1
|
Oda Y, Nelson WC, Alexander WG, Nguyen S, Egbert RG, Harwood CS. A Rhodopseudomonas strain with a substantially smaller genome retains the core metabolic versatility of its genus. Appl Environ Microbiol 2025; 91:e0205624. [PMID: 40062894 PMCID: PMC12016538 DOI: 10.1128/aem.02056-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/14/2025] [Indexed: 04/24/2025] Open
Abstract
Rhodopseudomonas are a group of phototrophic microbes with a marked metabolic versatility and flexibility that underpins their potential use in the production of value-added products, bioremediation, and plant growth promotion. Members of this group have an average genome size of about 5.5 Mb, but two closely related strains have genome sizes of about 4.0 Mb. To identify the types of genes missing in a reduced genome strain, we compared strain DSM127 with other Rhodopseudomonas isolates at the genomic and phenotypic levels. We found that DSM127 can grow as well as other members of the Rhodopseudomonas genus and retains most of their metabolic versatility, but it has many fewer genes associated with high-affinity transport of nutrients, iron uptake, nitrogen metabolism, and biodegradation of aromatic compounds. This analysis indicates genes that can be deleted in genome reduction campaigns and suggests that DSM127 could be a favorable choice for biotechnology applications using Rhodopseudomonas or as a strain that can be engineered further to reside in a specialized natural environment.IMPORTANCERhodopseudomonas are a cohort of phototrophic bacteria with broad metabolic versatility. Members of this group are present in diverse soil and water environments, and some strains are found associated with plants and have plant growth-promoting activity. Motivated by the idea that it may be possible to design bacteria with reduced genomes that can survive well only in a specific environment or that may be more metabolically efficient, we compared Rhodopseudomonas strains with typical genome sizes of about 5.5 Mb to a strain with a reduced genome size of 4.0 Mb. From this, we concluded that metabolic versatility is part of the identity of the Rhodopseudomonas group, but high-affinity transport genes and genes of apparent redundant function can be dispensed with.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - William C. Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Stella Nguyen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Robert G. Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Morrison HM, Bose A. Purple non-sulfur bacteria for biotechnological applications. J Ind Microbiol Biotechnol 2024; 52:kuae052. [PMID: 39730143 PMCID: PMC11730080 DOI: 10.1093/jimb/kuae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 12/29/2024]
Abstract
In this review, we focus on how purple non-sulfur bacteria can be leveraged for sustainable bioproduction to support the circular economy. We discuss the state of the field with respect to the use of purple bacteria for energy production, their role in wastewater treatment, as a fertilizer, and as a chassis for bioplastic production. We explore their ability to serve as single-cell protein and production platforms for fine chemicals from waste materials. We also introduce more Avant-Garde technologies that leverage the unique metabolisms of purple bacteria, including microbial electrosynthesis and co-culture. These technologies will be pivotal in our efforts to mitigate climate change and circularize the economy in the next two decades. ONE-SENTENCE SUMMARY Purple non-sulfur bacteria are utilized for a range of biotechnological applications, including the production of bio-energy, single cell protein, fertilizer, bioplastics, fine chemicals, in wastewater treatment and in novel applications like co-cultures and microbial electrosynthesis.
Collapse
Affiliation(s)
- Hailee M Morrison
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Hao T, Xu Y, Liang C, Peng X, Yu S, Peng L. Establishing an efficient membrane bioreactor for simultaneous pollutant removal and purple bacteria production under salinity stress. CHEMOSPHERE 2024; 353:141535. [PMID: 38403121 DOI: 10.1016/j.chemosphere.2024.141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.
Collapse
Affiliation(s)
- Tianqi Hao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Xiaoshuai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
4
|
Zeng Y, Wang M, Yu Y, Wang L, Cui L, Li C, Liu Y, Zheng Y. Rice N-biofertilization by inoculation with an engineered photosynthetic diazotroph. World J Microbiol Biotechnol 2024; 40:136. [PMID: 38499730 DOI: 10.1007/s11274-024-03956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Photosynthetic diazotrophs expressing iron-only (Fe-only) nitrogenase can be developed into a promising biofertilizer, as it is independent on the molybdenum availability in the soil. However, the expression of Fe-only nitrogenase in diazotrophs is repressed by the fixed nitrogen of the soil, limiting the efficiency of nitrogen fixation in farmland with low ammonium concentrations that are inadequate for sustainable crop growth. Here, we succeeded in constitutively expressing the Fe-only nitrogenase even in the presence of ammonium by controlling the transcription of Fe-only nitrogenase gene cluster (anfHDGK) with the transcriptional activator of Mo nitrogenase (NifA*) in several different ways, indicating that the engineered NifA* strains can be used as promising chassis cells for efficient expression of different types of nitrogenases. When applied as a biofertilizer, the engineered Rhodopseudomonas palustris effectively stimulated rice growth, contributing to the reduced use of chemical fertilizer and the development of sustainable agriculture.
Collapse
Affiliation(s)
- Yan Zeng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Mengmei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunkai Yu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, China
| | - Lida Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, China
| | - Lingwei Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Agriculture, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
5
|
Lo SC, Tsai SY, Chang WH, Wu IC, Sou NL, Hung SHW, Chiang EPI, Huang CC. Characterization of the Pyrroloquinoline Quinone Producing Rhodopseudomonas palustris as a Plant Growth-Promoting Bacterium under Photoautotrophic and Photoheterotrophic Culture Conditions. Int J Mol Sci 2023; 24:14080. [PMID: 37762380 PMCID: PMC10531626 DOI: 10.3390/ijms241814080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.
Collapse
Affiliation(s)
- Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Shang-Yieng Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Wei-Hsiang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - I-Chen Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Nga-Lai Sou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
| | - Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
6
|
Khuong NQ, Trong ND, Quang LT, Xuan LNT, Phong NT. The potency of a liquid biofertilizer containing bacterial strains of Rhodopseudomonas spp. on recovery of soil properties damaged by Al 3+ and Fe 2+ toxins and enhancement of rice yield in acid sulfate soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:535-545. [PMID: 37668058 DOI: 10.1080/15226514.2023.2253913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In the Mekong Delta Vietnam, rice is heavily affected by Al3+ and Fe2+ ions appearing in local acid sulfate soils (AAS). Therefore, the current study was carried out to assess the efficacy of a liquid biofertilizer (LB) containing nitrogen-fixing and phosphorus-solubilizing bacterial strains of Rhodopseudomonas spp. on remediation of soil characteristics and improvements of rice uptakes, growth, and yield. The experiment was designed in a randomized block design with nine treatments and four replications in an ASS. The results have shown that the LB application could contribute to the remediation of soil properties, including an increase in concentrations of NH4+ by 12.9%-19.4%, soluble P by 25.7%-42.6%, total N uptake by 40.7-64.0 kg ha-1 and total P uptake by 5.60-12.6 kg ha-1, and a decrease in concentrations of toxins, such as Al3+ by 12.1%-19.7% and Fe2+ by 16.6%-19.0%, compared to the treatment with the farmer-based fertilization. Thereby, grain yield was improved by 31.9%-32.2% with the LB versus the treatments without the bacteria and by 9.5%-11.1% compared to the commercial biofertilizer treatments. The application of LB reduced 25% N and 50% P of the recommendation versus the farmers' fertilization and improved performance of rice growth and yield cultivated on ASS which suffered from Al3+ and Fe2+ ions.
Collapse
Affiliation(s)
- Nguyen Quoc Khuong
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Nguyen Duc Trong
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Le Thanh Quang
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Ly Ngoc Thanh Xuan
- Experimental and Practical Area, An Giang University, An Giang, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ngo Thanh Phong
- Department of Biology, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| |
Collapse
|
7
|
Iwai R, Uchida S, Yamaguchi S, Nagata D, Koga A, Hayashi S, Yamamoto S, Miyasaka H. Effects of LPS from Rhodobacter sphaeroides, a Purple Non-Sulfur Bacterium (PNSB), on the Gene Expression of Rice Root. Microorganisms 2023; 11:1676. [PMID: 37512850 PMCID: PMC10383378 DOI: 10.3390/microorganisms11071676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of lipopolysaccharide (LPS) from Rhodobacter sphaeroides, a purple non-sulfur bacterium (PNSB), on the gene expression of the root of rice (Oryza sativa) were investigated by next generation sequencing (NGS) RNA-seq analysis. The rice seeds were germinated on agar plates containing 10 pg/mL of LPS from Rhodobacter sphaeroides NBRC 12203 (type culture). Three days after germination, RNA samples were extracted from the roots and analyzed by RNA-seq. The effects of dead (killed) PNSB cells of R. sphaeroides NBRC 12203T at the concentration of 101 cfu/mL (ca. 50 pg cell dry weight/mL) were also examined. Clean reads of NGS were mapped to rice genome (number of transcript ID: 44785), and differentially expressed genes were analyzed by DEGs. As a result of DEG analysis, 300 and 128 genes, and 86 and 8 genes were significantly up- and down-regulated by LPS and dead cells of PNSB, respectively. The plot of logFC (fold change) values of the up-regulated genes of LPS and PNSB dead cells showed a significant positive relationship (r2 = 0.6333, p < 0.0001), indicating that most of the effects of dead cell were attributed to those of LPS. Many genes related to tolerance against biotic (fungal and bacterial pathogens) and abiotic (cold, drought, and high salinity) stresses were up-regulated, and the most strikingly up-regulated genes were those involved in the jasmonate signaling pathway, and the genes of chalcone synthase isozymes, indicating that PNSB induced defense response against biotic and abiotic stresses via the jasmonate signaling pathway, despite the non-pathogenicity of PNSB.
Collapse
Affiliation(s)
- Ranko Iwai
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shunta Uchida
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Sayaka Yamaguchi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Daiki Nagata
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Aoi Koga
- Ciamo Co., Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| |
Collapse
|
8
|
Muñoz-Carvajal E, Araya-Angel JP, Garrido-Sáez N, González M, Stoll A. Challenges for Plant Growth Promoting Microorganism Transfer from Science to Industry: A Case Study from Chile. Microorganisms 2023; 11:microorganisms11041061. [PMID: 37110484 PMCID: PMC10140820 DOI: 10.3390/microorganisms11041061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the plant growth promoting microorganisms (PGPM) is increasing strongly due to the biotechnological potential for the agricultural, forestry, and food industry. The benefits of using PGPM in crop production are well proven; however, their incorporation in agricultural management is still limited. Therefore, we wanted to explore the gaps and challenges for the transfer of biotechnological innovations based on PGPM to the agricultural sector. Our systematic review of the state of the art of PGPM research and knowledge transfer takes Chile as an example. Several transfer limiting aspects are identified and discussed. Our two main conclusions are: neither academia nor industry can meet unfounded expectations during technology transfer, but mutually clarifying their needs, capabilities, and limitations is the starting point for successful collaborations; the generation of a collaborative innovation environment, where academia as well as public and private stakeholders (including the local community) take part, is crucial to enhance the acceptance and integration of PGPM on the way to sustainable agriculture.
Collapse
Affiliation(s)
- Eduardo Muñoz-Carvajal
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1720256, Chile
| | - Juan Pablo Araya-Angel
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1720256, Chile
| | - Nicolás Garrido-Sáez
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1720256, Chile
| | - Máximo González
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena 1720256, Chile
| | - Alexandra Stoll
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena 1720256, Chile
| |
Collapse
|
9
|
Miyasaka H, Koga A, Maki TA. Recent progress in the use of purple non-sulfur bacteria as probiotics in aquaculture. World J Microbiol Biotechnol 2023; 39:145. [PMID: 37014486 DOI: 10.1007/s11274-023-03592-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The use of probiotics in aquaculture is widely recognized as an ecological and cost-effective approach to raising healthy, pathogen-tolerant aquatic animals, including fish and shrimp. In particular for shrimp, probiotics are viewed as a promising countermeasure to the recent severe damage to the shrimp industry by bacterial and viral pathogens. Purple non-sulfur bacteria (PNSB) are Gram-negative, non-pathogenic bacteria with wide application potential in agriculture, wastewater treatment, and bioenergy/biomaterials production. In aquaculture, lactic bacteria and Bacillus are the major probiotic bacteria used, but PNSB, like Rhodopseudomonas and Rhodobacter, are also used. In this review, we summarize the previous work on the use of PNSB in aquaculture, overview the previous studies on the stimulation of innate immunity of shrimp by various probiotic microorganisms, and also share our results in the probiotic performance of Rhodovulum sulfidophilum KKMI01, a marine PNSB, which showed a superior effect in promotion of growth and stimulation of immunity in shrimp at a quite low concentration of 1 × 103 cfu (colony forming unit)/ml in rearing water.
Collapse
Affiliation(s)
- Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan.
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan.
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan.
| | - Aoi Koga
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan
| | - Taka-Aki Maki
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan
| |
Collapse
|
10
|
Miyasaka H. Special Issue “Biotechnological Application of Photosynthetic Bacteria”. Microorganisms 2023; 11:microorganisms11030619. [PMID: 36985193 PMCID: PMC10058890 DOI: 10.3390/microorganisms11030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
This Special Issue aims to contribute to the current knowledge in the field and promote the practical application of photosynthetic bacteria (PSB) biotechnology [...]
Collapse
Affiliation(s)
- Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| |
Collapse
|
11
|
Qi X, Fu K, Yue M, Shou N, Yuan X, Chen X, He C, Yang Y, Shi Z. Kynurenic acid mediates bacteria-algae consortium in resisting environmental cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130397. [PMID: 36403444 DOI: 10.1016/j.jhazmat.2022.130397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd2+) is a toxic heavy metal in the environment, posing severe damage to animal health and drinking water safety. The bacteria-algae consortium remediates environmental Cd2+ pollution by secreting chelating reagents, but the molecular mechanisms remain elusive. Here, we showed that Cellulosimicrobium sp. SH8 isolated from a Cd2+-polluted lake could interact with Synechocystis sp. PCC6803, a model species of cyanobacteria, in strengthening Cd2+ toxicity resistance, while SH8 or PCC6803 alone barely immobilized Cd2+. In addition, the SH8-PCC6803 consortium, but not SH8 alone, could grow in a carbon-free medium, suggesting that autotrophic PCC6803 enabled the growth of heterotrophic SH8. Totally, 12 metabolites were significantly changed when SH8 was added to PCC6803 culture in the presence of Cd2+ (PCC6803/Cd2+). Among them, kynurenic acid was the only metabolite that precipitated Cd2+. Remarkably, adding kynurenic acid increased the growth of PCC6803/Cd2+ by 14.1 times. Consistently, the expressions of kynA, kynB, and kynT genes, known to be essential for kynurenic acid synthesis, were considerably increased when SH8 was added to PCC6803/Cd2+. Collectively, kynurenic acid secreted by SH8 mitigates Cd2+ toxicity for algae, and algae provide organic carbon for the growth of SH8, unveiling a critical link that mediates beneficial bacteria-algae interaction to resist Cd2+.
Collapse
Affiliation(s)
- Xiaoli Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Mingyuan Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Chunyu He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Iwai R, Uchida S, Yamaguchi S, Sonoda F, Tsunoda K, Nagata H, Nagata D, Koga A, Goto M, Maki TA, Hayashi S, Yamamoto S, Miyasaka H. Effects of Seed Bio-Priming by Purple Non-Sulfur Bacteria (PNSB) on the Root Development of Rice. Microorganisms 2022; 10:2197. [PMID: 36363789 PMCID: PMC9698004 DOI: 10.3390/microorganisms10112197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
The effects of seed bio-priming (seed soaking) with purple non-sulfur bacteria (PNSB) on the grain productivity and root development of rice were examined by a field study and laboratory experiments, respectively. Two PNSB strains, Rhodopseudomonas sp. Tsuru2 and Rhodobacter sp. Tsuru3, isolated from the paddy field of the study site were used for seed bio-priming. For seed bio-priming in the field study, the rice seeds were soaked for 1 day in water containing a 1 × 105 colony forming unit (cfu)/mL of PNSB cells, and the rice grain productivities at the harvest time were 420, 462 and 504 kg/are for the control, strain Tsuru2-primed, and strain Tsuru3-primed seeds, respectively. The effects of seed priming on the root development were examined with cell pot cultivation experiments for 2 weeks. The total root length, root surface area, number of tips and forks were evaluated with WinRhizo, an image analysis system, and strains Tsuru2- and Tsuru3-primed seeds showed better root development than the control seeds. The effects of seed priming with the dead (killed) PNSB cells were also examined, and the seed priming with the dead cells was also effective, indicating that the effects were attributed to some cellular components. We expected the lipopolysaccharide (LPS) of PNSB as the effective component of PNSB and found that seed priming with LPS of Rhodobacter sphaeroides NBRC 12203 (type culture) at the concentrations of 5 ng/mL and 50 ng/mL enhanced the root development.
Collapse
Affiliation(s)
- Ranko Iwai
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shunta Uchida
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Sayaka Yamaguchi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Fumika Sonoda
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Kana Tsunoda
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Hiroto Nagata
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Daiki Nagata
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Aoi Koga
- Ciamo Co., Ltd., Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Midori Goto
- Ciamo Co., Ltd., Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Taka-aki Maki
- Matsumoto Institute of Microorganisms Co., Ltd., 2904 Niimura, Matsumoto, Nagano 390-1241, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| |
Collapse
|
13
|
Foliar Application of Rhodopseudomonas palustris Enhances the Rice Crop Growth and Yield under Field Conditions. PLANTS 2022; 11:plants11192452. [PMID: 36235318 PMCID: PMC9614608 DOI: 10.3390/plants11192452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Anthropogenic activities causing climate change and other environmental effects are lowering crop yield by deteriorating the growing environment for crops. Rice, a globally important cereal crop, is under production threat due to climate change and land degradation. This research aims to sustainably improve rice growth and yield by using Rhodopseudomonas palustris, a plant growth-promoting bacteria that has recently gained much attention in crop production. The experiment was set up in two fields, one as a control and the other as a PNSB-treated field. The foliar application of treatment was made fortnightly until the end of the vegetative stage. Data on the growth, yield, and antioxidant enzymes were collected weekly. The results of this experiment indicate no significant differences in the plant height, root volume, average grain per panicle, biological yield, grain fertility, and antioxidant enzyme activity between the PNSB-treated and untreated plants. However, a significant increase in the tiller number, leaf chlorophyll content and lodging resistance were noted with PNSB treatment. Likewise, PNSB-treatment significantly increased root length (25%), root dry weight (57%), productive tillers per plants (26%), average grains per plant (38%), grain yield (33%), 1000 grain weight (1.6%), and harvest index (41%). Hence, from this research, it can be concluded that foliar application of PNSB on rice crops under field conditions improves crop growth and yield, although it does not affect antioxidant enzyme activity.
Collapse
|
14
|
Lee SK, Chiang MS, Hseu ZY, Kuo CH, Liu CT. A photosynthetic bacterial inoculant exerts beneficial effects on the yield and quality of tomato and affects bacterial community structure in an organic field. Front Microbiol 2022; 13:959080. [PMID: 36118214 PMCID: PMC9479686 DOI: 10.3389/fmicb.2022.959080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are microorganisms that promote plant health and play a critical role in sustainable agriculture. As a PGPR, Rhodopseudomonas palustris strain PS3, when applied as a microbial inoculant, exhibited beneficial effects on a variety of crops. In this study, we investigated the effects of PS3 on tomato growth, soil properties, and soil microbiota composition in an organic field. The results demonstrated that PS3 inoculation significantly improved the yield of marketable tomato fruit (37%) and the postharvest quality (e.g., sweetness, taste, vitamin C, total phenolic compounds, and lycopene). Additionally, soil nutrient availability (35–56%) and enzymatic activities (13–62%) also increased. We detected that approximately 107 CFU/g soil of R. palustris survived in the PS3-treated soil after harvest. Furthermore, several bacterial genera known to be associated with nutrient cycling (e.g., Dyella, Novosphingobium, Luteimonas, Haliangium, and Thermomonas) had higher relative abundances (log2 fold change >2.0). To validate the results of the field experiment, we further conducted pot experiments with field-collected soil using two different tomato cultivars and obtained consistent results. Notably, the relative abundance of putative PGPRs in the genus Haliangium increased with PS3 inoculation in both cultivars (1.5 and 34.2%, respectively), suggesting that this genus may have synergistic interactions with PS3. Taken together, we further demonstrated the value of PS3 in sustainable agriculture and provided novel knowledge regarding the effects of this PGPR on soil microbiota composition.
Collapse
Affiliation(s)
- Sook-Kuan Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ming-Shu Chiang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Horng Kuo,
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Chi-Te Liu,
| |
Collapse
|
15
|
Li Q. Perspectives on Converting Keratin-Containing Wastes Into Biofertilizers for Sustainable Agriculture. Front Microbiol 2022; 13:918262. [PMID: 35794912 PMCID: PMC9251476 DOI: 10.3389/fmicb.2022.918262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Keratin-containing wastes become pollution to the environment if they are not treated properly. On the other hand, these wastes can be converted into value-added products applicable to many fields. Organic fertilizers and biofertilizers are important for sustainable agriculture by providing nutrients to enhance the growth speed of the plant and production. Keratin-containing wastes, therefore, will be an important resource to produce organic fertilizers. Many microorganisms exhibit capabilities to degrade keratins making them attractive to convert keratin-containing wastes into valuable products. In this review, the progress in microbial degradation of keratins is summarized. In addition, perspectives in converting keratin into bio- and organic fertilizers for agriculture are described. With proper treatment, feather wastes which are rich in keratin can be converted into high-value fertilizers to serve as nutrients for plants, reduce environmental pressure and improve the quality of the soil for sustainable agriculture.
Collapse
|
16
|
Massa F, Defez R, Bianco C. Exploitation of Plant Growth Promoting Bacteria for Sustainable Agriculture: Hierarchical Approach to Link Laboratory and Field Experiments. Microorganisms 2022; 10:865. [PMID: 35630310 PMCID: PMC9144938 DOI: 10.3390/microorganisms10050865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
To feed a world population, which will reach 9.7 billion in 2050, agricultural production will have to increase by 35-56%. Therefore, more food is urgently needed. Yield improvements for any given crop would require adequate fertilizer, water, and plant protection from pests and disease, but their further abuse will be economically disadvantageous and will have a negative impact on the environment. Using even more agricultural inputs is simply not possible, and the availability of arable land will be increasingly reduced due to climate changes. To improve agricultural production without further consumption of natural resources, farmers have a powerful ally: the beneficial microorganisms inhabiting the rhizosphere. However, to fully exploit the benefits of these microorganisms and therefore to widely market microbial-based products, there are still gaps that need to be filled, and here we will describe some critical issues that should be better addressed.
Collapse
Affiliation(s)
| | | | - Carmen Bianco
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (F.M.); (R.D.)
| |
Collapse
|
17
|
Koga A, Goto M, Hayashi S, Yamamoto S, Miyasaka H. Probiotic Effects of a Marine Purple Non-Sulfur Bacterium, Rhodovulum sulfidophilum KKMI01, on Kuruma Shrimp (Marsupenaeus japonicus). Microorganisms 2022; 10:microorganisms10020244. [PMID: 35208699 PMCID: PMC8876596 DOI: 10.3390/microorganisms10020244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are used as probiotics in shrimp aquaculture; however, no studies have examined the probiotic effects of PNSB in shrimp at the gene expression level. In this study, we examined the effects of a marine PNSB, Rhodovulum sulfidophilum KKMI01, on the gene expression of kuruma shrimp (Marsupenaeus japonicus). Short-term (3 days) effects of R. sulfidophilum KKMI01 on the gene expression in shrimp were examined using small-scale laboratory aquaria experiments, while long-term (145 days) effects of R. sulfidophilum KKMI01 on the growth performance and gene expression were examined using 200-ton outdoor aquaria experiments. Gene expression levels were examined using qRT-PCR. Results of the short-term experiments showed the upregulation of several molting-related genes, including cuticle proteins, calcification proteins, and cuticle pigment protein, suggesting that PNSB stimulated the growth of shrimp. The upregulation of several immune genes, such as prophenoloxidase, antimicrobial peptides, and superoxide dismutase, was also observed. In the 145-day outdoor experiments, the average body weight at harvest time, survival rate, and feed conversion ratio were significantly improved in PNSB-treated shrimp, and upregulation of molting and immune-related genes were also observed. When PNSB cells were added to the rearing water, the effective dosage of PNSB was as low as 103 cfu/mL, which was more than a million times dilution of the original PNSB culture (2–3 × 109 cfu/mL), indicating that R. sulfidophilum KKMI01 provides a feasible and cost-effective application as a probiotic candidate in shrimp aquaculture.
Collapse
|