1
|
Chen N, Liu X, Wang L, Yu H, Liu F, Yuan M, Wang Q, Zhang T, Zhou X, Wang H, Ji Z, Shen H. Prohibitins in infection: potential therapeutic targets. Future Microbiol 2025; 20:345-355. [PMID: 39881489 PMCID: PMC11938962 DOI: 10.1080/17460913.2025.2459530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Prohibitins (PHBs) are members of a highly conserved family of proteins, including prohibitin1 and prohibitin2. These proteins are predominantly localized in mitochondria, the nucleus, and cell membranes, where they play critical roles in mitochondrial biogenesis, apoptosis, immune regulation, and other biological processes. Recent studies have demonstrated that both PHB1 and PHB2 can act as a complex or independently to participate in the pathogen infection process. This review focuses on the regulatory roles of PHB1 and PHB2 in viral, bacterial, parasitic and fungal infections, providing a theoretical basis and innovative perspectives for a comprehensive understanding of the roles and mechanisms of PHB1 and PHB2 in the regulation of microbial infections. Due to exerting multiple functions, PHB proteins have been recognized as a potential target for therapeutic interventions, with the expectation that targeting PHB proteins will provide new strategies for the treatment of infection-related diseases.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaolan Liu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Lulu Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Hui Yu
- Cardiothoracic surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Fangqian Liu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Mengran Yuan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Qimeng Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Tianyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaoxiang Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Hua Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| | - Zengjun Ji
- Department of Laboratory Medicine, Taizhou Second People’s Hospital, Taizhou, P. R. China
| | - Hongxing Shen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
2
|
Kim H, Heredia MY, Chen X, Ahmed M, Qasim M, Callender TL, Hernday AD, Rauceo JM. Mitochondrial targeting of Candida albicans SPFH proteins and requirement of stomatins for SDS-induced stress tolerance. Microbiol Spectr 2025; 13:e0173324. [PMID: 39641539 PMCID: PMC11705831 DOI: 10.1128/spectrum.01733-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast Candida albicans, stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and SLP3 overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, H2O2. Here, we sought to determine the cellular localization and functionally characterize stomatin-like protein 2 (Slp2), prohibitin-1 (Phb1), prohibitin-2 (Phb2), and prohibitin-12 (Phb12) in C. albicans. Cytological and western blotting results showed that Slp2-Gfp/Rfp and prohibitin-Gfp fusion proteins localize to the mitochondrion in yeast cells. Growth assay results did not identify any respiration defects in a panel of stomatin and prohibitin mutant strains, suggesting that SPFH respiratory function has diverged in C. albicans from other model eukaryotes. However, a slp2Δ/Δ/slp3Δ/Δ double mutant strain grew poorly in the presence of 0.08% SDS, accumulated intracellular reactive oxidative species, and displayed aberrant ergosterol distribution in the plasma membrane. These phenotypes were not observed in slp2Δ/Δ or slp3Δ/Δ single mutants, indicating a possible indirect genetic interaction between SLP2 and SLP3. In addition, slp2Δ/Δ and slp2Δ/Δ/slp3Δ/Δ mutant strains were slightly resistant to the antifungal drug, fluconazole. Collectively, these findings reveal the cellular localization of Slp2, Phb1, Phb2, and Phb12, highlight the significance of stomatins in C. albicans SDS stress tolerance, and, for the first time, associate stomatins with antifungal resistance. IMPORTANCE Stomatins and prohibitins coordinate respiration and stress adaptation in fungi. Invasive mycoses caused by Candida albicans are a significant cause of morbidity, and candidemia patients show high mortality rates worldwide. Mitochondria are essential for C. albicans commensalism and virulence, and mitochondrial proteins are targets for antifungal interventions. C. albicans encodes five SPFH proteins: two stomatin-like proteins and three prohibitins. We have previously shown that Slp3 is important for C. albicans adaptation to various types of environmental stress. Moreover, synthetic compounds that bind to mammalian prohibitins inhibit C. albicans filamentation and are fungicidal. However, there is limited information available regarding the remaining SPFH proteins. Our findings show that mitochondrial localization of SPFH proteins is conserved in C. albicans. In addition, we demonstrate the importance of stomatins in plasma membrane and mitochondrial stress tolerance.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Marienela Y. Heredia
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Xiao Chen
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Maisha Ahmed
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Tracy L. Callender
- Department of Biology, Farmingdale State College of the State University of New York, Farmingdale, New York, USA
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
3
|
Valderrama V, Sánchez P, Delso M, Díaz-Dosque M, Escobar A, Budini M, Catalán M, Vivar R, López-Muñoz R, Jara JA, Molina-Berríos A. Gallic acid triphenylphosphonium derivatives TPP+-C10 and TPP+-C12 inhibit mitochondrial function in Candida albicans exerting antifungal and antibiofilm effects. J Appl Microbiol 2024; 135:lxad316. [PMID: 38148145 DOI: 10.1093/jambio/lxad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
AIMS To evaluate the antifungal and antibiofilm activity of gallic acid derivatives TPP+-C10 and TPP+-C12 and their effects on mitochondrial function on two Candida albicans reference strains (ATCC 90029 and ATCC 10231). METHODS AND RESULTS First, we determined minimal inhibitory concentration (MIC) using a microdilution assay. Both compounds exerted antifungal effects, and their MICs ranged from 3.9 to 13 µM, with no statistically significant differences between them (P > 0.05, t-test). These concentrations served as references for following assays. Subsequently, we measured oxygen consumption with a Clark electrode. Our observations revealed that both drugs inhibited oxygen consumption in both strains with TPP+-C12 exerting a more pronounced inhibitory effect. We then employed flow cytometry with TMRE as a probe to assess mitochondrial membrane potential. For each strain assayed, the compounds induced a decay in transmembrane potential by 75%-90% compared to the control condition (P < 0.05, ANOVA). Then, we measured ATP levels using a commercial kit. TPP+-C12 showed a 50% decrease of ATP content (P < 0.05 ANOVA), while TPP+-C10 exhibited a less pronounced effect. Finally, we assessed the antibiofilm effect using the MTT reduction assay. Both compounds were effective, but TPP+-C12 displayed a greater potency, requiring a lower concentration to inhibit 50% of biofilms viability (P < 0.05, t-test). CONCLUSIONS Derivatives of gallic acid linked to a TPP+ group exert antifungal and antibiofilm activity through impairment of mitochondrial function in C. albicans.
Collapse
Affiliation(s)
- Victoria Valderrama
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Paula Sánchez
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Macarena Delso
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Mario Díaz-Dosque
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Alejandro Escobar
- Laboratory of Cellular Biology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Mauricio Budini
- Cellular and Molecular Pathology Laboratory, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - Raúl Vivar
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - José A Jara
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| | - Alfredo Molina-Berríos
- Laboratory of Applied Pharmacology for the Development of Anticancer and Antifungal Drugs, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Santiago, 8380544, Chile
| |
Collapse
|
4
|
Conrad KA, Kim H, Qasim M, Djehal A, Hernday AD, Désaubry L, Rauceo JM. Triazine-Based Small Molecules: A Potential New Class of Compounds in the Antifungal Toolbox. Pathogens 2023; 12:126. [PMID: 36678474 PMCID: PMC9861074 DOI: 10.3390/pathogens12010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections caused by Candida species remain a significant public health problem worldwide. The increasing prevalence of drug-resistant infections and a limited arsenal of antifungal drugs underscore the need for novel interventions. Here, we screened several classes of pharmacologically active compounds against mammalian diseases for antifungal activity. We found that the synthetic triazine-based compound melanogenin (Mel) 56 is fungicidal in Candida albicans laboratory and clinical strains with minimal inhibitory concentrations of 8−16 µg/mL. Furthermore, Mel56 has general antifungal activity in several non-albicans Candida species and the non-pathogenic yeast Saccharomyces cerevisiae. Surprisingly, Mel56 inhibited the yeast-to-hyphae transition at sublethal concentrations, revealing a new role for triazine-based compounds in fungi. In human cancer cell lines, Mel56 targets the inner mitochondrial integral membrane prohibitin proteins, PHB1 and PHB2. However, Mel56 treatment did not impact C. albicans mitochondrial activity, and antifungal activity was similar in prohibitin single, double, and triple homozygous mutant strains compared to the wild-type parental strain. These results suggests that Mel56 has a novel mechanism-of-action in C. albicans. Therefore, Mel56 is a promising antifungal candidate warranting further analyses.
Collapse
Affiliation(s)
- Karen A. Conrad
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| | - Hyunjeong Kim
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Amel Djehal
- Higher National School of Biotechnology of Constantine, Constantine 25100, Algeria
- Laboratory of Regenerative Nanomedicine, Center of Research and Biomedicine, University of Strasbourg, 67000 Strasbourg, France
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Laurent Désaubry
- Laboratory of Regenerative Nanomedicine, Center of Research and Biomedicine, University of Strasbourg, 67000 Strasbourg, France
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| |
Collapse
|