1
|
Kiraz D, Özcan A. Comparative genome analysis of 15 Streptococcus thermophilus strains isolated from Turkish traditional yogurt. Antonie Van Leeuwenhoek 2025; 118:64. [PMID: 40153053 DOI: 10.1007/s10482-025-02070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Streptococcus thermophilus plays a pivotal role in yogurt fermentation, yet strains from traditional fermented products remain largely unexplored compared to their industrial counterparts. This study aimed to characterize the genomic diversity and functional potential of 15 S. thermophilus strains isolated from Turkish traditional yogurts, and to compare them with industrial strains. Through whole-genome sequencing and advanced bioinformatics analyses, we revealed distinct phylogenetic patterns and genetic features that differentiate these traditional strains from industrial isolates. The genomes (1.68-1.86 Mb) exhibited high genetic homogeneity (ANI > 98.69%) while maintaining significant functional diversity. Pan-genome analysis identified 1160 core genes and 5694 accessory genes, highlighting substantial genomic plasticity that enables niche adaptation. Our analysis uncovered several distinctive features: (1) unique phylogenetic clustering patterns based on both housekeeping genes and whole-genome SNPs, suggesting geographical isolation effects; (2) an extensive repertoire of carbohydrate-active enzymes (CAZymes), comprising 111 Glycoside Hydrolases, 227 Glycosyl Transferases, and 44 Carbohydrate Esterases and 13 Carbohydrate-Binding Modules, demonstrating sophisticated carbohydrate metabolism adaptation significantly enriched compared to industrial strains; (3) widespread GABA biosynthesis pathways in 8 strains, including complete gadB gene, indicating potential health-promoting properties; (4) multiple genomic islands containing genes for galactose utilization and stress response, suggesting specific adaptation to traditional fermentation environments; (5) diverse exopolysaccharide biosynthesis and bacteriocin gene clusters; and (6) widespread CRISPR-Cas systems with variable spacer content. Notably, we identified vanY glycopeptide resistance genes across all strains, with two strains additionally harboring vanT. These results reveal the genetic mechanisms behind S. thermophilus adaptation to traditional yogurt environments, offering valuable insights for developing starter cultures and preserving the unique qualities and potential health benefits of traditional dairy products.
Collapse
Affiliation(s)
- Deniz Kiraz
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey.
| | - Ali Özcan
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
| |
Collapse
|
2
|
Xie P, Luo M, Fan J, Xiong L. Multiomics Analysis Reveals Gut Virome-Bacteria-Metabolite Interactions and Their Associations with Symptoms in Patients with IBS-D. Viruses 2024; 16:1054. [PMID: 39066219 PMCID: PMC11281411 DOI: 10.3390/v16071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota is involved in the pathogenesis of diarrhea-predominant irritable bowel syndrome (IBS-D), but few studies have focused on the role of the gut virome in IBS-D. We aimed to explore the characteristics of the gut virome in patients with IBS-D, its interactions with bacteria and metabolites, and the associations between gut multiomics profiles and symptoms. This study enrolled twelve patients with IBS-D and eight healthy controls (HCs). The stool samples were subjected to metavirome sequencing, 16S rRNA gene sequencing, and untargeted metabolomic analysis. The participants completed relevant scales to assess the severity of their gastrointestinal symptoms, depression, and anxiety. The results revealed unique DNA and RNA virome profiles in patients with IBS-D with significant alterations in the abundance of contigs from Siphoviridae, Podoviridae, Microviridae, Picobirnaviridae, and Tombusviridae. Single-omics co-occurrence network analyses demonstrated distinct differences in the gut virus, bacteria, and metabolite network patterns between patients with IBS-D and HCs. Multiomics networks revealed that short-chain fatty acid-producing bacteria occupied more core positions in IBS-D networks, but had fewer links to viruses. Amino acids and their derivatives exhibit unique connectivity patterns and centrality features within the IBS-D network. The gastrointestinal and psychological symptom factors of patients with IBS-D were highly clustered in the symptom-multiomics network compared with those of HCs. Machine learning models based on multiomics data can distinguish IBS-D patients from HCs and predict the scores of gastrointestinal and psychological symptoms. This study provides insights into the interactions among gut viruses, bacteria, metabolites, and clinical symptoms in patients with IBS-D, indicating further classification and personalized treatment for IBS-D.
Collapse
Affiliation(s)
| | | | | | - Lishou Xiong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Sprotte S, Brinks E, Neve H, Franz CM. Complete genome sequence of the novel virulent phage PMBT24 infecting Enterocloster bolteae from the human gut. Heliyon 2024; 10:e28813. [PMID: 38655313 PMCID: PMC11035940 DOI: 10.1016/j.heliyon.2024.e28813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
PMBT24, the first reported virulent bacteriophage infecting the anaerobic human gut bacterium Enterocloster bolteae strain MBT-21, was isolated from a municipal sewage sample and its genome was sequenced and analysed. Transmission electron microscopy revealed a phage with an icosahedral head and a long, non-contractile tail. The circularly permutated, 99,962-bp dsDNA genome of the pac-type phage has a mol% G + C content of 32.1 and comprises 173 putative ORFs. Using amino acid sequence-based phylogeny, phage PMBT24 showed similarity to other, hitherto non-published phage genomes in the databases. Our data suggested phage PMBT24 to present the type phage of a novel genus (proposed name Kielvirus) and novel family of phages (proposed name Kielviridae).
Collapse
Affiliation(s)
- Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Str. 1, 24103, Kiel, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Str. 1, 24103, Kiel, Germany
| | | | - Charles M.A.P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Str. 1, 24103, Kiel, Germany
| |
Collapse
|
4
|
Wu M, Zhu Y, Yang Y, Gong Y, Chen Z, Liao B, Xiong Y, Zhou X, Li Y. SVep1, a temperate phage of human oral commensal Streptococcus vestibularis. Front Microbiol 2023; 14:1256669. [PMID: 37779698 PMCID: PMC10536254 DOI: 10.3389/fmicb.2023.1256669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Bacteriophages play a vital role in the human oral microbiome, yet their precise impact on bacterial physiology and microbial communities remains relatively understudied due to the limited isolation and characterization of oral phages. To address this gap, the current study aimed to isolate and characterize novel oral phages. Methods To achieve this, oral bacteria were isolated using a culture-omics method from 30 samples collected from healthy individuals. These bacteria were then cultured in three different types of media under both aerobic and anaerobic conditions. The samples were subsequently subjected to full-length 16S rRNA gene sequencing for analysis. Subsequently, we performed the isolation of lytic and lysogenic phages targeting all these bacteria. Results In the initial step, a total of 75 bacterial strains were successfully isolated, representing 30 species and 9 genera. Among these strains, Streptococcus was found to have the highest number of species. Using a full-length 16S rRNA gene similarity threshold of 98.65%, 14 potential novel bacterial species were identified. In the subsequent phase, a temperate phage, which specifically targets the human oral commensal bacterium S. vestibularis strain SVE8, was isolated. The genome of S. vestibularis SVE8 consists of a 1.96-megabase chromosome, along with a 43,492-base pair prophage designated as SVep1. Annotation of SVep1 revealed the presence of 62 open reading frames (ORFs), with the majority of them associated with phage functions. However, it is worth noting that no plaque formation was observed in S. vestibularis SVE8 following lytic induction using mitomycin C. Phage particles were successfully isolated from the supernatant of mitomycin C-treated cultures of S. vestibularis SVE8, and examination using transmission electron microscopy confirmed that SVep1 is a siphovirus. Notably, phylogenetic analysis suggested a common ancestral origin between phage SVep1 and the cos-type phages found in S. thermophilus. Discussion The presence of SVep1 may confer immunity to S. vestibularis against infection by related phages and holds potential for being engineered as a genetic tool to regulate oral microbiome homeostasis and oral diseases.
Collapse
Affiliation(s)
- Miaomiao Wu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanpeng Zhu
- Department of Oral and Maxillofacial Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xiong
- Department of Oral and Maxillofacial Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
- Department of Stomatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Leprince A, Mahillon J. Phage Adsorption to Gram-Positive Bacteria. Viruses 2023; 15:196. [PMID: 36680236 PMCID: PMC9863714 DOI: 10.3390/v15010196] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The phage life cycle is a multi-stage process initiated by the recognition and attachment of the virus to its bacterial host. This adsorption step depends on the specific interaction between bacterial structures acting as receptors and viral proteins called Receptor Binding Proteins (RBP). The adsorption process is essential as it is the first determinant of phage host range and a sine qua non condition for the subsequent conduct of the life cycle. In phages belonging to the Caudoviricetes class, the capsid is attached to a tail, which is the central player in the adsorption as it comprises the RBP and accessory proteins facilitating phage binding and cell wall penetration prior to genome injection. The nature of the viral proteins involved in host adhesion not only depends on the phage morphology (i.e., myovirus, siphovirus, or podovirus) but also the targeted host. Here, we give an overview of the adsorption process and compile the available information on the type of receptors that can be recognized and the viral proteins taking part in the process, with the primary focus on phages infecting Gram-positive bacteria.
Collapse
|
6
|
Goulet A, Joos R, Lavelle K, Van Sinderen D, Mahony J, Cambillau C. A structural discovery journey of streptococcal phages adhesion devices by AlphaFold2. Front Mol Biosci 2022; 9:960325. [PMID: 36060267 PMCID: PMC9437275 DOI: 10.3389/fmolb.2022.960325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Successful bacteriophage infection starts with specific recognition and adhesion to the host cell surface. Adhesion devices of siphophages infecting Gram-positive bacteria are very diverse and remain, for the majority, poorly understood. These assemblies often comprise long, flexible, and multi-domain proteins, which limits their structural analyses by experimental approaches such as X-ray crystallography and electron microscopy. However, the protein structure prediction program AlphaFold2 is exquisitely adapted to unveil structural and functional details of such molecular machineries. Here, we present structure predictions of whole adhesion devices of five representative siphophages infecting Streptococcus thermophilus, one of the main lactic acid bacteria used in dairy fermentations. The predictions highlight the mosaic nature of these devices that share functional domains for which active sites and residues could be unambiguously identified. Such AlphaFold2 analyses of phage-encoded host adhesion devices should become a standard method to characterize phage-host interaction machineries and to reliably annotate phage genomes.
Collapse
Affiliation(s)
- Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix-Marseille Université, UMR7255, Marseille, France
- *Correspondence: Adeline Goulet, ; Jennifer Mahony, ; Christian Cambillau,
| | - Raphaela Joos
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katherine Lavelle
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- *Correspondence: Adeline Goulet, ; Jennifer Mahony, ; Christian Cambillau,
| | - Christian Cambillau
- School of Microbiology, University College Cork, Cork, Ireland
- AlphaGraphix, Formiguères, France
- *Correspondence: Adeline Goulet, ; Jennifer Mahony, ; Christian Cambillau,
| |
Collapse
|
7
|
White K, Yu JH, Eraclio G, Dal Bello F, Nauta A, Mahony J, van Sinderen D. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. MICROBIOME RESEARCH REPORTS 2022; 1:3. [PMID: 38089066 PMCID: PMC10714293 DOI: 10.20517/mrr.2021.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 02/19/2024]
Abstract
Food fermentation relies on the activity of robust starter cultures, which are commonly comprised of lactic acid bacteria such as Lactococcus and Streptococcus thermophilus. While bacteriophage infection represents a persistent threat that may cause slowed or failed fermentations, their beneficial role in fermentations is also being appreciated. In order to develop robust starter cultures, it is important to understand how phages interact with and modulate the compositional landscape of these complex microbial communities. Both culture-dependent and -independent methods have been instrumental in defining individual phage-host interactions of many lactic acid bacteria (LAB). This knowledge needs to be integrated and expanded to obtain a full understanding of the overall complexity of such interactions pertinent to fermented foods through a combination of culturomics, metagenomics, and phageomics. With such knowledge, it is believed that factory-specific detection and monitoring systems may be developed to ensure robust and reliable fermentation practices. In this review, we explore/discuss phage-host interactions of LAB, the role of both virulent and temperate phages on the microbial composition, and the current knowledge of phageomes of fermented foods.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Jun-Hyeok Yu
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | | | | | - Arjen Nauta
- FrieslandCampina, Amersfoort 3800 BN, The Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|