1
|
Foxcroft N, Masaka E, Oosthuizen J. Prevalence Trends of Foodborne Pathogens Bacillus cereus, Non-STEC Escherichia coli and Staphylococcus aureus in Ready-to-Eat Foods Sourced from Restaurants, Cafés, Catering and Takeaway Food Premises. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1426. [PMID: 39595693 PMCID: PMC11593717 DOI: 10.3390/ijerph21111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024]
Abstract
Foodborne pathogens of Bacillus cereus (B. cereus), non-STEC Escherichia coli (non-STEC E. coli) and Staphylococcus aureus (S. aureus) are currently non-notifiable in Australia unless attributed to a food poisoning outbreak. Due to the lack of data around individual cases and isolations in foods, any changes in prevalence may go undetected. The aim of this study was to determine any changes in the prevalence of B. cereus, non-STEC E. coli and S. aureus in ready-to-eat (RTE) foods sampled from Western Australian restaurants, cafés, catering facilities and takeaway food premises from July 2009 to June 2022. A total of 21,822 microbiological test results from 7329 food samples analysed over this 13-year period were reviewed and analysed. Linear trend graphs derived from the annual prevalence and binary logistic regression models were used to analyse the sample results, which indicated an increase in prevalence for B. cereus. In contrast, a decrease in prevalence for both S. aureus and non-STEC E. coli was determined. Additionally, there were changes in prevalence for the three bacteria in specific months, seasons, specific RTE foods and food premises types. Further research is needed to gain a better understanding of the potential drivers behind these changes in prevalence, including the potential impacts of climate change, COVID-19, legislation and guidelines targeting specific RTE foods, and the difficulty of differentiating B. cereus from B. thuringeniesis using standard testing methods.
Collapse
Affiliation(s)
- Nicole Foxcroft
- Occupational and Environmental Health, Medical and Health Sciences, Edith Cowan University Joondalup, Perth 6017, Australia; (E.M.); (J.O.)
| | | | | |
Collapse
|
2
|
Zhao X, Höfte M, Spanoghe P, Rajkovic A, Uyttendaele M. Biofilm-forming Ability of Bacillus thuringiensis Strains from Biopesticides on Polystyrene and their Attachment on Spinach. J Food Prot 2024; 87:100321. [PMID: 38936698 DOI: 10.1016/j.jfp.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Bacillus thuringiensis-based commercial products as a biopesticide have been used for more than 60 years in agriculture. However, as one of the species in B. cereus group, B. thuringiensis has been considered as an emerging hazard with the potential to cause food toxico-infections. The present study aimed to evaluate the biofilm-forming ability of B. thuringiensis biopesticide strains and their attachment on spinach, compared to foodborne B. cereus strains. Biofilm formations of tested strains were found to be strain-specific and affected by the nutrient conditions more than the incubation time. Nutrient starvation conditions generally reduced the biofilm formation of tested B. thuringiensis and B. cereus strains, particularly B. thuringiensis ABTS-1857 strain was found as the nonbiofilm former in starvation conditions. It is worth mentioning that B. thuringiensis SA-11 strain showed stronger biofilm-forming ability with more air-liquid interface biofilm than the other two B. thuringiensis biopesticide strains, but no such higher attachment of B. thuringiensis SA-11 to spinach was observed. These results indicate that B. thuringiensis SA-11 strain can enter the food processing lines by the attachment on spinach leaves, and it has the potential to form biofilms throughout the processing lines or the production environment when sufficient nutrients are available. However, more biofilm tests of B. thuringiensis biopesticide strains in the vegetable production chain should be performed. The dry formulation of commercial B. thuringiensis biopesticides enhanced their adhesion on spinach leaves, whereas the strength of adhesion was not improved by the formulation. In addition, 1-2 log reductions of spores after the intensive washing of spinach leaves in the lab were detected. However, the log reduction due to the actual washing done by the food processing companies in large-volume washing baths or by consumers at home would be limited and less than this lab simulation.
Collapse
Affiliation(s)
- Xingchen Zhao
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Pieter Spanoghe
- Laboratory of Crop Protection Chemistry, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mieke Uyttendaele
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Xu B, Huang X, Qin H, Lei Y, Zhao S, Liu S, Liu G, Zhao J. Evaluating the Safety of Bacillus cereus GW-01 Obtained from Sheep Rumen Chyme. Microorganisms 2024; 12:1457. [PMID: 39065225 PMCID: PMC11278751 DOI: 10.3390/microorganisms12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus cereus is responsible for 1.4-12% food poisoning outbreaks worldwide. The safety concerns associated with the applications of B. cereus in health and medicine have been controversial due to its dual role as a pathogen for foodborne diseases and a probiotic in humans and animals. In this study, the pathogenicity of B. cereus GW-01 was assessed by comparative genomic, and transcriptome analysis. Phylogenetic analysis based on a single-copy gene showed clustering of the strain GW-01, and 54 B. cereus strains from the NCBI were classified into six major groups (I-VI), which were then associated with the source region and sequence types (STs). Transcriptome results indicated that the expression of most genes related with toxins secretion in GW-01 was downregulated compared to that in the lag phase. Overall, these findings suggest that GW-01 is not directly associated with pathogenic Bacillus cereus and highlight an insightful strategy for assessing the safety of novel B. cereus strains.
Collapse
Affiliation(s)
- Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Haixiong Qin
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Ying Lei
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
| | - Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
4
|
Agunwah IM, Ogueke CC, Nwosu JN, Anyogu A. Microbiological evaluation of the indigenous fermented condiment okpeye available at various retail markets in the south-eastern region of Nigeria. Heliyon 2024; 10:e25493. [PMID: 38356605 PMCID: PMC10865259 DOI: 10.1016/j.heliyon.2024.e25493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
In Africa, indigenous fermented condiments contribute to food security as a low-cost source of protein. Okpeye is an indigenous fermented condiment produced from Prosopis africana seeds. The reliance on spontaneous fermentation processes and unhygienic practices during production often results in the contamination of the final product with microbial hazards. A microbiological evaluation of 18 commercial samples of okpeye purchased from six markets in two cities in southeastern Nigeria was conducted. Fifty-nine (59) bacteria were isolated and identified at the species level by phenotyping and sequencing the 16S rRNA, gyrB and rpoB genes. Bacillus (47.4 %) and Staphylococcus (42.3 %) were the predominant bacterial genera in okpeye. Overall, B. amyloliquefaciens and S. simulans were the most frequently occurring bacteria and were present in all samples. In addition, B. cereus was isolated in samples obtained from all markets. Other bacterial species included B. velezensis, Oceanobacillus caeni, S. cohnii, Escherichia fergusonni and Vagacoccus lutrae. The B. cereus isolates (10) were screened for the presence of 8 enterotoxin genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM) and one emetic gene (cesB). The non-haemolytic enterotoxin (nheABC) and haemolytic enterotoxin (hblABD) complexes were present in 70 % and 50 % of B. cereus respectively. The positive rate of cytK and entFM genes was 70 %, while the cesB gene was 30 %. Antibiotic susceptibility assessment showed that most of the isolates were susceptible to gentamicin, tetracycline, streptomycin, and erythromycin but resistant to ciprofloxacin and vancomycin. These findings highlight the need for further controls to reduce contamination with potential pathogenic bacteria in indigenous fermented condiments such as okpeye. There is also a need to educate producers regarding hygienic practices to safeguard public health and food security.
Collapse
Affiliation(s)
- Ijeoma M. Agunwah
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Chika C. Ogueke
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Justina N. Nwosu
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, St Mary's Road, Ealing, W5 5RF, London, UK
| |
Collapse
|
5
|
Lin Y, Cha X, Brennan C, Cao J, Shang Y. Contamination of Plant Foods with Bacillus cereus in a Province and Analysis of Its Traceability. Microorganisms 2023; 11:2763. [PMID: 38004774 PMCID: PMC10672870 DOI: 10.3390/microorganisms11112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bacillus cereus is an important zoonotic foodborne conditional pathogen. It is found in vegetables, dairy products, rice, and other foods, thereby greatly endangering human health. Investigations on B. cereus contamination in China primarily focus on raw milk, dairy products, meat, and others, and limited research has been conducted on plant-based foodstuffs. The rapid development of sequencing technology and the application of bioinformatics-related techniques means that analysis based on whole-genome sequencing has become an important tool for the molecular-epidemiology investigation of B. cereus. In this study, we investigated the contamination of B. cereus in six types of commercially available plant foods from eight regions of a province. The molecular epidemiology of the isolated B. cereus was analyzed by whole-genome sequencing. We aimed to provide fundamental data for the surveillance and epidemiology analysis of B. cereus in food products in China. The rapid traceability system of B. cereus established in this study can provide a basis for rapid molecular epidemiology analysis of B. cereus, as well as for the prevention and surveillance of B. cereus. Moreover, it can also be expanded to monitoring and rapid tracing of more foodborne pathogens.
Collapse
Affiliation(s)
- Yingting Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
| | - Xiaoyan Cha
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
| | - Charles Brennan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
| |
Collapse
|
6
|
Overbeek LV. Human Pathogens in Primary Production Systems. Microorganisms 2023; 11:microorganisms11030750. [PMID: 36985323 PMCID: PMC10053829 DOI: 10.3390/microorganisms11030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Human pathogenic micro-organisms can contaminate plants [...]
Collapse
Affiliation(s)
- Leo van Overbeek
- Wageningen Plant Research, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Castulo-Arcos DA, Adame-Gómez R, Castro-Alarcón N, Galán-Luciano A, Santiago Dionisio MC, Leyva-Vázquez MA, Perez-Olais JH, Toribio-Jiménez J, Ramirez-Peralta A. Genetic diversity of enterotoxigenic Bacillus cereus strains in coriander in southwestern Mexico. PeerJ 2022; 10:e13667. [PMID: 35795180 PMCID: PMC9252179 DOI: 10.7717/peerj.13667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coriander, like other leafy green vegetables, is available all year round and is commonly consumed raw in Mexico as in other countries in the preparation of street or homemade food. Bacillus cereus (B. cereus) is a microorganism that can reach coriander because it is usually found in the soil and in some regions the vegetables are irrigated with polluted water. Therefore, the aim of this study was to determinate the presence of B. cereus in coriander used for human consumption in southwestern Mexico and determine the toxigenic profile, biofilm production, genes associated with the production of biofilms, sporulation rates, enzymatic profile, psychotropic properties, and genetic diversity of B. cereus. Methods Fresh coriander samples were collected from several vegetable retailers in different markets, microbiological analysis was performed. Molecular identification, genes related to the production of biofilm, and toxin gene profiling of B. cereus isolates were determined by PCR. The biofilm formation was measured by performing a crystal violet assay. The genetic diversity of B. cereus strains was determined by PCR of repetitive elements using oligonucleotide (GTG) 5. Results We found a frequency of B. cereus in vegetables was 20% (13/65). In this study, no strains with genes for the HBL toxin were found. In the case of genes related to biofilms, the frequency was low for sipW [5.8%, (1/17)] and tasA [11.7%, (2/17)]. B. cereus strains produce a low amount of biofilm with sporulation rates around 80%. As for genetic diversity, we observed that strains isolated from the same market, but different vegetable retailers are grouped into clusters. In the coriander marketed in southwestern Mexico, were found B. cereus strains with genes associated with the production of diarrheal toxins. Together, these results show actual information about the state of art of B. cereus strains circulating in the southwestern of Mexico.
Collapse
Affiliation(s)
- Daniel Alexander Castulo-Arcos
- Laboratorio de Investigación en Patometabolismo Microbiano/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Roberto Adame-Gómez
- Laboratorio de Investigación en Patometabolismo Microbiano/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiología/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, México
| | - Aketzalli Galán-Luciano
- Laboratorio de Investigación en Patometabolismo Microbiano/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - María Cristina Santiago Dionisio
- Laboratorio de Investigación en Análisis Microbiológicos/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, México
| | - Marco A. Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, México
| | - Jose-Humberto Perez-Olais
- Laboratorio de Biología Celular/Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Ciudad de México, Ciudad de México, México
| | - Jeiry Toribio-Jiménez
- Laboratorio de Investigacion en Microbiologia Molecular y Biotecnologia Ambiental/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Arturo Ramirez-Peralta
- Laboratorio de Investigación en Patometabolismo Microbiano/Facultad de Ciencias Químico Biológicas, Universidad Autonoma de Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
8
|
Complete Genome Sequence and Benzophenone-3 Mineralisation Potential of Rhodococcus sp. USK10, A Bacterium Isolated from Riverbank Sediment. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzophenone-3 (BP3) is an organic UV filter whose presence in the aquatic environment has been linked to detrimental developmental impacts in aquatic organisms such as coral and fish. The genus Rhodococcus has been extensively studied and is known for possessing large genomes housing genes for biodegradation of a wide range of compounds, including aromatic carbons. Here, we present the genome sequence of Rhodococcus sp. USK10, which was isolated from Chinese riverbank sediment and is capable of utilising BP3 as the sole carbon source, resulting in full BP3 mineralisation. The genome consisted of 9,870,030 bp in 3 replicons, a G+C content of 67.2%, and 9722 coding DNA sequences (CDSs). Annotation of the genome revealed that 179 of these CDSs are involved in the metabolism of aromatic carbons. The complete genome of Rhodococcus sp. USK10 is the first complete, annotated genome sequence of a Benzophenone-3-degrading bacterium. Through radiolabelling, it is also the first bacterium proven to mineralise Benzophenone-3. Due to the widespread environmental prevalence of Benzophenone-3, coupled with its adverse impact on aquatic organisms, this characterisation provides an integral first step in better understanding the environmentally relevant degradation pathway of the commonly used UV filter. Given USK10′s ability to completely mineralise Benzophenone-3, it could prove to be a suitable candidate for bioremediation application.
Collapse
|
9
|
Characterization of Bacillus cereus AFA01 Capable of Degrading Gluten and Celiac-Immunotoxic Peptides. Foods 2021; 10:foods10081725. [PMID: 34441503 PMCID: PMC8392533 DOI: 10.3390/foods10081725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Wheat gluten elicits a pro-inflammatory immune response in patients with celiac disease. The only effective therapy for this disease is a life-long gluten-free diet. Gluten detoxification using glutenases is an alternative approach. A key step is to identify useful glutenases or glutenase-producing organisms. This study investigated the gluten-degrading activity of three Bacillus cereus strains using gluten, gliadin, and highly immunotoxic 33- and 13-mer gliadin peptides. The strain AFA01 was grown on four culture media for obtaining the optimum gluten degradation. Complete genome sequencing was performed to predict genes of enzymes with potential glutenase activity. The results showed that the three B. cereus strains can hydrolyze gluten, immunotoxic peptides, and gliadin even at pH 2.0. AFA01 was the most effective strain in degrading the 33-mer peptide into fractions containing less than nine amino acid residues, the minimum peptide to induce celiac responses. Moreover, growth on starch casein broth promoted AFA01 to degrade immunotoxic peptides. PepP, PepX, and PepI may be responsible for the hydrolysis of immunotoxic peptides. On the basis of the potential of gluten degradation, AFA01 or its derived enzymes may be the best option for further research regarding the elimination of gluten toxicity.
Collapse
|