1
|
Zhou H, Pei Y, Xie Q, Nie W, Liu X, Xia H, Jiang J. Diagnosis and insight into the unique lung microbiota of pediatric pulmonary tuberculosis patients by bronchoalveolar lavage using metagenomic next-generation sequencing. Front Cell Infect Microbiol 2024; 14:1492881. [PMID: 39748884 PMCID: PMC11693512 DOI: 10.3389/fcimb.2024.1492881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Background Although previous studies have reported the dysregulation of respiratory tract microbiota in infectious diseases, insufficient data exist regarding respiratory microbiota imbalances in the lower respiratory tracts of children with pulmonary tuberculosis (PTB). In this study, we assessed the value of mNGS in the pathogen diagnosis and microbiome analysis of PTB patients using bronchoalveolar lavage fluid (BALF) samples. Methods A total of 64 participants, comprising 43 pediatric PTB and 21 pediatric pneumonia patients were recruited in the present study. BALF samples were collected from the above participants. Parallel comparisons between mNGS and conventional microbial test (CMT) pathogen detection were performed. Moreover, the diversity and structure of all 64 patients' lung BALF microbiomes were explored using the mNGS data. Results Comparing to the final clinical diagnosis, mNGS in BALF samples produced a sensitivity of 46.51%, which was lower than that of TB-PCR (55.00%) and Xpert (55.00%). The diagnostic efficacy of PTB can be highly enhanced by mNGS combined with TB-PCR (AUC=0.8140, P<0.0001). There were no significant differences in the diversity either between patients with TB and pneumonia. Positive mNGS pathogen results in pediatric PTB patients significantly affect the β-diversity of the pulmonary microbiota. In addition, significant taxonomic differences were found in BALF specimens from patients with PTB and pneumonia, both of which have unique bacterial compositions. Conclusions mNGS is valuable in the etiological diagnosis of PTB, and can reveal pulmonary microecological characteristics. For pediatric PTB patients, the mNGS should be implemented early and complementary to CMTs.
Collapse
Affiliation(s)
- Haiyi Zhou
- The Affiliated Changsha Central Hospital, Department of Center for Tuberculosis Diagnosis and Treatment, Hengyang Medical School, University of South China, Changsha, China
- Changsha Tuberculosis Technology Innovation Center of Children, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Yi Pei
- The Affiliated Changsha Central Hospital, Department of Center for Tuberculosis Diagnosis and Treatment, Hengyang Medical School, University of South China, Changsha, China
- Hunan Clinical Medical Technology Demonstration Base of Tuberculosis Diagnosis and Treatment, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Qifang Xie
- The Affiliated Changsha Central Hospital, Department of Center for Tuberculosis Diagnosis and Treatment, Hengyang Medical School, University of South China, Changsha, China
- Changsha Tuberculosis Technology Innovation Center of Children, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wenjie Nie
- The Affiliated Changsha Central Hospital, Department of Center for Tuberculosis Diagnosis and Treatment, Hengyang Medical School, University of South China, Changsha, China
- Changsha Tuberculosis Technology Innovation Center of Children, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Xiaoyan Liu
- The Affiliated Changsha Central Hospital, Department of Center for Tuberculosis Diagnosis and Treatment, Hengyang Medical School, University of South China, Changsha, China
- Changsha Tuberculosis Technology Innovation Center of Children, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Jie Jiang
- The Affiliated Changsha Central Hospital, Department of Center for Tuberculosis Diagnosis and Treatment, Hengyang Medical School, University of South China, Changsha, China
- Changsha Tuberculosis Technology Innovation Center of Children, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Hunan Clinical Medical Technology Demonstration Base of Tuberculosis Diagnosis and Treatment, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
2
|
Huang HL, Lin CH, Lee MR, Huang WC, Sheu CC, Cheng MH, Lu PL, Huang CH, Yeh YT, Yang JM, Chong IW, Liao YC, Wang JY. Sputum bacterial microbiota signature as a surrogate for predicting disease progression of nontuberculous mycobacterial lung disease. Int J Infect Dis 2024; 149:107085. [PMID: 38740280 DOI: 10.1016/j.ijid.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES Predicting progression of nontuberculous mycobacterial lung disease (NTM-LD) remains challenging. This study evaluated whether sputum bacterial microbiome diversity can be the biomarker and provide novel insights into related phenotypes and treatment timing. METHODS We analyzed 126 sputum microbiomes of 126 patients with newly diagnosed NTM-LD due to Mycobacterium avium complex, M. abscessus complex, and M. kansasii between May 2020 and December 2021. Patients were followed for 2 years to determine their disease progression status. We identified consistently representative genera that differentiated the progressor and nonprogressor by using six methodologies. These genera were used to construct a prediction model using random forest with five-fold cross validation. RESULTS Disease progression occurred in 49 (38.6%) patients. Compared with nonprogressors, α-diversity was lower in the progressors. Significant compositional differences existed in the β-diversity between groups (P = 0.001). The prediction model for NTM-LD progression constructed using seven genera (Burkholderia, Pseudomonas, Sphingomonas, Candidatus Saccharibacteria, Phocaeicola, Pelomonas, and Phascolarctobacterium) with significantly differential abundance achieved an area under curve of 0.871. CONCLUSION Identification of the composition of sputum bacterial microbiome facilitates prediction of the course of NTM-LD, and maybe used to develop precision treatment involving modulating the respiratory microbiome composition to ameliorate NTM-LD.
Collapse
Affiliation(s)
- Hung-Ling Huang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chieh-Hua Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Big Data Center, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Mycobacterial Center, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Meng-Hsuan Cheng
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung, Taiwan; Department of Respiratory Therapy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Hsieh Huang
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Hazra D, Chawla K, S M F, Sintchenko V, Magazine R, Martinez E, Pandey A. The impact of anti-tuberculosis treatment on respiratory tract microbiome in pulmonary tuberculosis. Microbes Infect 2024:105432. [PMID: 39428055 DOI: 10.1016/j.micinf.2024.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The growing evidence has underscored the significance of interactions between the host and microbiota in respiratory health, presenting a novel perspective on disease management. Yet, comprehension of the respiratory microbiome shifts before and after anti-tuberculosis treatment is limited. This study compares respiratory microbiome profiles in untreated tuberculosis (UTB) and completed TB treatment (CTB) cases with healthy controls, using 16S rRNA sequencing on sputum samples. Significant reduction in sputum microbial alpha diversity was observed in both TB groups when compared to healthy controls (P < 0.05). Beta diversity analysis showed distinct clustering (P < 0.05). Linear discriminant analysis revealed an abundance of potentially pathogenic bacterial genera like Haemophilus, Pseudomonas, and Mycobacterium in the UTB group, while Streptococcus, Rothia, and Neisseria dominated in CTB samples. Healthy sputum microbiomes were enriched with Prevotella, Fusobacterium, Porphyromonadaceae_unclassified,andPeptostreptococcus. Moreover, predicted bacterial functional pathways showed significant differences among the three groups, mainly related to nutrient metabolism. These findings indicated significant microbial dysbiosis in sputum samples recovered from patients with pulmonary TB with an elevated presence of potentially pathogenic bacteria, depletion of beneficial genera, and downregulation of several essential metabolic pathways. Further exploration of respiratory microbiome-based diagnostic biomarkers and their role in targeted treatment strategies in tuberculosis is warranted.
Collapse
Affiliation(s)
- Druti Hazra
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, India.
| | - Fayaz S M
- Department of Biotechnology, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Karnataka, India.
| | - Vitali Sintchenko
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia; Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, New South Wales, Australia
| | - Rahul Magazine
- Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, India
| | - Elena Martinez
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia; Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, New South Wales, Australia
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Du W, Zhao Y, Zhang C, Zhang L, Zhou L, Sun Z, Huang X, Zhang N, Liu Z, Li K, Che N. Association of bacteriomes with drug susceptibility in lesions of pulmonary tuberculosis patients. Heliyon 2024; 10:e37583. [PMID: 39309911 PMCID: PMC11414563 DOI: 10.1016/j.heliyon.2024.e37583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Understanding how the bacteriomes in tuberculous lesions can be influenced by the susceptibility of Mycobacterium tuberculosis (MTB) can provide valuable information for preventing and treating drug resistant tuberculosis (DR-TB). High-throughput 16S rRNA sequencing was employed to analyze the bacteriome in pulmonary TB lesions from 14 patients with DR-TB and 47 patients with drug sensitive tuberculosis (DS-TB), along with 18 normal lung tissues (NT) from 18 lung cancer patients serving as the bacterial baseline. The phylogenetic investigation of communities by reconstruction of unobserved states2 (PICRUSt2) algorithm was utilized to predict bacterial metabolic functions. The major phyla of pulmonary bacteriomes included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Alpha diversity indices, including ACE, Chao1, Shannon and OTU observed, all demonstrated different bacterial communities of DS-TB samples from that of NT samples; while only Shannon indicated difference between DR-TB and NT samples. The analysis of similarity (ANOSIM) showed significantly different bacterial communities within TB lesions compared to NT samples (R = 0.418, p = 0.001). However, difference was not observed between DR-TB and DS-TB samples (ANOSIM, R = 0.069, p = 0.173). The bacterial profiles within each DR-TB individual appeared unique, with no obvious clusters corresponding to drug-resistant phenotypes. Nevertheless, indicator genera identified in DR-TB and DS-TB lesions demonstrated distinctive micro-ecological environments. Most COG functions were enriched in TB lesions, and the most significant one was [J] translation, ribosomal structure and biogenesis. The distinct enrichment patterns of bacterial enzymes in DR-TB and DS-TB lesions suggest that pulmonary bacterial activities can be modulated by the susceptibility of MTB bacilli. This study provides fresh perspectives and strategies for the precise diagnosis and assessment of drug resistance tuberculosis.
Collapse
Affiliation(s)
- Weili Du
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Yingli Zhao
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Chen Zhang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Li Zhang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Lijuan Zhou
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Zuyu Sun
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Xiaojie Huang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Nana Zhang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Zichen Liu
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Kun Li
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| |
Collapse
|
5
|
Alvarado-Peña N, Galeana-Cadena D, Gómez-García IA, Mainero XS, Silva-Herzog E. The microbiome and the gut-lung axis in tuberculosis: interplay in the course of disease and treatment. Front Microbiol 2023; 14:1237998. [PMID: 38029121 PMCID: PMC10643882 DOI: 10.3389/fmicb.2023.1237998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) that remains a significant global health challenge. The extensive use of antibiotics in tuberculosis treatment, disrupts the delicate balance of the microbiota in various organs, including the gastrointestinal and respiratory systems. This gut-lung axis involves dynamic interactions among immune cells, microbiota, and signaling molecules from both organs. The alterations of the microbiome resulting from anti-TB treatment can significantly influence the course of tuberculosis, impacting aspects such as complete healing, reinfection, and relapse. This review aims to provide a comprehensive understanding of the gut-lung axis in the context of tuberculosis, with a specific focus on the impact of anti-TB treatment on the microbiome.
Collapse
Affiliation(s)
- Néstor Alvarado-Peña
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, Mexico
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Xavier Soberón Mainero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de México-Instituto Nacional de Medicina Genomica, México City, Mexico
| |
Collapse
|
6
|
Zhuo Q, Zhang X, Zhang K, Chen C, Huang Z, Xu Y. The gut and lung microbiota in pulmonary tuberculosis: susceptibility, function, and new insights into treatment. Expert Rev Anti Infect Ther 2023; 21:1355-1364. [PMID: 37970631 DOI: 10.1080/14787210.2023.2283036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a chronic infectious disease caused by mycobacterium tuberculosis (Mtb) that poses a major threat to human health. AREAS COVERED Herein, we aim to review the alteration of the microbiota in gut and respiratory during TB development, the potential function and mechanisms of microbiota in the pathogenesis of Mtb infection, and the impact of antibiotic treatment on the microbiota. In addition, we discuss the potential new paradigm for the use of microbiota-based treatments such as probiotics and prebiotics in the treatment of TB. EXPERT OPINION Studies have shown that trillions of micro-organisms live in the human gut and respiratory tract, acting as gatekeepers in maintaining immune homeostasis and respiratory physiology and playing a beneficial or hostile role in the development of TB. Anti-TB antibiotics may cause microecological imbalances in the gut and respiratory tract, and microbiome-based therapeutics may be a promising strategy for TB treatment. Appropriate probiotics and prebiotics supplementation, along with antimycobacterial treatment, will improve the therapeutic effect of TB treatment and protect the gut and respiratory microbiota from dysbiosis.
Collapse
Affiliation(s)
- Qiqi Zhuo
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianyi Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kehong Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chan Chen
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhen Huang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Barbosa-Amezcua M, Galeana-Cadena D, Alvarado-Peña N, Silva-Herzog E. The Microbiome as Part of the Contemporary View of Tuberculosis Disease. Pathogens 2022; 11:pathogens11050584. [PMID: 35631105 PMCID: PMC9147979 DOI: 10.3390/pathogens11050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022] Open
Abstract
The study of the microbiome has changed our overall perspective on health and disease. Although studies of the lung microbiome have lagged behind those on the gastrointestinal microbiome, there is now evidence that the lung microbiome is a rich, dynamic ecosystem. Tuberculosis is one of the oldest human diseases, it is primarily a respiratory infectious disease caused by strains from the Mycobacterium tuberculosis Complex. Even today, during the COVID-19 pandemic, it remains one of the principal causes of morbidity and mortality worldwide. Tuberculosis disease manifests itself as a dynamic spectrum that ranges from asymptomatic latent infection to life-threatening active disease. The review aims to provide an overview of the microbiome in the tuberculosis setting, both in patients’ and animal models. We discuss the relevance of the microbiome and its dysbiosis, and how, probably through its interaction with the immune system, it is a significant factor in tuberculosis’s susceptibility, establishment, and severity.
Collapse
Affiliation(s)
- Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico;
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Néstor Alvarado-Peña
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Eugenia Silva-Herzog
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de Mexico-Instituto Nacional de Medicina Genomica (UNAM-INMEGEN), Mexico City 14610, Mexico
- Correspondence:
| |
Collapse
|