria can overcome the effects of drought stress by altering root morphology, regulating stress-responsive genes, and producing exopolysaccharides and indole acetic acid (IAA). This study aimed to determine the ability of rhizobacteria in upland rice to produce exopolysaccharides and IAA, identify potential isolates using molecular markers, and prove the effect of rhizobacteria on viability and vigor index in upland rice. Rhizobacterial isolates were grown on yeast extract mannitol broth (YEMB) medium for exopolysaccharides production testing and Nutrient Broth (NB)+L-tryptophan medium for IAA production testing. The selected isolates identify using sequence 16S rRNA. The variables observed in testing the effect of rhizobacteria were germination ability, vigour index, and growth uniformity. EPS-1 isolate is the best production of exopolysaccharides (41.6 mg/ml) and IAA (60.83 ppm). The isolate EPS-1 was identified as Klebsiella variicola using 16S rRNA sequencing and phylogenetic analysis. The isolate EPS-1 can increase the viability and vigor of upland rice seeds. K. variicola is more adaptive and has several functional properties that can be developed as a potential bioagent or biofertilizer to improve soil nutrition, moisture and enhance plant growth. The use of rhizobacteria can reduce dependence on the use of synthetic materials with sustainable agriculture.
Collapse
Affiliation(s)
- Tetty Marta Linda
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Jusinta Aliska
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Nita Feronika
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Ineiga Melisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Erwina Juliantari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| |
Collapse
|
8
|
Fan Y, Shi B. Endophytic Fungi from the Four Staple Crops and Their Secondary Metabolites. Int J Mol Sci 2024; 25:6057. [PMID: 38892244 PMCID: PMC11173346 DOI: 10.3390/ijms25116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Endophytic fungi are present in every plant, and crops are no exception. There are more than 50,000 edible plant species on the planet, but only 15 crops provide 90 percent of the global energy intake, and "the big four"-wheat, rice, maize and potato-are staples for about 5 billion people. Not only do the four staple crops contribute to global food security, but the endophytic fungi within their plant tissues are complex ecosystems that have been under scrutiny. This review presents an outline of the endophytic fungi and their secondary metabolites in four staple crops: wheat, rice, maize and potato. A total of 292 endophytic fungi were identified from the four major crops, with wheat having the highest number of 157 endophytic fungi. Potato endophytic fungi had the highest number of secondary metabolites, totaling 204 compounds, compared with only 23 secondary metabolites from the other three crops containing endophytic fungi. Some of the compounds are those with specific structural and pharmacological activities, which may be beneficial to agrochemistry and medicinal chemistry.
Collapse
Affiliation(s)
| | - Baobao Shi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China;
| |
Collapse
|
9
|
Khamsuk K, Dell B, Pathom-aree W, Pathaichindachote W, Suphrom N, Nakaew N, Jumpathong J. Screening Plant Growth-Promoting Bacteria with Antimicrobial Properties for Upland Rice. J Microbiol Biotechnol 2024; 34:1029-1039. [PMID: 38563101 PMCID: PMC11180919 DOI: 10.4014/jmb.2402.02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
This study explores beneficial bacteria isolated from the roots and rhizosphere soil of Khao Rai Leum Pua Phetchabun rice plants. A total of 315 bacterial isolates (KK001 to KK315) were obtained. Plant growth-promoting traits (phosphate solubilization and indole-3-acetic acid (IAA) production), and antimicrobial activity against three rice pathogens (Curvularia lunata NUF001, Bipolaris oryzae 2464, and Xanthomonas oryzae pv. oryzae) were assessed. KK074 was the most prolific in IAA production, generating 362.6 ± 28.0 μg/ml, and KK007 excelled in tricalcium phosphate solubilization, achieving 714.2 ± 12.1 μg/ml. In antimicrobial assays using the dual culture method, KK024 and KK281 exhibited strong inhibitory activity against C. lunata, and KK269 was particularly effective against B. oryzae. In the evaluation of antimicrobial metabolite production, KK281 and KK288 exhibited strong antifungal activities in cell-free supernatants. Given the superior performance of KK281, taxonomically identified as Bacillus sp. KK281, it was investigated further. Lipopeptide extracts from KK281 had significant antimicrobial activity against C. lunata and a minimum inhibitory concentration (MIC) of 3.1 mg/ml against X. oryzae pv. oryzae. LC-ESI-MS/MS analysis revealed the presence of surfactin in the lipopeptide extract. The crude extract was non-cytotoxic to the L-929 cell line at tested concentrations. In conclusion, the in vitro plant growth-promoting and disease-controlling attributes of Bacillus sp. KK281 make it a strong candidate for field evaluation to boost plant growth and manage disease in upland rice.
Collapse
Affiliation(s)
- Khammool Khamsuk
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, 90 South St., Murdoch WA, 6150 Australia
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanwarang Pathaichindachote
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Nungruthai Suphrom
- Center of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Nareeluk Nakaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Fungal Research, Naresuan University, Phitsanulok 65000, Thailand
| | - Juangjun Jumpathong
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Fungal Research, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
10
|
Huertas V, Jiménez A, Diánez F, Chelhaoui R, Santos M. Importance of Dark Septate Endophytes in Agriculture in the Face of Climate Change. J Fungi (Basel) 2024; 10:329. [PMID: 38786684 PMCID: PMC11122602 DOI: 10.3390/jof10050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Climate change is a notable challenge for agriculture as it affects crop productivity and yield. Increases in droughts, salinity, and soil degradation are some of the major consequences of climate change. The use of microorganisms has emerged as an alternative to mitigate the effects of climate change. Among these microorganisms, dark septate endophytes (DSEs) have garnered increasing attention in recent years. Dark septate endophytes have shown a capacity for mitigating and reducing the harmful effects of climate change in agriculture, such as salinity, drought, and the reduced nutrient availability in the soil. Various studies show that their association with plants helps to reduce the harmful effects of abiotic stresses and increases the nutrient availability, enabling the plants to thrive under adverse conditions. In this study, the effect of DSEs and the underlying mechanisms that help plants to develop a higher tolerance to climate change were reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (V.H.); (A.J.); (F.D.); (R.C.)
| |
Collapse
|
11
|
Kulkova I, Wróbel B, Dobrzyński J. Serratia spp. as plant growth-promoting bacteria alleviating salinity, drought, and nutrient imbalance stresses. Front Microbiol 2024; 15:1342331. [PMID: 38562478 PMCID: PMC10982427 DOI: 10.3389/fmicb.2024.1342331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
In agricultural environments, plants are often exposed to abiotic stresses including temperature extremes, salt stress, drought, and heavy metal soil contamination, which leads to significant economic losses worldwide. Especially salt stress and drought pose serious challenges since they induce ionic toxicity, osmotic stress, and oxidative stress in plants. A potential solution can be the application of bacteria of the Serratia spp. known to promote plant growth under normal conditions Thus the mini-review aims to summarize the current knowledge on plant growth promotion by Serratia spp. (under the conditions of salinity stress, drought, and nutrient deficit) and highlight areas for development in the field. So far, it has been proven that Serratia spp. strains exhibit a variety of traits contributing to enhanced plant growth and stress tolerance, such as phytohormone production, ACC deaminase activity, nitrogen fixation, P and Zn solubilization, antioxidant properties improvement, and modulation of gene expression. Nevertheless, further research on Serratia spp. is needed, especially on two subjects: elucidating its mechanisms of action on plants at the molecular level and the effects of Serratia spp. on the indigenous soil and plant microbiota and, particularly, the rhizosphere. In both cases, it is advisable to use omics techniques to gain in-depth insights into the issues. Additionally, some strains of Serratia spp. may be phytopathogens, therefore studies to rule out this possibility are recommended prior to field trials. It is believed that by improving said knowledge the potential of Serratia spp. to stimulate plant growth will increase and strains from the genus will serve as an eco-friendly biofertilizer in sustainable agriculture more often.
Collapse
Affiliation(s)
- Iryna Kulkova
- Institute of Technology and Life Science – National Research Institute, Raszyn, Poland
| | | | | |
Collapse
|
12
|
Zhao J, Yu X, Zhang C, Hou L, Wu N, Zhang W, Wang Y, Yao B, Delaplace P, Tian J. Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168847. [PMID: 38036127 DOI: 10.1016/j.scitotenv.2023.168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.
Collapse
Affiliation(s)
- Jintong Zhao
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoxia Yu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi 330000, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan, Academy of Agricultural Sciences, Sanya 572000, China
| | - Ligang Hou
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pierre Delaplace
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Sodhi GK, Saxena S. Plant growth-promoting endophyte Nigrospora oryzae mitigates abiotic stress in rice (Oryza sativa L.). FEMS Microbiol Ecol 2023; 99:fiad094. [PMID: 37567759 DOI: 10.1093/femsec/fiad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023] Open
Abstract
Climate change has severely impacted crop productivity. Nascent technologies, such as employing endophytic fungi to induce crop adaptogenic changes, are being explored. In this study, 62 isolates of fungi existing as endophytes were recovered from different parts of a drought-resistant rice variety and screened for salinity and drought tolerance. Nigrospora oryzae #2OSTUR9a exhibited in vitro antioxidant potential, indole acetic acid (351.01 ± 7.11 µg/mL), phosphate solubilisation (PI 1.115 ± 0.02), siderophore (72.57% ± 0.19%) and 1-aminocyclopropane-1-carboxylate deaminase production (305.36 ± 0.80 nmol α-ketobutyrate/mg/h). To the best of our knowledge, this is the first report on salinity and drought stress mitigation in rice plants by endophytic N. oryzae. In treated plants under salinity stress, the relative water, chlorophyll, phenolic and osmolyte content increased by 48.39%, 30.94%, 25.32% and 43.67%, respectively, compared with their respective controls. A similar trend was observed under drought stress, where the above parameters increased by 50.31%, 39.47%, 32.95% and 50.42%, respectively. Additionally, the antioxidant status of the treated plants was much higher because of the enhanced antioxidant enzymes and reduced lipid peroxidation. Our findings indicate the ability of N. oryzae to effectively mitigate the impact of stress, thereby enabling the rice plant to sustain stress conditions.
Collapse
Affiliation(s)
- Gurleen Kaur Sodhi
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| |
Collapse
|
14
|
Tian Q, Gong Y, Liu S, Ji M, Tang R, Kong D, Xue Z, Wang L, Hu F, Huang L, Qin S. Endophytic bacterial communities in wild rice ( Oryza officinalis) and their plant growth-promoting effects on perennial rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1184489. [PMID: 37645460 PMCID: PMC10461003 DOI: 10.3389/fpls.2023.1184489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Endophytic bacterial microbiomes of plants contribute to the physiological health of the host and its adaptive evolution and stress tolerance. Wild rice possesses enriched endophytic bacteria diversity, which is a potential resource for sustainable agriculture. Oryza officinalis is a unique perennial wild rice species in China with rich genetic resources. However, endophytic bacterial communities of this species and their plant growth-promoting (PGP) traits remain largely unknown. In this study, endophytic bacteria in the root, stem, and leaf tissues of O. officinalis were characterized using 16S rRNA gene Illumina sequencing. Culturable bacterial endophytes were also isolated from O. officinalis tissues and characterized for their PGP traits. The microbiome analysis showed a more complex structure and powerful function of the endophytic bacterial community in roots compared with those in other tissue compartments. Each compartment had its specific endophytic bacterial biomarkers, including Desulfomonile and Ruminiclostridium for roots; Lactobacillus, Acinetobacter, Cutibacterium and Dechloromonas for stems; and Stenotrophomonas, Chryseobacterium, Achromobacter and Methylobacterium for leaves. A total of 96 endophytic bacterial strains with PGP traits of phosphate solubilization, potassium release, nitrogen fixation, 1-aminocyclopropane-1-carboxylate (ACC) deaminase secretion, and siderophore or indole-3-acetic acid (IAA) production were isolated from O. officinalis. Among them, 11 strains identified as Enterobacter mori, E. ludwigii, E. cloacae, Bacillus amyloliquefaciens, B. siamensis, Pseudomonas rhodesiae and Kosakonia oryzae were selected for inoculation of perennial rice based on their IAA production traits. These strains showed promising PGP effects on perennial rice seedlings. They promoted plants to form a strong root system, stimulate biomass accumulation, and increase chlorophyll content and nitrogen uptake, which could fulfil the ecologically sustainable cultivation model of perennial rice. These results provide insights into the bacterial endosphere of O. officinalis and its application potential in perennial rice. There is the prospect of mining beneficial endophytic bacteria from wild rice species, which could rewild the microbiome of cultivated rice varieties and promote their growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengyi Hu
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Liyu Huang
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Shiwen Qin
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
15
|
Li R, Huang Y, Yang X, Su M, Xiong H, Dai Y, Wu W, Pei X, Yuan Q. Genetic Diversity and Relationship of Shanlan Upland Rice Were Revealed Based on 214 Upland Rice SSR Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:2876. [PMID: 37571029 PMCID: PMC10421310 DOI: 10.3390/plants12152876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Shanlan upland rice (Oryza sativa L.) is a unique upland rice variety cultivated by the Li nationality for a long time, which has good drought resistance and high utilization value in drought resistance breeding. To explore the origin of Shanlan upland rice and its genetic relationship with upland rice from other geographical sources, 214 upland rice cultivars from Southeast Asia and five provinces (regions) in southern China were used to study genetic diversity by using SSR markers. Twelve SSR primers were screened and 164 alleles (Na) were detected, with the minimum number of alleles being 8 and the maximum number of alleles being 23, with an average of 13.667. The analysis of genetic diversity and analysis of molecular variance (AMOVA) showed that the differences among the materials mainly came from the individuals of upland rice. The results of gene flow and genetic differentiation revealed the relationship between the upland rice populations, and Hainan Shanlan upland rice presumably originated from upland rice in Guangdong province, and some of them were genetically differentiated from Hunan upland rice. It can be indirectly proved that the Li nationality in Hainan is a descendant of the ancient Baiyue ethnic group, which provides circumstantial evidence for the migration history of the Li nationality in Hainan, and also provides basic data for the advanced protection of Shanlan upland rice, and the innovative utilization of germplasm resources.
Collapse
Affiliation(s)
- Rongju Li
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Yinling Huang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Xinsen Yang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Meng Su
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Huaiyang Xiong
- Hainan Guangling High-Tech Industrial Co., Ltd., Lingshui 572400, China; (H.X.); (Y.D.)
| | - Yang Dai
- Hainan Guangling High-Tech Industrial Co., Ltd., Lingshui 572400, China; (H.X.); (Y.D.)
| | - Wei Wu
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qianhua Yuan
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (R.L.); (Y.H.); (X.Y.); (M.S.); (W.W.)
| |
Collapse
|
16
|
Sodhi GK, Saxena S. Promising drought and salinity tolerance features of Nigrospora species existing as endophytes in Oryza sativa. 3 Biotech 2023; 13:262. [PMID: 37404364 PMCID: PMC10315364 DOI: 10.1007/s13205-023-03679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
In this study, we report the discovery of novel Nigrospora species isolated from the extensively cultivated PUSA 44 rice variety in Punjab, India. Out of the 120 isolates examined, 6.6% and 5% isolates exhibited tolerance to high salinity and drought stress. Isolates 6OSFR2e and 7OSFS3a exhibited the highest indole acetic acid and gibberellic acid production, with 268.32 ± 08.10 and 25.72 ± 0.04 µg/mL. Additionally, isolates 7OSFS3a, 6OSFR2e and 6OSFL4c had highest antioxidant potential with IC50 345.45 ± 11.66, 391.58 ± 10.66, and 474.529 ± 11.08 µg/mL. The isolates 6OSFR2e and 6OSFL4c also exhibited phosphate solubilisation with a PI of 1.06 ± 0.00 and 1.04 ± 0.02. The highest cellulase and laccase production with EI 1.24 ± 0.00 and 1.16 ± 0.00 was observed by isolates 6OSFR2e and 6OSFL4c. Promising results were observed in the case of ammonia production. The isolates belonged to the same phylum, Ascomycota and were identified as Nigrospora zimmermanii (6OSFR2e) and Nigrospora oryzae (7OSFS3a), and Nigrospora sphaerica (6OSFL4c) using morpho-taxonomic and molecular identification. The present study provides a critical insight into the characteristics of these Nigrospora species, which could be used to develop a bio-consortium for the rejuvenation of PUSA-44 cultivation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03679-9.
Collapse
Affiliation(s)
- Gurleen Kaur Sodhi
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| |
Collapse
|
17
|
Yang X, Niu X, Li L, Wang L, Liu C, Liu J, Yuan Q, Pei X. Understanding the molecular mechanism of drought resistance in Shanlan upland rice by transcriptome and phenotype analyses. Int J Biol Macromol 2023; 231:123387. [PMID: 36693603 DOI: 10.1016/j.ijbiomac.2023.123387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Rice (Oryza sativa L.) is an important grain crop worldwide, and drought has become an important factor restricting rice yield. As a unique rice germplasm in Hainan (China), Shanlan upland rice has rich genetic diversity and certain advantage for breeding water-saving and drought-resistance rice. 48 varieties, including 41 Shanlan upland rice, 3 upland rice, and 4 irrigated rice varieties was cultivated in soil pots. The drought resistance was assessed at the seedling stage using the stress coefficients of seven indicators, as the D value calculating from five principal components to rank the varieties. Five cultivars with strong, medium, and low resistance, were selected for transcriptome sequencing. The results of the GSEA analysis showed that free amino acid content increased through the redistribution of energy in Shanlan upland rice to cope with drought stress. In addition, we found that Os03g0623100 was significantly up-regulated under drought stress conditions in varieties with high drought resistance, as compared with low resistance cultivars. The Os03g0623100 was predicted to interact with LEA protein in the STRING database, which may contribute to maintaining the energy metabolisms to under stress conditions. This study provides a view of Shanlan upland rice as a drought-resistant germplasm resource, and a deeper understanding of the molecular mechanism of crop drought resistance.
Collapse
Affiliation(s)
- Xinsen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xiaoling Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Laiyi Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianing Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qianhua Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Zhou S, He L, Lin W, Su Y, Liu Q, Qu M, Xiao L. Integrative analysis of transcriptome and metabolism reveals potential roles of carbon fixation and photorespiratory metabolism in response to drought in Shanlan upland rice. BMC Genomics 2022; 23:862. [PMID: 36585635 PMCID: PMC9805275 DOI: 10.1186/s12864-022-09094-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Shanlan upland rice is an important landrace rice resource and is characterized with high drought stress (DS) tolerance relative to cultivated rice. However, the molecular mechanism of DS response in Shanlan upland rice remains unclear. In this study, we performed an integrated analysis of transcriptome and targeted metabolism to decipher the key biological pathways that responded to drought tolerance using two Shanlan upland rice lines. Results show that SL10 possesses 64% higher photosynthetic efficiency (Pn) and 2-fold higher water use efficiency (WUE) than that in SL1 exposed to DS. The decrease in Pn by DS is not due to stomatal limitation effects for SL1. Transcriptome analysis suggests photosynthesis relevant pathways (photosynthesis-antenna proteins and carbon fixation) and photorespiration relevant pathway (glycine, serine and threonine metabolism) in SL1 under DS were significantly enriched in the down-regulated and up-regulated DEGs list, respectively. There are 412 up-regulated and 233 down-regulated drought responsive genes (DRGs) in SL10 relative to SL1 induced by DS. Targeted metabolism results suggest that the contents across five metabolites related to carbon fixation pathway were declined by 36 and 8% in SL1 and SL10 caused by DS, respectively. We finally summarized the both gene expression and metabolites involved in photorespiration and carbon fixation pathways in response to DS in both rice lines. This study provides valuable information for better understanding the molecular mechanism underlying drought tolerance in Shanlan rice.
Collapse
Affiliation(s)
- Shubo Zhou
- grid.257160.70000 0004 1761 0331Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410125 Hunan China ,grid.449397.40000 0004 1790 3687Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya, 572022 China
| | - Lijing He
- grid.449397.40000 0004 1790 3687College of fisheries and life science, Hainan Tropical Ocean University, Sanya, 572022 China
| | - Wei Lin
- grid.449397.40000 0004 1790 3687College of fisheries and life science, Hainan Tropical Ocean University, Sanya, 572022 China
| | - Yi Su
- grid.257160.70000 0004 1761 0331Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410125 Hunan China
| | - Qing Liu
- grid.257160.70000 0004 1761 0331Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410125 Hunan China
| | - Mingnan Qu
- grid.449397.40000 0004 1790 3687Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya, 572022 China ,Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Langtao Xiao
- grid.257160.70000 0004 1761 0331Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410125 Hunan China
| |
Collapse
|
19
|
Tufail MA, Ayyub M, Irfan M, Shakoor A, Chibani CM, Schmitz RA. Endophytic bacteria perform better than endophytic fungi in improving plant growth under drought stress: A meta-comparison spanning 12 years (2010-2021). PHYSIOLOGIA PLANTARUM 2022; 174:e13806. [PMID: 36271716 DOI: 10.1111/ppl.13806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Drought stress is a serious issue that affects agricultural productivity all around the world. Several researchers have reported using plant growth-promoting endophytic bacteria to enhance the drought resistance of crops. However, how endophytic bacteria and endophytic fungi are effectively stimulating plant growth under drought stress is still largely unknown. In this article, a global meta-analysis was undertaken to compare the plant growth-promoting effects of bacterial and fungal endophytes and to identify the processes by which both types of endophytes stimulate plant growth under drought stress. Moreover, this meta-analysis enlightens how plant growth promotion varies across crop types (C3 vs. C4 and monocot vs. dicot), experiment types (in vitro vs. pots vs. field), and the inoculation methods (seed vs. seedling). Specifically, this research included 75 peer-reviewed publications, 170 experiments, 20 distinct bacterial genera, and eight fungal classes. On average, both endophytic bacterial and fungal inoculation increased plant dry and fresh biomass under drought stress. The effect of endophytic bacterial inoculation on plant dry biomass, shoot dry biomass, root length, photosynthetic rate, leaf area, and gibberellins productions were at least two times greater than that of fungal inoculation. In addition, under drought stress, bacterial inoculation increased the proline content of C4 plants. Overall, the findings of this meta-analysis indicate that both endophytic bacterial and fungal inoculation of plants is beneficial under drought conditions, but the extent of benefit is higher with endophytic bacteria inoculation but it varies across crop type, experiment type, and inoculation method.
Collapse
Affiliation(s)
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Irfan
- Soil and Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tandojam, Pakistan
| | - Awais Shakoor
- Teagasc, Environment, Soils, and Land-Use Department, Wexford, Ireland
| | | | - Ruth A Schmitz
- Institute for Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
20
|
Cruz C, Cardoso P, Santos J, Matos D, Figueira E. Bioprospecting Soil Bacteria from Arid Zones to Increase Plant Tolerance to Drought: Growth and Biochemical Status of Maize Inoculated with Plant Growth-Promoting Bacteria Isolated from Sal Island, Cape Verde. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212912. [PMID: 36365367 PMCID: PMC9656834 DOI: 10.3390/plants11212912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 05/14/2023]
Abstract
Climate change and anthropogenic activities are responsible for extensive crop yield losses, with negative impact on global agricultural production. The occurrence of extreme weather events such as drought is a big challenge for agriculture, negatively impacting crops. Thus, methodologies reducing crop dependence on water will be a great advantage. Plant roots are colonized by soil bacteria, that can establish beneficial associations with plants, increasing crop productivity and plant tolerance to abiotic stresses. The aim of this study was to promote plant growth and to increase crop tolerance to drought by inoculation with osmotolerant bacterial strains. For that, bacteria were isolated from plants growing in Sal Island (Cape Verde) and identified. The osmotolerance and plant-growth promotion (PGP) abilities of the strains were determined. A maize seed cultivar tolerant to drought was inoculated with the strains evidencing best PGP capacity and osmo-tolerance. Results evidenced the ability of some bacterial strains increasing the development and inducing osmotolerance in plants. These results evidence the potential of osmotolerant bacteria to further increase the level of tolerance of maize varieties tolerant to drought, decreasing the dependence of this crop on irrigation, and open new perspectives to growth maize in drought affected areas and to use water more efficiently.
Collapse
Affiliation(s)
- Catarina Cruz
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jacinta Santos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Matos
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
21
|
Management of Rhizosphere Microbiota and Plant Production under Drought Stress: A Comprehensive Review. PLANTS 2022; 11:plants11182437. [PMID: 36145836 PMCID: PMC9502053 DOI: 10.3390/plants11182437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023]
Abstract
Drought generates a complex scenario worldwide in which agriculture should urgently be reframed from an integrative point of view. It includes the search for new water resources and the use of tolerant crops and genotypes, improved irrigation systems, and other less explored alternatives that are very important, such as biotechnological tools that may increase the water use efficiency. Currently, a large body of evidence highlights the role of specific strains in the main microbial rhizosphere groups (arbuscular mycorrhizal fungi, yeasts, and bacteria) on increasing the drought tolerance of their host plants through diverse plant growth-promoting (PGP) characteristics. With this background, it is possible to suggest that the joint use of distinct PGP microbes could produce positive interactions or additive beneficial effects on their host plants if their co-inoculation does not generate antagonistic responses. To date, such effects have only been partially analyzed by using single omics tools, such as genomics, metabolomics, or proteomics. However, there is a gap of information in the use of multi-omics approaches to detect interactions between PGP and host plants. This approach must be the next scale-jump in the study of the interaction of soil–plant–microorganism. In this review, we analyzed the constraints posed by drought in the framework of an increasing global demand for plant production, integrating the important role played by the rhizosphere biota as a PGP agent. Using multi-omics approaches to understand in depth the processes that occur in plants in the presence of microorganisms can allow us to modulate their combined use and drive it to increase crop yields, improving production processes to attend the growing global demand for food.
Collapse
|
22
|
Ganie SA, Bhat JA, Devoto A. The influence of endophytes on rice fitness under environmental stresses. PLANT MOLECULAR BIOLOGY 2022; 109:447-467. [PMID: 34859329 PMCID: PMC9213282 DOI: 10.1007/s11103-021-01219-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Endophytes are crucial for the promotion of rice growth and stress tolerance and can be used to increase rice crop yield. Endophytes can thus be exploited in biotechnology and genetic engineering as eco-friendly and cost-effective means for the development of high-yielding and stress-tolerant rice plants. Rice (Oryza sativa) crop is continuously subjected to biotic and abiotic stresses, compromising growth and consequently yield. The situation is exacerbated by climate change impacting on ecosystems and biodiversity. Genetic engineering has been used to develop stress-tolerant rice, alongside physical and chemical methods to mitigate the effect of these stresses. However, the success of these strategies has been hindered by short-lived field success and public concern on adverse effects associated. The limited success in the field of stress-tolerant cultivars developed through breeding or transgenic approaches is due to the complex nature of stress tolerance as well as to the resistance breakdown caused by accelerated evolution of pathogens. It is therefore necessary to develop novel and acceptable strategies to enhance rice stress tolerance and durable resistance and consequently improve yield. In the last decade, plant growth promoting (PGP) microbes, especially endophytes, have drawn the attention of agricultural scientists worldwide, due to their ability to mitigate environmental stresses in crops, without causing adverse effects. Increasing evidence indicates that endophytes effectively confer fitness benefits also to rice under biotic and abiotic stress conditions. Endophyte-produced metabolites can control the expression of stress-responsive genes and improve the physiological performance and growth of rice plants. This review highlights the current evidence available for PGP microbe-promoted tolerance of rice to abiotic stresses such as salinity and drought and to biotic ones, with special emphasis on endophytes. Associated molecular mechanisms are illustrated, and prospects for sustainable rice production also in the light of the impending climate change, discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
23
|
Vu MT, Geraldi A, Do HDK, Luqman A, Nguyen HD, Fauzia FN, Amalludin FI, Sadila AY, Wijaya NH, Santoso H, Manuhara YSW, Bui LM, Hariyanto S, Wibowo AT. Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes. BIOLOGY 2022; 11:biology11050695. [PMID: 35625422 PMCID: PMC9138652 DOI: 10.3390/biology11050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Soil salinity and mineral deficiency are major problems in agriculture. Many studies have reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown parts of plant–microbe interaction, especially regarding their role in halophyte adaptation to coastal ecosystems. Here, we report the bacterial community associated with the roots of coastal sand dune halophytes Spinifex littoreus and Calotropis gigantea, and the soil properties that affect their composition. Strong correlations were observed between root bacterial diversity and soil mineral composition, especially with soil Calcium (Ca), Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Soil Ti and Zn content showed a positive correlation with bacterial diversity, while soil Ca and Cu had a negative effect on bacterial diversity. A strong correlation was also found between the abundance of several bacterial species with soil salinity and mineral content, suggesting that some bacteria are responsive to changes in soil salinity and mineral content. Some of the identified bacteria, such as Bacillus idriensis and Kibdelosporangium aridum, are known to have growth-promoting effects on plants. Together, the findings of this work provided valuable information regarding bacterial communities associated with the roots of sand dune halophytes and their interactions with soil properties. Furthermore, we also identified several bacterial species that might be involved in tolerance against stresses. Further work will be focused on isolation and transplantation of these potential microbes, to validate their role in plant tolerance against stresses, not only in their native hosts but also in crops.
Collapse
Affiliation(s)
- Minh Thiet Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Almando Geraldi
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
| | - Hoang Danh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Faiza Nur Fauzia
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Fahmi Ikhlasul Amalludin
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Aliffa Yusti Sadila
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Nabilla Hapsari Wijaya
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Heri Santoso
- Generasi Biologi Indonesia (Genbinesia) Foundation, Gresik 61171, Indonesia;
| | - Yosephine Sri Wulan Manuhara
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
| | - Le Minh Bui
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Sucipto Hariyanto
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Correspondence: (S.H.); (A.T.W.)
| | - Anjar Tri Wibowo
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
- Correspondence: (S.H.); (A.T.W.)
| |
Collapse
|
24
|
Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, Uphoff N. Microbial Contributions for Rice Production: From Conventional Crop Management to the Use of 'Omics' Technologies. Int J Mol Sci 2022; 23:737. [PMID: 35054923 PMCID: PMC8775878 DOI: 10.3390/ijms23020737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/26/2022] Open
Abstract
Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.
Collapse
Affiliation(s)
- Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Nurul Shamsinah Mohd Suhaimi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.S.M.S.); (M.S.M.)
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.S.M.S.); (M.S.M.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - F Fathurrahman
- Department of Agrotechnology, Faculty of Agriculture, Universitas Islam Riau, Pekanbaru 28284, Indonesia;
| | - Betty Mayawatie Marzuki
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, West Java, Indonesia; (B.M.M.); (J.K.)
| | - Norman Uphoff
- SRI International Network and Resources Center, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
25
|
Abbas A, Fu Y, Qu Z, Zhao H, Sun Y, Lin Y, Xie J, Cheng J, Jiang D. Isolation and evaluation of the biocontrol potential of Talaromyces spp. against rice sheath blight guided by soil microbiome. Environ Microbiol 2021; 23:5946-5961. [PMID: 33989446 DOI: 10.1111/1462-2920.15596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Rice sheath blight caused by Rhizoctonia solani is the major disease of rice that seriously threatens food security worldwide. Efficient and eco-friendly biological approaches are urgently needed since no resistant cultivars are available. In this study, fallow and paddy soils were initially subjected to microbiome analyses, and the results showed that Talaromyces spp. were significantly more abundant in the paddy soil, while Trichoderma spp. were more abundant in the fallow soil, suggesting that Talaromyces spp. could live and survive better in the paddy soil. Five Talaromyces isolates, namely, TF-04, TF-03, TF-02, TF-01 and TA-02, were isolated from the paddy soil using sclerotia of R. solani as baits and were further evaluated for their activity against rice sheath blight. These isolates efficiently parasitized the hyphae and rotted the sclerotia even at higher water contents in the sterilized sand and the soil. Isolate TF-04 significantly promoted rice growth, reduced the severity of rice sheath blight and increased the rice yield under outdoor conditions. Defence-related genes were upregulated and enzyme activities were enhanced in rice treated with isolate TF-04. Our research supplies a microbiome-guided approach to screen biological control agents and provides Talaromyces isolates to biologically control rice sheath blight.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Zheng Qu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Huizhang Zhao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Yongjian Sun
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei Province, 441057, People's Republic of China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China.,Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, People's Republic of China
| |
Collapse
|
26
|
Murali M, Naziya B, Ansari MA, Alomary MN, AlYahya S, Almatroudi A, Thriveni MC, Gowtham HG, Singh SB, Aiyaz M, Kalegowda N, Lakshmidevi N, Amruthesh KN. Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture. J Fungi (Basel) 2021; 7:314. [PMID: 33919629 PMCID: PMC8072672 DOI: 10.3390/jof7040314] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 01/28/2023] Open
Abstract
Rhizosphere-resident fungi that are helpful to plants are generally termed as 'plant growth promoting fungi' (PGPF). These fungi are one of the chief sources of the biotic inducers known to give their host plants numerous advantages, and they play a vital role in sustainable agriculture. Today's biggest challenge is to satisfy the rising demand for crop protection and crop yield without harming the natural ecosystem. Nowadays, PGPF has become an eco-friendly way to improve crop yield by enhancing seed germination, shoot and root growth, chlorophyll production, and fruit yield, etc., either directly or indirectly. The mode of action of these PGPF includes the solubilization and mineralization of the essential micro- and macronutrients needed by plants to regulate the balance for various plant processes. PGPF produce defense-related enzymes, defensive/volatile compounds, and phytohormones that control pathogenic microbes' growth, thereby assisting the plants in facing various biotic and abiotic stresses. Therefore, this review presents a holistic view of PGPF as efficient natural biofertilizers to improve crop plants' growth and resistance.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (B.N.); (N.K.)
| | - Banu Naziya
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (B.N.); (N.K.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh P.O. Box 6086, Saudi Arabia; (M.N.A.); (S.A.)
| | - Sami AlYahya
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh P.O. Box 6086, Saudi Arabia; (M.N.A.); (S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | | | - Sudarshana Brijesh Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (S.B.S.); (M.A.)
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (S.B.S.); (M.A.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (B.N.); (N.K.)
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (B.N.); (N.K.)
| |
Collapse
|