1
|
Maney C, Sassen M, Giller KE. Are agricultural commodity production systems at risk from local biodiversity loss? Biol Lett 2024; 20:20240283. [PMID: 39288815 PMCID: PMC11407868 DOI: 10.1098/rsbl.2024.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
Compelling evidence for feedbacks between commodity crop production systems and local ecosystems has led to predictions that biodiversity loss could threaten food security. However, for this to happen agricultural production systems must both impact and depend on the same components of biodiversity. Here, we review the evidence for and against the simultaneous impacts and dependencies of eight important commodity crops on biodiversity. We evaluate the risk that pollination, pest control or biodiversity-mediated soil health maintenance services are at risk from local biodiversity loss. We find that for key species groups such as ants, bees and birds, the production of commodities including coffee, cocoa and soya bean is indeed likely to be at risk from local biodiversity loss. However, we also identify several combinations of commodity, ecosystem service and component of biodiversity that are unlikely to lead to reinforcing feedbacks and lose-lose outcomes for biodiversity and agriculture. Furthermore, there are significant gaps in the evidence both for and against a mutualism between biodiversity and agricultural commodity production, highlighting the need for more evaluation of the importance of specific biodiversity groups to agricultural systems globally.
Collapse
Affiliation(s)
- Calum Maney
- Plant Production Systems, Wageningen University, P.O. Box 430, Wageningen6700, The Netherlands
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), 219 Huntingdon Road, CambridgeCB3 0DL, UK
| | - Marieke Sassen
- Plant Production Systems, Wageningen University, P.O. Box 430, Wageningen6700, The Netherlands
| | - Ken E. Giller
- Plant Production Systems, Wageningen University, P.O. Box 430, Wageningen6700, The Netherlands
| |
Collapse
|
2
|
Wu L, Lin H, Zhang L, Kiet TQ, Liu P, Song J, Duan Y, Hu C, Yang H, Duan W, Yang X. Construction of high-quality genomes and gene catalogue for culturable microbes of sugarcane (Saccharum spp.). Sci Data 2024; 11:534. [PMID: 38789459 PMCID: PMC11126615 DOI: 10.1038/s41597-024-03379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Microbes living inside or around sugarcane (Saccharum spp.) are crucial for their resistance to abiotic and biotic stress, growth, and development. Sequences of microbial genomes and genes are helpful to understand the function of these microbes. However, there is currently a lack of such knowledge in sugarcane. Here, we combined Nanopore and Illumina sequencing technologies to successfully construct the first high-quality metagenome-assembled genomes (MAGs) and gene catalogues of sugarcane culturable microbes (GCSCMs), which contained 175 species-level genome bins (SGBs), and 7,771,501 non-redundant genes. The SGBs included 79 novel culturable bacteria genomes, and 3 bacterial genomes with nitrogen-fixing gene clusters. Four single scaffold near-complete circular MAGs (cMAGs) with 0% contamination were obtained from Nanopore sequencing data. In conclusion, we have filled a research gap in the genomes and gene catalogues of culturable microbes of sugarcane, providing a vital data resource for further understanding the genetic basis and functions of these microbes. In addition, our methodology and results can provide guidance and reference for other plant microbial genome and gene catalogue studies.
Collapse
Affiliation(s)
- Liang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Haidong Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Lijun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, 650221, China
| | - Ta Quang Kiet
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Peng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jinkang Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yong Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Chunyu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Hao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Weixing Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences / Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Guangxi Key Laboratory of Sugarcane Genetic Improvement / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, Guangxi, 530007, China.
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
3
|
Islam W, Zeng F, Ahmed Dar A, Sohail Yousaf M. Dynamics of soil biota and nutrients at varied depths in a Tamarix ramosissima-dominated natural desert ecosystem: Implications for nutrient cycling and desertification management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120217. [PMID: 38340666 DOI: 10.1016/j.jenvman.2024.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The underground community of soil organisms, known as soil biota, plays a critical role in terrestrial ecosystems. Different ecosystems exhibit varied responses of soil organisms to soil physical and chemical properties (SPCPs). However, our understanding of how soil biota react to different soil depths in naturally established population of salinity tolerant Tamarix ramosissima in desert ecosystems, remains limited. To address this, we employed High-Throughput Illumina HiSeq Sequencing to examine the population dynamics of soil bacteria, fungi, archaea, protists, and metazoa at six different soil depths (0-100 cm) in the naturally occurring T. ramosissima dominant zone within the Taklimakan desert of China. Our observations reveal that the alpha diversity of bacteria, fungi, metazoa, and protists displayed a linear decrease with the increase of soil depth, whereas archaea exhibited an inverse pattern. The beta diversity of soil biota, particularly metazoa, bacteria, and protists, demonstrated noteworthy associations with soil depths through Non-Metric Dimensional Scaling analysis. Among the most abundant classes of soil organisms, we observed Actinobacteria, Sordariomycetes, Halobacteria, Spirotrichea, and Nematoda for bacteria, fungi, archaea, protists, and metazoa, respectively. Additionally, we identified associations between the vertical distribution of dominant biotic communities and SPCPs. Bacterial changes were mainly influenced by total potassium, available phosphorus (AP), and soil water content (SWC), while fungi were impacted by nitrate (NO3-) and available potassium (AK). Archaea showed correlations with total carbon (TC) and AK thus suggesting their role in methanogenesis and methane oxidation, protists with AP and SWC, and metazoa with AP and pH. These correlations underscore potential connections to nutrient cycling and the production and consumption of greenhouse gases (GhGs). This insight establishes a solid foundation for devising strategies to mitigate nutrient cycling and GHG emissions in desert soils, thereby playing a pivotal role in the advancement of comprehensive approaches to sustainable desert ecosystem management.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec H3G1M8, Canada
| | | |
Collapse
|
4
|
Li X, Ma Y, Zhang N, Li Y, Liang Z, Luo Y, Lin L, Zhang D, He Y, Wang Z, Zhang Z, Deng Y. Whole-genome sequencing of Fusarium spp. causing sugarcane root rot on both chewing cane and sugar-making cane. STRESS BIOLOGY 2024; 4:7. [PMID: 38270818 PMCID: PMC10811303 DOI: 10.1007/s44154-023-00145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
Previously we isolated three Fusarium strains (a F. sacchari strain namely GXUF-1, and another two F. commune strains namely GXUF-2 and GXUF-3), and we verified that GXUF-3 was able to cause sugarcane root rot to the chewing cane cultivar Badila. Considering that Fusarium spp. are a group of widely distributed fungal pathogens, we tested whether these three Fusarium isolates were able to cause root rot to Badila as well as sugar-making cane cultivar (Guitang42), using a suitable inoculation method established based on infection assays using Badila. We found that the three Fusarium strains were able to cause root rot symptoms to both Badila and Guitang42, to different extents. To better investigate the potential pathogenicity mechanisms, we performed Illumina high-throughput sequencing and analyzed the whole genomic sequence data of these three Fusarium strains. The results reveal that the assembly sizes of the three Fusarium strains were in a range of 44.7-48.2 Mb, with G + C contents of 48.0-48.5%, and 14,154-15,175 coding genes. The coding genes were annotated by multiple public databases, and potential pathogenic genes were predicted using proprietary databases (such as PHI, DFVF, CAZy, etc.). Furthermore, based on evolutionary analysis of the coding sequence, we found that contraction and expansion of gene families occurred in the three Fusarium strains. Overall, our results suggest a potential risk that the root rot disease may occur to the sugar-making canes although it was initially spotted from fruit cane, and provide clues to understand the pathogenic mechanisms of Fusarium spp. causing sugarcane root rot.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Yuming Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Na Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yiming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Zhibin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yibao Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Longxin Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Dongliang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Ziting Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Zhiquan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Lin X, Yang D, Zhu Y, Qin Y, Liang T, Yang S, Tan H. Changes in root metabolites and soil microbial community structures in rhizospheres of sugarcanes under different propagation methods. Microb Biotechnol 2024; 17:e14372. [PMID: 38010721 PMCID: PMC10832567 DOI: 10.1111/1751-7915.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Root metabolites and soil microbial community structure in the rhizosphere play critical roles in crop growth. Here, we assessed the efficiency of conventional and tissue culture propagation methods in modulating the soil health and microbiota in the rhizosphere of sugarcane (Saccharum officinarum L.) plants. The seeding canes were obtained using newly planted and two-year ratooned canes propagated by conventional (CSN and CSR) or tissue culture (TCN and TCR) methods. Changes in soil fertility, root metabolites and soil microbial community structure in the rhizosphere of sugarcane plants obtained using these canes were assessed. The activities of soil β-glucosidase and aminopeptidase, soil microbial biomass nitrogen, and abundances of soil beneficial microbes, both at phyla and genera levels, were significantly higher in the rhizosphere of sugarcane plants in TCN and TCR treatments than those in that of plants in CSN and CSR treatments. Furthermore, flavonoid and flavonol biosynthesis and alanine, aspartate and glutamate metabolism were significantly upregulated in the roots of TCR and TCN plants compared with those in the roots of CSN and CSR plants. These results suggest that the tissue culture propagation method is a sustainable method for sugarcane cultivation to improve soil fertility and health in sugarcane rhizosphere.
Collapse
Affiliation(s)
- Xinru Lin
- Agricultural College, Guangxi Key Laboratory of Agro‐environment and Agro‐products SafetyNational Demonstration Center for Experimental Plant Science Education Guangxi UniversityNanningGuangxiP. R. China
| | - Da Yang
- Agricultural College, Guangxi Key Laboratory of Agro‐environment and Agro‐products SafetyNational Demonstration Center for Experimental Plant Science Education Guangxi UniversityNanningGuangxiP. R. China
| | - Yu Zhu
- Agricultural College, Guangxi Key Laboratory of Agro‐environment and Agro‐products SafetyNational Demonstration Center for Experimental Plant Science Education Guangxi UniversityNanningGuangxiP. R. China
| | - Yonglin Qin
- Agricultural College, Guangxi Key Laboratory of Agro‐environment and Agro‐products SafetyNational Demonstration Center for Experimental Plant Science Education Guangxi UniversityNanningGuangxiP. R. China
| | - Tian Liang
- Guangxi Key Laboratory of Sugarcane Genetic ImprovementGuangxi Academy of Agricultural SciencesNanningGuangxiP. R. China
| | - Shangdong Yang
- Agricultural College, Guangxi Key Laboratory of Agro‐environment and Agro‐products SafetyNational Demonstration Center for Experimental Plant Science Education Guangxi UniversityNanningGuangxiP. R. China
| | - Hongwei Tan
- Guangxi Key Laboratory of Sugarcane Genetic ImprovementGuangxi Academy of Agricultural SciencesNanningGuangxiP. R. China
| |
Collapse
|
6
|
Wang Y, Li J, Li M, Jia X, Cai Y, Hu M, Zhang Q, Cheng P, Lin S, Lin W, Wang H, Wu Z. Effect of continuous planting on Casuarina equisetifolia rhizosphere soil physicochemical indexes, microbial functional diversity and metabolites. FRONTIERS IN PLANT SCIENCE 2023; 14:1288444. [PMID: 38155858 PMCID: PMC10752937 DOI: 10.3389/fpls.2023.1288444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Continuous planting has a severe impact on the growth of Casuarina equisetifolia. In this study, the effects of three different long-term monocultures (one, two and three replanting) on the physicochemical indexes, microbial functional diversity, and soil metabolomics were analyzed in C. equisetifolia rhizosphere soil. The results showed that rhizosphere soil organic matter content, cation exchange capacity, total and available nitrogen, total and available phosphorus, and total and available potassium contents significantly decreased with the increasing number of continuous plantings. The evaluation of microbial functional diversity revealed a reduction in the number of soil microorganisms that rely on carbohydrates for carbon sources and an increase in soil microorganisms that used phenolic acid, carboxylic acid, fatty acid, and amines as carbon sources. Soil metabolomics analysis showed a significant decrease in soil carbohydrate content and a significant accumulation of autotoxic acid, amine, and lipid in the C. equisetifolia rhizosphere soil. Consequently, the growth of C. equisetifolia could hinder total nutrient content and their availability. Thus, valuable insights for managing the cultivation of C. equisetifolia and soil remediation were provided.
Collapse
Affiliation(s)
- Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianjuan Li
- Editorial Department, Fujian Academy of Forestry Survey and Planning, Fuzhou, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhong Cai
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingxu Zhang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Longyan University, Longyan, China
| | - Zeyan Wu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Wang Y, Lin S, Li J, Jia X, Hu M, Cai Y, Cheng P, Li M, Chen Y, Lin W, Wang H, Wu Z. Metagenomics-based exploration of key soil microorganisms contributing to continuously planted Casuarina equisetifolia growth inhibition and their interactions with soil nutrient transformation. FRONTIERS IN PLANT SCIENCE 2023; 14:1324184. [PMID: 38126014 PMCID: PMC10731376 DOI: 10.3389/fpls.2023.1324184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Casuarina equisetifolia (C. equisetifolia) is an economically important forest tree species, often cultivated in continuous monoculture as a coastal protection forest. Continuous planting has gradually affected growth and severely restricted the sustainable development of the C. equisetifolia industry. In this study, we analyzed the effects of continuous planting on C. equisetifolia growth and explored the rhizosphere soil microecological mechanism from a metagenomic perspective. The results showed that continuous planting resulted in dwarfing, shorter root length, and reduced C. equisetifolia seedling root system. Metagenomics analysis showed that 10 key characteristic microorganisms, mainly Actinoallomurus, Actinomadura, and Mycobacterium, were responsible for continuously planted C. equisetifolia trees. Quantitative analysis showed that the number of microorganisms in these three genera decreased significantly with the increase of continuous planting. Gene function analysis showed that continuous planting led to the weakening of the environmental information processing-signal transduction ability of soil characteristic microorganisms, and the decrease of C. equisetifolia trees against stress. Reduced capacity for metabolism, genetic information processing-replication and repair resulted in reduced microbial propagation and reduced microbial quantity in the rhizosphere soil of C. equisetifolia trees. Secondly, amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins were all significantly reduced, resulting in a decrease in the ability of the soil to synthesize and metabolize carbon and nitrogen. These reduced capacities further led to reduced soil microbial quantity, microbial carbon and nitrogen, microbial respiration intensity, reduced soil enzyme nutrient cycling and resistance-related enzyme activities, a significant reduction in available nutrient content of rhizosphere soils, a reduction in the ion exchange capacity, and an impediment to C. equisetifolia growth. This study provides an important basis for the management of continuously planted C. equisetifolia plantations.
Collapse
Affiliation(s)
- Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Jianjuan Li
- Editorial Department, Fujian Academy of Forestry Survey and Planning, Fuzhou, China
| | - Xiaoli Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mingyue Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhong Cai
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan, China
| | - Yiling Chen
- College of Life Science, Longyan University, Longyan, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Zeyan Wu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Islam W, Ullah A, Zeng F. Response of total belowground soil biota in Alhagi sparsifolia monoculture at different soil vertical profiles in desert ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166027. [PMID: 37541502 DOI: 10.1016/j.scitotenv.2023.166027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
The soil organisms are extremely important for the land-based ecosystem. There is a growing interest in studying the variety and composition of the entire underground soil organism community at a large ecological scale. Soil organisms show different patterns in relation to soil physiochemical properties (SPPs) in various ecosystems. However, there is limited knowledge regarding their response to soil vertical profiles (SVPs) in monoculture of Alhagi sparsifolia, which is the primary shrub in the deserts of China, and is well-known for its contributions to sand dune stabilization, traditional Chinese medicine, and forage. Here, we investigated the population dynamics of soil bacteria, fungi, archaea, protists and metazoa across six different SVPs ranging from 0 to 100 cm in monoculture of A. sparsifolia, in its natural desert ecosystem. Our findings indicate that the soil biota communities displayed a declining pattern in the alpha diversity of bacteria, protists, and metazoa with an increase in soil depth. However, the opposite trend was observed for fungi and archaea. The beta diversity of soil biota was significantly affected by SVPs, particularly for metazoa, fungi and protists as revealed by Non-Metric Dimensional Scaling. The most prevalent soil bacterial, fungal, archaeal, protist, and metazoa classes were Actinobacteria, Sordariomycetes, Nitrososphaeria, Filosa-Sarcomonadea, and Nematoda, respectively. The correlation among vertical distribution of the most abundant biotic communities and variations in SPPs exhibited that the variations in total carbon (TC) and total nitrogen (TN) had the most significant influence on bacterial changes, while available potassium (AK) had an impact on fungi. Archaea were affected by TC and pH, protists by the C/N-Ratio and TP, and metazoa by TN, AK, and soil water capacity (SWC). Collectively, our findings provide a new perspective on the vertical distribution and distinct response patterns of soil biota in A. sparsifolia monoculture under natural desert ecosystem of China.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Chen L, Shi Y, Wang S, Sun M, Wang M, Ren X, Gao Z, Zhou Y, Zhang J, Zhuang W, Su X, Fu Y, Wu M. Temperature and phosphorus: the main environmental factors affecting the seasonal variation of soil bacterial diversity in Nansi Lake Wetland. Front Microbiol 2023; 14:1169444. [PMID: 37455734 PMCID: PMC10348425 DOI: 10.3389/fmicb.2023.1169444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The soil bacteria promote the circulation conversion of lake nutrients and play an important role in maintaining the balance of the lake ecosystem. Few studies have investigated the association of seasonal variation in bacteria and environmental factors in inland freshwater lake wetlands. Nansi Lake is a large shallow freshwater lake in northern China. It is an important hub of the eastern route of the South-to-North Water Diversion Project. Methods In this study, bacterial 16S rRNA genes were used to analyze the variation of soil bacterial community diversity in Nansi Lake Wetland and its influencing factors in different seasons. Results It is showed that the phylum, family, and genus with the largest relative abundance in the soil of Nansi Lake Wetland are Proteobacteria, Nitrosomonadaceae, and MND1, respectively. There were significant seasonal differences in soil bacterial diversity in Nansi Lake Wetland, which was significantly higher in summer than in winter. Seasonal variation in environmental factors was significantly correlated with the variation in bacterial communities. Temperature and the content of available phosphorus may be the key factors influencing seasonal variation in bacterial diversity. Discussion The results of this study further enhance our understanding of the relationship between bacterial community diversity and environmental factors in the lake wetland ecosystem, which can provide scientific data for the conservation of Nansi Lake Wetland.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yuying Shi
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Shen Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Mengyao Sun
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Meng Wang
- Lunan Geo-Engineering Exploration Institute of Shandong Province, Yanzhou, Shandong, China
| | - Xiaoyue Ren
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Zenghao Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yiping Zhou
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jie Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Weijing Zhuang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xinyue Su
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yongchao Fu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Mengmeng Wu
- Shandong Freshwater Fisheries Research Institute, Jinan, Shandong, China
| |
Collapse
|
10
|
Brozel VS. Special Issue "Microbial Interactions in Soil": Editorial. Microorganisms 2023; 11:1260. [PMID: 37317234 DOI: 10.3390/microorganisms11051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Soils are home to a wide variety of microorganisms [...].
Collapse
Affiliation(s)
- Volker S Brozel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| |
Collapse
|
11
|
Yao J, Wu C, Fan L, Kang M, Liu Z, Huang Y, Xu X, Yao Y. Effects of the Long-Term Continuous Cropping of Yongfeng Yam on the Bacterial Community and Function in the Rhizospheric Soil. Microorganisms 2023; 11:microorganisms11020274. [PMID: 36838239 PMCID: PMC9959641 DOI: 10.3390/microorganisms11020274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Replant disease caused by continuous cropping commonly occurs in yam with consecutive monoculture. However, little is known about how the continuous cropping of yam affects the rhizospheric soil bacterial community structure. In this study, the effects of continuous cropping on rhizospheric soil characteristics, bacterial diversity, and community structure were investigated in the Yongfeng yam fields under monoculture for 1, 5, 10, 15, and 20 years. Long-term monoculture caused soil acidification and increased the concentration of available potassium (AK) and available phosphorus (AP), and soil bacterial richness, but decreased the soil bacterial diversity. An exception was for the field under monoculture for 20 years as it showed the highest bacterial diversity. The relative abundance of beneficial bacteria, such as Proteobacteria, Actinobacteria, and Chloroflexi decreased while the relative abundance of harmful bacteria, including Gemmatimonadetes and Acidobacteria, increased with an extended continuous cultivation time. The networks varied among yams with different cultivation years and became complex with the increase in cultivation years. However, after time in monoculture, the bacterial network decreased gradually and existed stably. These changes in bacterial community composition and co-occurrence of networks may increase the potential risk of soil-borne disease and reduce the yield and quality of Yongfeng yam.
Collapse
Affiliation(s)
- Jian Yao
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Caiyun Wu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Linjuan Fan
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Meihua Kang
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Zirong Liu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yuhui Huang
- Ji’an Institute of Agricultural Sciences, Ji’an, 343103, China
| | - Xueliang Xu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
- Correspondence: (X.X.); (Y.Y.)
| | - Yingjuan Yao
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
- Correspondence: (X.X.); (Y.Y.)
| |
Collapse
|
12
|
Li X, Liu Y, Wang Z, Yang C, Zhang R, Luo Y, Ma Y, Deng Y. Microbiome analysis and biocontrol bacteria isolation from rhizosphere soils associated with different sugarcane root rot severity. Front Bioeng Biotechnol 2022; 10:1062351. [PMID: 36588942 PMCID: PMC9802638 DOI: 10.3389/fbioe.2022.1062351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
To explore the causal pathogen and the correlated rhizosphere soil microecology of sugarcane root rot, we sampled the sugarcane root materials displaying different disease severity, and the corresponding rhizosphere soil, for systematic root phenotype and microbial population analyses. We found that with increased level of disease severity reflected by above-ground parts of sugarcane, the total root length, total root surface area and total volume were significantly reduced, accompanied with changes in the microbial population diversity and structure in rhizosphere soil. Fungal community richness was significantly lower in the rhizosphere soil samples from mildly diseased plant than that from either healthy plant, or severely diseased plant. Particularly, we noticed that a peculiar decrease of potential pathogenic fungi in rhizosphere soil, including genera Fusarium, Talaromyces and Neocosmospora, with increased level of disease severity. As for bacterial community, Firmicutes was found to be of the highest level, while Acidobacteria and Chloroflexi of the lowest level, in rhizosphere soil from healthy plant compared to that from diseased plant of different severity. FUNGuild prediction showed that the proportion of saprophytic fungi was higher in the rhizosphere soil of healthy plants, while the proportion of pathogenic fungi was higher in the rhizosphere soil of diseased plants. By co-occurrence network analysis we demonstrated the Bacillus and Burkholderia were in a strong interaction with Fusarium pathogen(s). Consistently, the biocontrol and/or growth-promoting bacteria isolated from the rhizosphere soil were mostly (6 out of 7) belonging to Bacillus and Burkholderia species. By confrontation culture and pot experiments, we verified the biocontrol and/or growth-promoting property of the isolated bacterial strains. Overall, we demonstrated a clear correlation between sugarcane root rot severity and rhizosphere soil microbiome composition and function, and identified several promising biocontrol bacteria strains with strong disease suppression effect and growth-promoting properties.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yue Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- Laboratory of Crop Physiology and Field Ecology, Northwest A&F University, Yangling, China
| | - Ziting Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Chenglong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Runzhi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yibao Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yuming Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Wang G, Ren Y, Bai X, Su Y, Han J. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3200. [PMID: 36501240 PMCID: PMC9740990 DOI: 10.3390/plants11233200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Medicinal plants (MPs) are important resources widely used in the treatment and prevention of diseases and have attracted much attention owing to their significant antiviral, anti-inflammatory, antioxidant and other activities. However, soil degradation, caused by continuous cropping, excessive chemical fertilizers and pesticide residues and heavy metal contamination, seriously restricts the growth and quality formation of MPs. Microorganisms, as the major biota in soil, play a critical role in the restoration of the land ecosystem. Rhizosphere microecology directly or indirectly affects the growth and development, metabolic regulation and active ingredient accumulation of MPs. Microbial resources, with the advantages of economic efficiency, harmless to environment and non-toxic to organisms, have been recommended as a promising alternative to conventional fertilizers and pesticides. The introduction of beneficial microbes promotes the adaptability of MPs to adversity stress by enhancing soil fertility, inhibiting pathogens and inducing systemic resistance. On the other hand, it can improve the medicinal quality by removing soil pollutants, reducing the absorption and accumulation of harmful substances and regulating the synthesis of secondary metabolites. The ecological and economic benefits of the soil microbiome in agricultural practices are increasingly recognized, but the current understanding of the interaction between soil conditions, root exudates and microbial communities and the mechanism of rhizosphere microecology affecting the secondary metabolism of MPs is still quite limited. More research is needed to investigate the effects of the microbiome on the growth and quality of different medicinal species. Therefore, the present review summarizes the main soil issues in medicinal plant cultivation, the functions of microbes in soil remediation and plant growth promotion and the potential mechanism to further guide the use of microbial resources to promote the ecological cultivation and sustainable development of MPs.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
14
|
Double-interpenetrating nanostructured networks of marine polysaccharides possessing properties comparable to synthetic polymers. Proc Natl Acad Sci U S A 2022; 119:e2204073119. [PMID: 36215498 PMCID: PMC9586260 DOI: 10.1073/pnas.2204073119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sustainable circular economy requires materials that possess a property profile comparable to synthetic polymers and, additionally, processing and sourcing of raw materials that have a small environmental footprint. Here, we present a paradigm for processing marine biopolymers into materials that possess both elastic and plastic behavior within a single system involving a double-interpenetrating polymer network comprising the elastic phase of dynamic physical cross-links and stress-dissipating ionically cross-linked domains. As a proof of principle, films possessing more than twofold higher elastic modulus, ultimate tensile strength, and yield stress than those of polylactic acid were realized by blending two water-soluble marine polysaccharides, namely alginic acid (Alg) with physically cross-linkable carboxylated agarose (CA) followed by ionic cross-linking with a divalent cation. Dried CAAlg films showed homogeneous nano-micro-scale domains, with yield stress and size of the domains scaling inversely with calcium concentration. Through surface activation/cross-linking using calcium, CAAlg films could be further processed using wet bonding to yield laminated structures with interfacial failure loads (13.2 ± 0.81 N) similar to the ultimate loads of unlaminated films (10.09 ± 1.47 N). Toward the engineering of wood-marine biopolymer composites, an array of lines of CAAlg were printed on wood veneers (panels), dried, and then bonded following activation with calcium to yield fully bonded wood two-ply laminate. The system presented herein provides a blueprint for the adoption of marine algae-derived polysaccharides in the development of sustainable high-performance materials.
Collapse
|
15
|
Ni H, Zong R, Sun J, Wu Y, Yu L, Liu Y, Liu J, Ju R, Sun X, Zheng Y, Tan L, Liu L, Dong Y, Li T, Zhang Y, Tu Q. Response of Bacterial Community to the Occurrence of Clubroot Disease in Chinese Cabbage. Front Microbiol 2022; 13:922660. [PMID: 35875525 PMCID: PMC9298529 DOI: 10.3389/fmicb.2022.922660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Clubroot disease is a common soilborne disease caused by Plasmodiophora brassicas Wor. and widely occurs in Chinese cabbage. Soil microorganisms play vital roles in the occurrence and development of plant diseases. The changes in the soil bacterial community could indicate the severity of plant disease and provide the basis for its control. This study focused on the bacterial community of the clubroot disease-infected soil-root system with different severity aiming to reveal the composition and structure of soil bacteria and identified potential biomarker bacteria of the clubroot disease. In the clubroot disease-infected soil, the bacterial community is mainly composed of Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacilli, Thermolrophilia, Bacteroidia, Gemmatimonadetes, Subgroup_6, Deltaproteobacteria, KD4-96, and some other classes, while the major bacterial classes in the infected roots were Oxyphotobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacilli, Bacteroidia, Saccharimonadia, Thermoleophilia, Clostridia, Chloroflexia, and some other classes. The severe clubroot disease soil-root system was found to possess a poorer bacterial richness, evenness, and better coverage. Additionally, a significant difference was observed in the structure of the bacterial community between the high-severity (HR) and healthy (LR) soil-root system. Bacillus asahii and Noccaea caerulescens were identified as the differential bacteria between the LR and HR soil and roots, respectively. pH was demonstrated as a vital factor that was significantly associated with the abundance of B. asahii and N. caerulescens. This study provides novel insight into the relationship between soil bacteria and the pathogen of clubroot disease in Chinese cabbage. The identification of resistant species provides candidates for the monitoring and biocontrol of the clubroot disease.
Collapse
Affiliation(s)
- Haiping Ni
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China.,Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Rui Zong
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Jianjun Sun
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yuxia Wu
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China.,Shandong Agricultural Technology Extension Center, Jinan, China
| | - Lei Yu
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Yuanyuan Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Jin Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Ruicheng Ju
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Xianli Sun
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yulian Zheng
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Lekun Tan
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Lumin Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yachao Dong
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tao Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China.,Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiang Tu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
16
|
Khan A, Jiang H, Bu J, Adnan M, Gillani SW, Zhang M. An insight to rhizosphere bacterial community composition and structure of consecutive winter-initiated sugarcane ratoon crop in Southern China. BMC PLANT BIOLOGY 2022; 22:74. [PMID: 35183114 PMCID: PMC8857817 DOI: 10.1186/s12870-022-03463-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ratooning in sugarcane is a crucial strategy for ensuring the long-term sustainability of the sugarcane industry. Knowledge gap relating to the interaction between rhizosphere microbiome and ratooning crop, particularly the impact of different sugarcane cultivars on the rhizosphere microbiome in consecutive ratooning, requires additional research. The response of two different sugarcane cultivars, viz ZZ-1 and ZZ-13, were evaluated in consecutive ratooning towards the rhizosphere microbial community and cane morphological characters. RESULTS Significant changes in the rhizosphere microbiome were observed in the second ratooning over the years. Several important genera were observed in high abundance during the second ratooning, including Burkholderia, Sphingomonas, Bradyzhizobium, and Acidothermus. Cultivar ZZ-13 caused more alterations in the rhizosphere microbiome than ZZ-1, resulting in a more favorable rhizosphere environment for sugarcane growth. The genotypes also varied in terms of nutrients and enzyme activity over the years. There were significant differences between the genotypes and year for number of stalks and yield was significant for genotypes, years and genotype × year. CONCLUSION This finding will help to understand thorough interactions between rhizosphere microorganisms and ratoon sugarcane and lay the foundation for promoting and maximizing yield as far as possible. In the future, this work can serve as guidance in sugarcane husbandry, mainly in Guangxi, China.
Collapse
Affiliation(s)
- Abdullah Khan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Hongtao Jiang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Junyao Bu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Muhammad Adnan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Syeda Wajeeha Gillani
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China.
| |
Collapse
|