1
|
Karati D, Mukherjee S, Roy S. A Promising Drug Candidate as Potent Therapeutic Approach for Neuroinflammation and Its In Silico Justification of Chalcone Congeners: a Comprehensive Review. Mol Neurobiol 2024; 61:1873-1891. [PMID: 37801205 DOI: 10.1007/s12035-023-03632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Multiple genetic, environmental, and immunological variables cause neuropsychiatric disorders (NPDs). The induced inflammatory immune response is also connected to the severity and treatment outcomes of various NPDs. These reactions also significantly impact numerous brain functions such as GABAergic signaling and neurotransmitter synthesis through inflammatory cytokines and chemokines. Chalcones (1,3-diaryl-2-propen-1-ones) and their heterocyclic counterparts are flavonoids with various biological characteristics including anti-inflammatory activity. Several pure chalcones have been clinically authorized or studied in humans. Chalcones are favored for their diagnostic and therapeutic efficacy in neuroinflammation due to their tiny molecular size, easy manufacturing, and flexibility for changes to adjust lipophilicity ideal for BBB penetrability. These compounds reached an acceptable plasma concentration and were well-tolerated in clinical testing. As a result, they are attracting increasing attention from scientists. However, chalcones' therapeutic potential remains largely untapped. This paper is aimed at highlighting the causes of neuroinflammation, more potent chalcone congeners, their mechanisms of action, and relevant structure-activity relationships.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
2
|
Rohman N, Ardiansah B, Wukirsari T, Judeh Z. Recent Trends in the Synthesis and Bioactivity of Coumarin, Coumarin-Chalcone, and Coumarin-Triazole Molecular Hybrids. Molecules 2024; 29:1026. [PMID: 38474540 DOI: 10.3390/molecules29051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Molecular hybridization represents a new approach in drug discovery in which specific chromophores are strategically combined to create novel drugs with enhanced therapeutic effects. This innovative strategy leverages the strengths of individual chromophores to address complex biological challenges, synergize beneficial properties, optimize pharmacokinetics, and overcome limitations associated with single-agent therapies. Coumarins are documented to possess several bioactivities and have therefore been targeted for combination with other active moieties to create molecular hybrids. This review summarizes recent (2013-2023) trends in the synthesis of coumarins, as well as coumarin-chalcone and coumarin-triazole molecular hybrids. To cover the wide aspects of this area, we have included differently substituted coumarins, chalcones, 1,2,3- and 1,2,4-triazoles in this review and considered the point of fusion/attachment with coumarin to show the diversity of these hybrids. The reported syntheses mainly relied on well-established chemistry without the need for strict reaction conditions and usually produced high yields. Additionally, we discussed the bioactivities of the reported compounds, including antioxidative, antimicrobial, anticancer, antidiabetic, and anti-cholinesterase activities and commented on their IC50 where possible. Promising bioactivity results have been obtained so far. It is noted that mechanistic studies are infrequently found in the published work, which was also mentioned in this review to give the reader a better understanding. This review aims to provide valuable information to enable further developments in this field.
Collapse
Affiliation(s)
- Nur Rohman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Bayu Ardiansah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Tuti Wukirsari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Zaher Judeh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459, Singapore
| |
Collapse
|
3
|
Lee SO, Joo SH, Lee JY, Kwak AW, Kim KT, Cho SS, Yoon G, Choi YH, Park JW, Shim JH. Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin. Biomol Ther (Seoul) 2024; 32:104-114. [PMID: 38148556 PMCID: PMC10762277 DOI: 10.4062/biomolther.2023.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 12/28/2023] Open
Abstract
Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.
Collapse
Affiliation(s)
- Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Ah-Won Kwak
- Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| |
Collapse
|
4
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
5
|
Sayed AM, Gohar OM, Abd-Alhameed EK, Hassanein EHM, Ali FEM. The importance of natural chalcones in ischemic organ damage: Comprehensive and bioinformatic analysis review. J Food Biochem 2022; 46:e14320. [PMID: 35857486 DOI: 10.1111/jfbc.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Over the last few decades, extensive research has been conducted, yielding a detailed account of thousands of newly discovered compounds of natural origin and their biological activities, all of which have the potential to be used for a wide range of therapeutic purposes. There are multiple research papers denoting the central objective of chalcones, which have been shown to have therapeutic potential against various forms of ischemia. The various aspects of chalcones are discussed in this review regarding molecular mechanisms involved in the promising anti-ischemic potential of these chalcones. The main mechanisms involved in these protective effects are Nrf2/Akt activation and NF-κB/TLR4 suppression. Furthermore, in-silico studies were carried out to discover the probable binding of these chalcones to Keap-1 (an inhibitor of Nrf2), Akt, NF-κB, and TLR4 protein molecules. Besides, network pharmacology analysis was conducted to predict the interacting partners of these signals. The obtained results indicated that Nrf2, Akt, NF-κB, and TLR4 are involved in the beneficial anti-ischemic actions of chalcones. Conclusively, the present findings show that chalcones as anti-ischemic agents have a valid rationale. The discussed studies will provide a comprehensive viewpoint on chalcones and can help to optimize their effects in different ischemia. PRACTICAL APPLICATIONS: Ischemic organ damage is an unavoidable pathological condition with a high worldwide incidence. According to the current research progress, natural chalcones have been proved to treat and/or prevent various types of ischemic organ damage by alleviating oxidative stress, inflammation, and apoptosis by different molecular mechanisms. This article displays the comprehensive research progress and the molecular basis of ischemic organ damage pathophysiology and introduces natural chalcones' mechanism in the ischemic organ condition.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama M Gohar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
6
|
Sergi CM. NLRP-3 Inflammasome: A Key Target, but Mostly Overlooked following SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:1307. [PMID: 36016195 PMCID: PMC9413552 DOI: 10.3390/vaccines10081307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
The last two years have shown many political and scientific debates during the current Coronavirus Disease 2019 (COVID-19) pandemic [...].
Collapse
Affiliation(s)
- Consolato M. Sergi
- AP Division/Pathology Laboratories, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada; ; Tel.: +613-737-7600; Fax: 613-738-4837
- Department of Laboratory Medicine and Pathology, University of Alberta, Stollery Children’s Hospital, University Alberta Hospital, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
7
|
Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022; 27:molecules27144491. [PMID: 35889363 PMCID: PMC9323352 DOI: 10.3390/molecules27144491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.
Collapse
|
8
|
Efficacy of a Persian herbal medicine compound on coronavirus disease 2019 (COVID-19): a randomized clinical trial. Integr Med Res 2022; 11:100869. [PMID: 35783542 PMCID: PMC9233882 DOI: 10.1016/j.imr.2022.100869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background The global attention to the capacities of traditional medicine for alleviating the clinical manifestations of COVID-19 has been growing. The present trial aimed to evaluate the efficacy and safety of a Persian herbal medicine formula among patients with COVID-19. Methods The present trial was conducted in Afzalipour hospital, Kerman, Iran, from June to September 2020. Hospitalized COVID-19 patients were randomly divided into intervention (Persian herbal medicine formula + routine treatment) or control (only routine treatment) groups. The intervention group received both capsule number 1 and 2 every 8 hours for 7 days. Capsule number 1 contained extract of the Glycyrrhiza glabra, Punica granatum, and Rheum palmatum, and the second capsule was filled by Nigella sativa powder. Participants were followed up to 7 days. The primary outcome was the number of hospitalization days, while cough, fever, and respiratory rate, days on oxygen (O2) therapy, and mortality rate were considered as the secondary outcomes. Results Eighty-two patients were enrolled to the study, while 79 cases completed the trial and their data were analyzed (mean age: 59.1 ± 17.1 years). Based on the results, the Persian medicine formula decreased the mean hospitalization days, so that the mean difference of length of hospitalization as primary outcome was 2.95 ± 0.43 days. A significant clinical improvement was observed regarding dyspnea, need for O2) therapy, and respiratory rate in the intervention group. No adverse effects were reported. Conclusion The present study supported the use of the Persian medicine formula as an adjuvant therapy for hospitalized COVID-19 patients. Study registration: Iranian Registry of Clinical Trials (www.irct.ir): IRCT20200330046899N1. Study registration Iranian Registry of Clinical Trials (www.irct.ir): IRCT20200330046899N1.
Collapse
|
9
|
Wu Y, Wang Z, Du Q, Zhu Z, Chen T, Xue Y, Wang Y, Zeng Q, Shen C, Jiang C, Liu L, Zhu H, Liu Q. Pharmacological Effects and Underlying Mechanisms of Licorice-Derived Flavonoids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9523071. [PMID: 35082907 PMCID: PMC8786487 DOI: 10.1155/2022/9523071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Glycyrrhizae Radix et Rhizoma is the most frequently prescribed natural medicine in China and has been used for more than 2,000 years. The flavonoids of licorice have garnered considerable attention in recent decades due to their structural diversity and myriad pharmacological effects, especially as novel therapeutic agents against inflammation and cancer. Although many articles have been published to summarize different pharmacological activities of licorice in recent years, the systematic summary for flavonoid components is not comprehensive. Therefore, in this review, we summarized the pharmacological and mechanistic data from recent researches on licorice flavonoids and their bioactive components.
Collapse
Affiliation(s)
- Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Park KH, Joo SH, Seo JH, Kim J, Yoon G, Jeon YJ, Lee MH, Chae JI, Kim WK, Shim JH. Licochalcone H Induces Cell Cycle Arrest and Apoptosis in Human Skin Cancer Cells by Modulating JAK2/STAT3 Signaling. Biomol Ther (Seoul) 2022; 30:72-79. [PMID: 34873073 PMCID: PMC8724845 DOI: 10.4062/biomolther.2021.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Licochalcone H (LCH) is a phenolic compound synthetically derived from licochalcone C (LCC) that exerts anticancer activity. In this study, we investigated the anticancer activity of LCH in human skin cancer A375 and A431 cells. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay was used to evaluate the antiproliferative activity of LCH. Cell cycle distribution and the induction of apoptosis were analyzed by flow cytometry. Western blotting assays were performed to detect the levels of proteins involved in cell cycle progression, apoptosis, and the JAK2/STAT3 signaling pathway. LCH inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay revealed that LCH induced apoptosis, and the LCH-induced apoptosis was accompanied by cell cycle arrest in the G1 phase. Western blot analysis showed that the phosphorylation of JAK2 and STAT3 was decreased by treatment with LCH. The inhibition of the JAK2/STAT3 signaling pathway by pharmacological inhibitors against JAK2/STAT3 (cryptotanshinone (CTS) and S3I-201) simulated the antiproliferative effect of LCH suggesting that LCH induced apoptosis by modulating JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Kyung-Ho Park
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jumi Kim
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Woo-Keun Kim
- Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea.,The China -US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| |
Collapse
|
11
|
Heidari S, Mehri S, Hosseinzadeh H. The genus Glycyrrhiza (Fabaceae family) and its active constituents as protective agents against natural or chemical toxicities. Phytother Res 2021; 35:6552-6571. [PMID: 34414608 DOI: 10.1002/ptr.7238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Licorice is the dried roots and rhizomes of various species of the genus Glycyrrhiza (Fabaceae) that have been used in folk medicine from ancient times. Many important research projects have established several beneficial effects for this medicinal herb, including antiinflammatory, antimicrobial, antiviral, antiprotozoal, antioxidant, antihyperglycemic, antihyperlipidemic, hepatoprotective, and neuroprotective. Licorice contains important bioactive components, such as glycyrrhizin (glycyrrhizic, glycyrrhizinic acid), liquiritigenin, liquiritin, and glycyrrhetinic acid. The protective effects of licorice and its main chemical components against toxins and toxicants in several organs including the brain, heart, liver, kidney, and lung have been shown. In this comprehensive review article, the protective effects of these constituents against natural, industrial, environmental, and chemical toxicities with attention on the cellular and molecular mechanism are introduced. Also, it has been revealed that this plant and its main compounds can inhibit the toxicity of different toxins by the antioxidant, antiinflammatory, and anti-apoptotic properties as well as the modulation of Inhibitor of kappaB kinase (IKK), Extracellular signal-regulated protein kinase1/2 (ERK1/2), p38, inducible nitric oxide synthase, and nuclear factor-κB (NF-κB) signaling pathways. More high-quality investigations in both experimental and clinical studies need to firmly establish the efficacy of licorice and its main constituents against toxic agents.
Collapse
Affiliation(s)
- Somaye Heidari
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021; 11:1203. [PMID: 34439870 PMCID: PMC8392591 DOI: 10.3390/biom11081203] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.
Collapse
Affiliation(s)
- Hiba A. Jasim
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Al-Anbar 10081, Iraq
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mohammad A. Jasim
- Department of Biology, College of Education for Women, University of Anbar, Al-Anbar 10081, Iraq;
| | - Sharon A. Moore
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Kenneth J. Ritchie
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| |
Collapse
|
13
|
Hasan MK, Ara I, Mondal MSA, Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Gly cyrrhiza glabra. Heliyon 2021; 7:e07240. [PMID: 34189299 PMCID: PMC8220166 DOI: 10.1016/j.heliyon.2021.e07240] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nature has always been an excellent source for many therapeutic compounds providing us with many medicinal plants and microorganisms producing beneficial chemicals. Therefore, the demand for medicinal plants, cosmetics, and health products is always on the rise. One such plant from the Leguminosae family is licorice and the scientific name is Glycyrrhiza glabra Linn. It is an herb-type plant with medicinal value. In the following article, we shall elaborately look at the plants' phytochemical constituents and the pharmacological impact of those substances. Several compounds such as glycyrrhizin, glycyrrhizinic acid, isoliquiritin, and glycyrrhizic acid have been found in this plant, which can provide pharmacological benefit to us with its anti-cancer, anti-atherogenic, anti-diabetic, anti-asthmatic, anti-inflammatory, anti-microbial, and antispasmodic activity. Alongside, these products have a different role in hepatoprotective, immunologic, memory-enhancing activity. They can stimulate hair growth, control obesity, and have anti-depressants, sedatives, and anticoagulant activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Iffat Ara
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | | | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
14
|
Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Natural Chalcones in Chinese Materia Medica: Licorice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3821248. [PMID: 32256642 PMCID: PMC7102474 DOI: 10.1155/2020/3821248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. These chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hepatoprotective activities, and so on. This review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
Collapse
|
16
|
Kwak AW, Choi JS, Liu K, Lee MH, Jeon YJ, Cho SS, Yoon G, Oh HN, Chae JI, Shim JH. Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. J Chemother 2020; 32:132-143. [DOI: 10.1080/1120009x.2020.1721175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Gyeongbuk, Republic of Korea
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Young-Joo Jeon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Stem Cell Convergence Research Center, Daejeon, Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Microbial Transformation of Licochalcones. Molecules 2019; 25:molecules25010060. [PMID: 31878031 PMCID: PMC6982849 DOI: 10.3390/molecules25010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/24/2023] Open
Abstract
Microbial transformation of licochalcones B (1), C (2), D (3), and H (4) using the filamentous fungi Aspergillus niger and Mucor hiemalis was investigated. Fungal transformation of the licochalcones followed by chromatographic separations led to the isolation of ten new compounds 5–14, including one hydrogenated, three dihydroxylated, three expoxidized, and three glucosylated metabolites. Their structures were elucidated by combined analyses of UV, IR, MS, NMR, and CD spectroscopic data. Absolute configurations of the 2″,3″-diols in the three dihydroxylated metabolites were determined by ECD experiments according to the Snatzke’s method. The trans-cis isomerization was observed for the metabolites 7, 11, 13, and 14 as evidenced by the analysis of their 1H-NMR spectra and HPLC chromatograms. This could be useful in better understanding of the trans-cis isomerization mechanism of retrochalcones. The fungal transformation described herein also provides an effective method to expand the structural diversity of retrochalcones for further biological studies.
Collapse
|
18
|
Kwak AW, Cho SS, Yoon G, Oh HN, Lee MH, Chae JI, Shim JH. Licochalcone H Synthesized by Modifying Structure of Licochalcone C Extracted from Glycyrrhiza inflata Induces Apoptosis of Esophageal Squamous Cell Carcinoma Cells. Cell Biochem Biophys 2019; 78:65-76. [PMID: 31707583 DOI: 10.1007/s12013-019-00892-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/18/2019] [Indexed: 01/05/2023]
Abstract
Esophageal cancer is one of the malignant cancers with a low 5-year survival rate. Licochalcone (LC) H, a chemically synthesized substance, is a regioisomer of LCC extracted from licorice. The purpose of this study was to determine whether LCH might have anticancer effect on human esophageal squamous cell carcinoma (ESCC) cell lines via apoptosis signaling pathway. After 48 h of treatment, IC50 of LCH in KYSE 30, KYSE 70, KYSE 410, KYSE 450, and KYSE 510 cells were 15, 14, 18, 15, and 16 μM, respectively. This study demonstrated that LCH potently suppressed proliferation of ESCC cells in a concentration- and time-dependent manner. LCH triggered G2/M-phase arrest by modulating expression levels of cdc2, cyclin B1, p21, and p27. LCH also induced apoptosis of ESCC cells through reactive oxygen species-mediated endoplasmic reticulum (ER) stress via JNK/p38 activation pathways. The anticancer effect of LCH was associated with ER stress and mitochondrial dysfunction. It also affected protein levels of Mcl-1, tBid, Bax, Bcl-2, cytochrome c, Apaf-1, PARP, cleaved-PARP, and ER stress-related proteins (GRP78 and CHOP). Our findings provide the first demonstration that LCH has anticancer effect on ESCC. Thus, LCH might have potential for preventing and/or treating human ESCC.
Collapse
Affiliation(s)
- Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, Zhengzhou, 450001, Henan, China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, PR China
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea. .,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, PR China.
| |
Collapse
|
19
|
Maria Pia GD, Sara F, Mario F, Lorenza S. Biological Effects of Licochalcones. Mini Rev Med Chem 2019; 19:647-656. [PMID: 30049263 DOI: 10.2174/1389557518666180601095420] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
Abstract
Medicinal plants and their natural bioactive molecules, are evaluated as the foundation for health preservation and care of humanity. The licorice root, known as "Radix Glycyrrhizae", is a perennial plant that comes from Mediterranean countries, central to southern Russia, Asia, Turkey, Iraq and Iran. The licorice root has been used in traditional Chinese medicines for centuries and has been defined as "the progenitor of herbs". The name 'Licorice' is derived from the ancient Greek word Glukurrhiza, meaning 'sweet root'. It consists of approximately 30 species, however, the most common ones consist of Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch and Glycyrrhiza Inflata. In addition, the licorice root contains chalcones, which are a part of an important class of natural products and are precursors of flavonoids. Chemically, chalcones are composed of two aromatic rings associated with α, β-unsaturated α-carbon ketone, representing the prima nucleus of the structure. They have been classified, according to chemical structures, in Licochalcone A, B, C, D, E, F and G. This review aims to highlight all the in vitro and in vivo studies that have been conducted on the licochalcones, extracted from Glycyrrhiza species. The main effects are as follows: anti-inflammatory, antioxidant, anticancer, antimicrobial, antiviral, antiallergic, antidiabetic, hepatotoxic and osteogenic. It is important to implement the introduction of biologically active natural molecules from the bench (research) to the bedside (clinical practice). However, in the future, it is required to conduct additional studies to validate these biological effects.
Collapse
Affiliation(s)
- Gatta Daniela Maria Pia
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Franceschelli Sara
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Felaco Mario
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Speranza Lorenza
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| |
Collapse
|
20
|
Mamedov NA, Egamberdieva D. Phytochemical Constituents and Pharmacological Effects of Licorice: A Review. PLANT AND HUMAN HEALTH, VOLUME 3 2019. [PMCID: PMC7123875 DOI: 10.1007/978-3-030-04408-4_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Licorice (or “liquorice”) is one of most widely used in foods, herbal medicine, and extensively researched medicinal plants of the world. In traditional medicine licorice roots have been used against treating many ailments including lung diseases, arthritis, kidney diseases, eczema, heart diseases, gastric ulcer, low blood pressure, allergies, liver toxicity, and certain microbial infections. Licorice extract contains sugars, starch, bitters, resins, essential oils, tannins, inorganic salts, and low levels of nitrogenous constituents such as proteins, individual amino acids, and nucleic acids. A large number of biological active compounds have been isolated from Glycyrrhiza species, where triterpene saponins and flavonoids are the main constitutes which show broad biological activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.
Collapse
|
21
|
Cacciatore I, Marinelli L, Di Stefano A, Di Marco V, Orlando G, Gabriele M, Gatta DMP, Ferrone A, Franceschelli S, Speranza L, Patruno A. Chelating and antioxidant properties of l-Dopa containing tetrapeptide for the treatment of neurodegenerative diseases. Neuropeptides 2018; 71:11-20. [PMID: 29937392 DOI: 10.1016/j.npep.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 06/17/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases share a common pathogenetic mechanism involving aggregation and deposition of misfolded proteins, oxidative stress, metal dyshomeostasis, and glutamate exicitotoxicity, which lead to progressive dysfunction of central nervous system (CNS). A potential strategy to counteract these deleterious events at neuronal level is represented by the employment of a novel class of multi-target therapeutic agents that selectively and simultaneously hit these targets In this paper, we report the metal binding and antioxidant properties of a novel metal-protein attenuating peptide, GSH-LD, a tetrapeptide obtained by linking glutathione, a well-known antioxidant tripeptide, to L-Dopa. Results demonstrated that GSH-LD possesses chelating capabilities in order to selectively target the excess of metals without interfere with metal-containing antioxidant enzymes. Moreover, antioxidant assays revealed a large contribution of GSH-LD to restore the antioxidant defences of damaged neuronal cells.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy.
| | - Lisa Marinelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Mirko Gabriele
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy; Thermo Fisher Scientific, via Morolense 5, 03013 Ferentino (Frosinone), Italy
| | - Daniela Maria Pia Gatta
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Alessio Ferrone
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Sara Franceschelli
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Lorenza Speranza
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| | - Antonia Patruno
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Scalo (Chieti), Italy
| |
Collapse
|
22
|
Oh HN, Seo JH, Lee MH, Kim C, Kim E, Yoon G, Cho SS, Cho YS, Choi HW, Shim JH, Chae JI. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J Cell Biochem 2018; 119:10118-10130. [PMID: 30129052 DOI: 10.1002/jcb.27349] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023]
Abstract
Oral cancer is of an aggressive malignancy that arises on oral cavity and lip, 90% of cancers histologically originated in the squamous cells. Licochalcone (LC)C has been known as natural phenolic chalconoid substances, and its origin is the root of Glycyrrhiza glabra or Glycyrrhiza inflata. LCC inhibited oral squamous cell carcinoma (OSCC) cell viability, mitochondrial function, and anchorage-independent growth in a dose-dependent manner. To investigate the ability of LCC to target Janus kinase 2 (JAK2), we performed pull-down binding assay, kinase assay, and docking simulation. The molecular docking studies were performed between JAK2 and the potent inhibitor LCC. It was shown that LCC tightly interacted with ATP-binding site of JAK2. In addition, LCC inhibited the JAK2/signal transducer and activator of transcription 3 pathway, upregulated p21, and downregulated Bcl-2, Mcl-1, and Survivin, while it disrupted mitochondrial membrane potential and subsequently caused cytochrome c release with activation of multi-caspase, eventually leading to apoptosis in HN22 and HSC4 cells. LCC elevated the protein levels of Bax, cleaved Bid and PARP, and increased Apaf-1, and this effect was reversed by LCC treatment. Our results demonstrated that treatment of OSCC cells with LCC induced the death receptor (DR)4 and DR5 expression level with the generation of reactive oxygen species and the upregulation of CHOP protein expression. Taken together, these results could provide the basis for clinical application as a new therapeutic strategy in the treatment of oral cancer.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Cheolhee Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Eunae Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Young Sik Cho
- Department of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
23
|
Anushiravani M, Bakhshaee M, Taghipour A, Mehri MR. Comparison of the therapeutic effect of the Persian Medicine Protocol with the common treatment of chronic rhinosinusitis: a randomized clinical trial. Electron Physician 2018; 10:7017-7027. [PMID: 30128092 PMCID: PMC6092137 DOI: 10.19082/7017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023] Open
Abstract
Background Chronic rhinosinusitis is one of the most common diseases affecting the quality of life of patients. Patients suffer from high costs in the diagnosis and treatment of the disease. Frequent recurrence and failure of therapeutic protocols are among the most important issues in the management of this disease. In view of this, the use of traditional and complementary therapies to promote the treatment of this disease has been increasingly taken into account. Objective Comparison of the effectiveness of the Persian Medicine Protocol with the conventional therapy in the treatment of chronic rhinosinusitis. Methods A randomized clinical trial was conducted at Imam Reza Hospital in Mashhad, Iran from July 2016 to March 2017. For patients with chronic rhinosinusitis symptoms, endoscopy of the sinuses was performed by an ENT specialist and in the case of negative endoscopy, paranasal sinus CT scan was requested. A total of 42 patients with chronic rhinosinusitis were randomly assigned to two groups. The first group (classical) received systemic and intranasal cortisone, and the second group (traditional) received a therapeutic Persian medicine protocol including intranasal lavender oil, and Liquorice Marjoram Tea (L. M. tea) for six weeks. The symptoms of the patients were evaluated using the SNOT-22 questionnaire at the beginning of the study and at the sixth week. If no improvement occurs, treatment continued for 12 weeks. Data were analyzed by SPSS version 16, using ANOVA, independent-samples and paired-samples t-test, Wilcoxon signed-rank test, and simple linear regression. Results In 20 patients in the traditional group, the decrease in SNOT score was observed as 56% after 6 weeks treatment (p=0.001), which is similar to the effect of the first group (classical). Although there was no statically significant difference between the two groups, in clinical terms, the difference in mean systemic symptoms such as confusion with 1.05 (p=0.5) and fatigue with 1.63 (p=0.01) had more improvement in the traditional group, and the difference in mean local symptoms such as nasal congestion with 2.37 (p=0.78) and runny nose with 1.95 (p=0.14) had a more decrease in the classical group. Conclusion The results of this trial indicate the effectiveness of the Persian Medicine Protocol (including Lavender oil and L.M tea) in the treatment of chronic rhinosinusitis, especially on improving systemic symptoms. Nevertheless more clinical studies are necessary to support the acquired results. Trial registration This trial was registered at the Iranian Center for Clinical Trials (ID: IRCT2015112425217N1). Funding This research is part of a PhD thesis and is funded by the Vice-Chancellor for Research at Mashhad University of Medical Sciences, Grant No. 931673.
Collapse
Affiliation(s)
- Majid Anushiravani
- MD. Ph.D. of Persian Medicine, Assistant Professor, Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Bakhshaee
- MD. Associate Professor, Sinus and Surgical Endoscopic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Taghipour
- MD. PhD in Epidemiology, Associate Professor, Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mehri
- MD. PhD of Persian Medicine, Student Research Committee, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Franceschelli S, Gatta DMP, Pesce M, Ferrone A, Di Martino G, Di Nicola M, De Lutiis MA, Vitacolonna E, Patruno A, Grilli A, Felaco M, Speranza L. Modulation of the oxidative plasmatic state in gastroesophageal reflux disease with the addition of rich water molecular hydrogen: A new biological vision. J Cell Mol Med 2018. [PMID: 29512923 PMCID: PMC5908129 DOI: 10.1111/jcmm.13569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastroesophageal reflux disease (GERD), a clinical condition characterized by reflux of gastroduodenal contents in the oesophagus, has proved to demonstrate a strong link between oxidative stress and the development of GERD. Proton pump inhibitors (PPIs) have been universally accepted as first-line therapy for management of GERD. The potential benefits of electrolysed reduced water (ERW), rich in molecular hydrogen, in improving symptoms and systemic oxidative stress associated with GERD was assessed. The study was performed on 84 GERD patients undergoing control treatment (PPI + tap water) or experimental treatment (PPI + ERW) for 3 months. These patients were subjected to the GERD-Health Related Quality of Life Questionnaire as well as derivatives reactive oxigen metabolites (d-ROMs) test, biological antioxidant potential (BAP) test, superoxide anion, nitric oxide and malondialdehyde assays, which were all performed as a proxy for the oxidative/nitrosative stress and the antioxidant potential status. Spearman's correlation coefficient was used to evaluate the correlation between scores and laboratory parameters. Overall results demonstrated that an optimal oxidative balance can be restored and GERD symptoms can be reduced rapidly via the integration of ERW in GERD patients. The relative variation of heartburn and regurgitation score was significantly correlated with laboratory parameters. Thus, in the selected patients, combination treatment with PPI and ERW improves the cellular redox state leading to the improvement of the quality of life as demonstrated by the correlation analysis between laboratory parameters and GERD symptoms.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging, University "G. D' Annunzio", Chieti, Italy
| | | | - Mirko Pesce
- Department of Psychological, Health and Territorial Sciences, University "G. D' Annunzio", Chieti, Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University "G. D' Annunzio", Chieti, Italy
| | - Giuseppe Di Martino
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, University "G. D' Annunzio", Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, University "G. D' Annunzio", Chieti, Italy
| | - Maria Anna De Lutiis
- Department of Medicine and Science of Aging, University "G. D' Annunzio", Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Science of Aging, University "G. D' Annunzio", Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University "G. D' Annunzio", Chieti, Italy
| | - Alfredo Grilli
- Department of Psychological, Health and Territorial Sciences, University "G. D' Annunzio", Chieti, Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging, University "G. D' Annunzio", Chieti, Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University "G. D' Annunzio", Chieti, Italy
| |
Collapse
|
25
|
Pesce M, Tatangelo R, La Fratta I, Rizzuto A, Campagna G, Turli C, Ferrone A, Franceschelli S, Speranza L, Verrocchio MC, De Lutiis MA, Felaco M, Grilli A. Memory Training Program Decreases the Circulating Level of Cortisol and Pro-inflammatory Cytokines in Healthy Older Adults. Front Mol Neurosci 2017; 10:233. [PMID: 28790890 PMCID: PMC5522887 DOI: 10.3389/fnmol.2017.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Aging cognitive decline has been associated to impairment of the Hypothalamus Pituitary Adrenals (HPA) axis activity and a higher level of the systemic inflammation. However, little is known about the molecules driving this process at peripheral level. In addition, the cognitive function is to some extent modifiable with Memory Training (MT) programs, even among older adults and beyond. The study aims to evaluate whether MT could contribute to ameliorate cognitive performance and modulate the HPA axis activity as well the low level inflammation in the aging phenotype. Whether the phosphatase WIP-1, a negative regulator for inflammation, is involved in this process was also investigated. We recruited 31 young adults (19-28, years of age) and 62 older adults aged over 60. Thirty-two older adults were submitted to 6-months of MT program (EG), and 28 older adults were no treated and used as Control Group (CG). Global cognitive functioning (MMSE score), verbal and visual memory, and attention were assessed at baseline (T0) and after 6-months (T1). At the same time, plasmatic level of Cortisol (C), IL-1β, IL-18, IL-6, and the expression of WIP-1 mRNA and protein in ex vivo Peripheral Blood Mononuclear Cells were analyzed in young adults at T0, as well in older adults at T0 and T1. Together, the results suggest that MT improves the global cognitive functionality, verbal and visual memory, as well as the level of attention. At the same time we observed a decrease of the plasmatic level of C, of the cytokines, and an increase of the expression of mRNA and protein of WIP-1. The analysis of correlations highlighted that the level of the mRNA of WIP-1 was positively associated to the MMSE score, and negatively to the C and cytokine levels. In conclusion, we purpose the MT as tool that could help support successful aging through the improving of memory, attention and global cognitive function performance. Furthermore, this approach could participate to maintain lower the peripheral levels of the C and pro-inflammatory cytokines. The WIP-1 as a potential new target of the pathophysiology of aging is theorized.
Collapse
Affiliation(s)
| | - Raffaella Tatangelo
- School of Medicine and Health Science, University G. D’AnnunzioChieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Biological Effect of Licochalcone C on the Regulation of PI3K/Akt/eNOS and NF-κB/iNOS/NO Signaling Pathways in H9c2 Cells in Response to LPS Stimulation. Int J Mol Sci 2017; 18:ijms18040690. [PMID: 28333102 PMCID: PMC5412276 DOI: 10.3390/ijms18040690] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
Polyphenols compounds are a group molecules present in many plants. They have antioxidant properties and can also be helpful in the management of sepsis. Licochalcone C (LicoC), a constituent of Glycyrrhiza glabra, has various biological and pharmacological properties. In saying this, the effect of LicoC on the inflammatory response that characterizes septic myocardial dysfunction is poorly understood. The aim of this study was to determine whether LicoC exhibits anti-inflammatory properties on H9c2 cells that are stimulated with lipopolysaccharide. Our results have shown that LicoC treatment represses nuclear factor-κB (NF-κB) translocation and several downstream molecules, such as inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Moreover, LicoC has upregulated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/endothelial nitric oxide synthase (eNOS) signaling pathway. Finally, 2-(4-Morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), a specific PI3K inhibitor, blocked the protective effects of LicoC. These findings indicate that LicoC plays a pivotal role in cardiac dysfunction in sepsis-induced inflammation.
Collapse
|
27
|
Pharmacological Activities and Phytochemical Constituents. LIQUORICE 2017. [PMCID: PMC7120246 DOI: 10.1007/978-3-319-74240-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glycyrrhiza glabra is one of the most popular medicinal plants and it has been used in traditional herbal remedy since ancient times (Blumenthal et al. in Herbal medicine: expanded commission E monographs. Integrative Medicine Communications, Newton, 2000; Parvaiz et al. in Global J Pharmocol 8(1):8–13, 2014; Altay et al. in J Plant Res 129(6):1021–1032, 2016). Many experimental, pharmacological and clinical studies show that liquorice has antimicrobial, antibacterial, antiviral, antifungal, antihepatotoxic, antioxidant, antiulcer, anti-hemorrhoid antihyperglycemic, antidiuretic, antinephritic, anticarcinogenic, antimutagenic, anticytotoxic, anti-inflammatory, and blood stopper activity.
Collapse
|
28
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
29
|
Basar N, Nahar L, Oridupa OA, Ritchie KJ, Talukdar AD, Stafford A, Kushiev H, Kan A, Sarker SD. Utilization of the Ability to Induce Activation of the Nuclear Factor (Erythroid-derived 2)-like Factor 2 (Nrf2) to Assess Potential Cancer Chemopreventive Activity of Liquorice Samples. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:233-238. [PMID: 27527356 DOI: 10.1002/pca.2616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) is a transcription factor that regulates expression of many detoxification enzymes. Nrf2-antioxidant responsive element (Nrf2-ARE) signalling pathway can be a target for cancer chemoprevention. Glycyrrhiza glabra, common name, 'liquorice', is used as a sweetening and flavouring agent, and traditionally, to treat various ailments, and implicated to chemoprevention. However, its chemopreventive property has not yet been scientifically substantiated. OBJECTIVE To assess the ability of liquorice root samples to induce Nrf2 activation correlating to their potential chemopreventive property. METHODS The ability of nine methanolic extracts of liquorice root samples, collected from various geographical origins, to induce Nrf2 activation was determined by the luciferase reporter assay using the ARE-reporter cell line, AREc32. The antioxidant properties were determined by the 2,2-diphenyl-1-picryhydrazyl (DPPH) and the ferric-reducing antioxidant power (FRAP) assays. RESULTS All extracts exhibited free-radical-scavenging property (RC50 = 136.39-635.66 µg/mL). The reducing capacity of ferrous ion was 214.46-465.59 μM Fe(II)/g. Nrf2 activation indicated that all extracts induced expression of ARE-driven luciferase activity with a maximum induction of 2.3 fold relative to control. These activities varied for samples from one geographical location to another. CONCLUSIONS The present findings add to the existing knowledge of cancer chemoprevention by plant-derived extracts or purified phytochemicals, particularly the potential use of liquorice for this purpose. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Norazah Basar
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Lutfun Nahar
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Olayinka Ayotunde Oridupa
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kenneth J Ritchie
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Anupam D Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Angela Stafford
- ADAS UK Ltd, Rosemaund, Preston Wynne, Hereford, HR1 3PG, UK
| | | | | | - Satyajit D Sarker
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
30
|
Franceschelli S, Gatta DMP, Pesce M, Ferrone A, Patruno A, de Lutiis MA, Grilli A, Felaco M, Croce F, Speranza L. New Approach in Translational Medicine: Effects of Electrolyzed Reduced Water (ERW) on NF-κB/iNOS Pathway in U937 Cell Line under Altered Redox State. Int J Mol Sci 2016; 17:ijms17091461. [PMID: 27598129 PMCID: PMC5037740 DOI: 10.3390/ijms17091461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
It is known that increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) can exert harmful effects, altering the cellular redox state. Electrolyzed Reduced Water (ERW) produced near the cathode during water electrolysis exhibits high pH, high concentration of dissolved hydrogen and an extremely negative redox potential. Several findings indicate that ERW had the ability of a scavenger free radical, which results from hydrogen molecules with a high reducing ability and may participate in the redox regulation of cellular function. We investigated the effect of ERW on H2O2-induced U937 damage by evaluating the modulation of redox cellular state. Western blotting and spectrophotometrical analysis showed that ERW inhibited oxidative stress by restoring the antioxidant capacity of superoxide dismutase, catalase and glutathione peroxidase. Consequently, ERW restores the ability of the glutathione reductase to supply the cell of an important endogenous antioxidant, such as GSH, reversing the inhibitory effect of H2O2 on redox balance of U937 cells. Therefore, this means a reduction of cytotoxicity induced by peroxynitrite via a downregulation of the NF-κB/iNOS pathway and could be used as an antioxidant for preventive and therapeutic application. In conclusion, ERW can protect the cellular redox balance, reducing the risk of several diseases with altered cellular homeostasis such as inflammation.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Daniela Maria Pia Gatta
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Mirko Pesce
- Medicine and Health Science School, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Maria Anna de Lutiis
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Alfredo Grilli
- Medicine and Health Science School, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Mario Felaco
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Fausto Croce
- Department of Farmacy, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University of Gabriele D'Annunzio, 66100 Chieti, Italy.
| |
Collapse
|
31
|
Kong M, Hwang DS, Yoon SW, Kim J. The effect of clove-based herbal mouthwash on radiation-induced oral mucositis in patients with head and neck cancer: a single-blind randomized preliminary study. Onco Targets Ther 2016; 9:4533-8. [PMID: 27524909 PMCID: PMC4966496 DOI: 10.2147/ott.s108769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose This study was performed to evaluate the efficacy and safety of clove-based herbal mouthwash in ameliorating radiation-induced oral mucositis in patients with head and neck cancer. Methods Fourteen patients were prospectively enrolled in this study and randomized to either an experimental group or a control group. The patients of the experimental group swished their mouths with a clove-based herbal mouthwash during radiotherapy (RT), while the patients of the control group swished with clear water. The primary end point of this study was incidence of radiation-induced oral mucositis. The secondary end points were time to onset of radiation-induced oral mucositis, duration of radiation-induced oral mucositis, incidence of supplemental nutrition through feeding tube, maximum pain score, body weight loss, incidence of RT interruption, and duration of RT interruption. Results The use of clove-based herbal mouthwash shortened the duration of grade ≥2 mucositis (24.3 days vs 37.1 days, P=0.044) and reduced body weight loss during RT (3.1% vs 7.4%, P=0.023) compared with clear water. The use of clove-based herbal mouthwash also reduced the incidence of grade 3 mucositis (28.6% vs 57.1%), supplemental nutrition (0% vs 28.6%), and RT interruption (14.3% vs 28.6%), and reduced the duration of grade 3 mucositis (5.1 days vs 17.7 days) and RT interruption (1 days vs 8.5 days). In addition, clove-based herbal mouthwash delayed the time to onset of mucositis (26.6 days vs 24.5 days) and reduced the maximum pain score (4.1 vs 4.9). However, these differences were not statistically significant. Conclusion Although we could not find significant differences in some end points, this single-blind randomized study showed that a clove-based herbal mouthwash can have a potentially beneficial effect on minimizing or preventing radiation-induced oral mucositis in patients with head and neck cancer. To confirm the results of our study, well-designed randomized studies with large sample sizes will be required.
Collapse
Affiliation(s)
- Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine
| | - Deok-Sang Hwang
- Department of Korean Medicine Obstetrics & Gynecology, Kyung Hee University Medical Center
| | - Seong Woo Yoon
- Department of Korean Internal Medicine, Korean Medicine Cancer Center, Kyung Hee University Hospital at Gangdong
| | - Jinsung Kim
- Department of Korean Internal Medicine, Kyung Hee University Medical Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Wang YM, Du GQ. Glycyrrhizic acid prevents enteritis through reduction of NF‑κB p65 and p38MAPK expression in rat. Mol Med Rep 2016; 13:3639-46. [PMID: 26955884 DOI: 10.3892/mmr.2016.4981] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
Glycyrrhizic acid has a variety of biological properties, including a protective function in the liver, and anti‑inflammatory, anti‑ulcer, anti‑anaphylaxis, anti‑oxidant, immunoregulatory, antiviral and anticancer activities. The efficacy of glycyrrhizic acid can be increased when combined with other medicines. In the present study, the potential protective effects of glycyrrhizic acid against enteritis in rats, and its role in regulating anti‑inflammation, anti‑oxidation, angiogenic and apoptotic mechanisms were investigated using enzyme‑linked immunosorbent and bicinchoninic acid assays, and reverse transcription‑quantitative polymerase chain reaction and western blotting analyses. Adult male Sprague‑Dawley rats were injected with 20 mg/kg methotrexate (MTX) to establish enteritis. Additionally, rats with MTX‑induced enteritis were peritoneally injected with 200 mg glycyrrhizic acid for 9 weeks. The current study demonstrated that glycyrrhizic acid could alleviate MTX‑induced increases of tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6 levels, and raise IL‑10 levels, in rats with enteritis. Treatment with glycyrrhizic acid significantly reduced D‑lactate and intercellular adhesion molecule‑1 gene expression (P<0.01), but did not inhibit diamine oxidase activity in MTX‑induced enteritis. Pretreatment with glycyrrhizic acid significantly suppressed the promotion of p38 mitogen‑activated protein kinase (p38MAPK), nuclear factor‑κB p65 (NF‑κB p65) protein expression, interferon‑γ protein concentration, and caspase‑3 and cycloxygenase‑2 activity in MTX‑induced enteritis (P<0.01). The findings of the current study suggest that glycyrrhizic acid may prevent enteritis by reducing NF‑κB p65 and p38MAPK expression levels, which may inform future therapeutic strategies for the treatment of enteritis.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Department of Pediatric Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Guo-Qiang Du
- Department of Pediatric Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
33
|
Abstract
Liquorice foliage
Collapse
|
34
|
Wang P, Yuan X, Wang Y, Zhao H, Sun X, Zheng Q. Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells. Mol Med Rep 2015; 12:7623-8. [PMID: 26397392 DOI: 10.3892/mmr.2015.4346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 07/22/2015] [Indexed: 11/06/2022] Open
Abstract
The current study investigated the mechanisms by which licochalcone C induces apoptosis of T24 human malignant bladder cancer cells. Cell viability was evaluated using an MTT assay. Apoptosis was investigated using a morphological assay, flow cytometry and a caspase‑3 activity assay. Alterations in the gene expression levels of Bcl‑2 family members were measured by semi‑quantitative reverse transcription‑polymerase chain reaction assays. The protein levels of pro‑caspase‑3 and cleaved poly(ADP ribose) polymerase were measured using western blotting. The results indicated that licochalcone C induced T24 cell apoptosis in a concentration‑dependent manner. Licochalcone C treatment reduced the levels of the anti‑apoptotic mRNAs (Bcl‑2, Bcl‑w and Bcl‑XL) and increased expression of the pro‑apoptotic mRNAs (Bax and Bim). The Bcl‑2 family inhibitor (ABT‑737) reduced apoptosis induced by licochalcone C in T24 cells. The current study demonstrated that licochalcone C may be a potential adjuvant therapeutic agent for bladder cancer.
Collapse
Affiliation(s)
- Penglong Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xuan Yuan
- Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Yan Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Hong Zhao
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xiling Sun
- Shandong Provincial Key Laboratory of Heart‑Spleen Foundation of Traditional Chinese Medicine, Binzhou Medical College, Yantai, Shandong 264005, P.R. China
| | - Qiusheng Zheng
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
35
|
Zhou M, Liu L, Wang W, Han J, Ren H, Zheng Q, Wang D. Role of licochalcone C in cardioprotection against ischemia/reperfusion injury of isolated rat heart via antioxidant, anti-inflammatory, and anti-apoptotic activities. Life Sci 2015; 132:27-33. [PMID: 25921769 DOI: 10.1016/j.lfs.2015.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/30/2022]
Abstract
AIMS This study aimed to evaluate the protective effect of licochalcone C against myocardial ischemia/reperfusion injury in rats. MAIN METHODS Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dtmax) were recorded as myocardial function. Levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined by using enzyme-linked immunosorbent assay. Cell morphology was observed and mitochondrial damage was assessed by HE coloration and transmission electron microscopy, respectively. Cardiomyocyte apoptosis was determined by using terminal deoxynucleotidyl transferased UTP nick-end labeling (TUNEL). KEY FINDINGS Pretreatment with licochalcone C significantly improved the recovery of LVDP and ±dp/dtmax, and increased the levels of SOD and GSH/GSSG ratio. However, pretreatment with licochalcone C not only decreased the TUNEL-positive cell ratio and morphological changes, but also weaken the mitochondrial injury and the levels of CK, LDH, MDA, and TNF-α. SIGNIFICANCE These results suggested an important function of licochalcone C extracted from traditional Chinese medicine in the cardioprotection via antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Mingjie Zhou
- Weifang Medical University, Weifang 261031, China; Affiliated Qianfoshan Hospital of Shandong University, Jinan 250014, China
| | - Liqun Liu
- Weifang Medical University, Weifang 261031, China
| | - Wenjuan Wang
- Pharmacy School, Shihezi University, Shihezi 832002, China
| | - Jichun Han
- Pharmacy School, Shihezi University, Shihezi 832002, China
| | - Huanhuan Ren
- Pharmacy School, Shihezi University, Shihezi 832002, China
| | | | - Dong Wang
- Affiliated Qianfoshan Hospital of Shandong University, Jinan 250014, China.
| |
Collapse
|
36
|
Pesce M, Franceschelli S, Ferrone A, De Lutiis MA, Patruno A, Grilli A, Felaco M, Speranza L. Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in the U937 cell line. J Cell Mol Med 2015; 19:1548-56. [PMID: 25807993 PMCID: PMC4511353 DOI: 10.1111/jcmm.12524] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/02/2014] [Indexed: 11/29/2022] Open
Abstract
Polyphenols are the major components of many traditional herbal remedies, which exhibit several beneficial effects including anti-inflammation and antioxidant properties. Src homology region 2 domain-containing phosphatase-1 (SHP-1) is a redox sensitive protein tyrosine phosphatase that negatively influences downstream signalling molecules, such as mitogen-activated protein kinases, thereby inhibiting inflammatory signalling induced by lipopolysaccharide (LPS). Because a role of transforming growth factor β-activated kinase-1 (TAK1) in the upstream regulation of JNK molecule has been well demonstrated, we conjectured that SHP-1 could mediate the anti-inflammatory effect of verbascoside through the regulation of TAK-1/JNK/AP-1 signalling in the U937 cell line. Our results demonstrate that verbascoside increased the phosphorylation of SHP-1, by attenuating the activation of TAK-1/JNK/AP-1 signalling. This leads to a reduction in the expression and activity of both COX and NOS. Moreover, SHP-1 depletion deletes verbascoside inhibitory effects on pro-inflammatory molecules induced by LPS. Our data confirm that SHP-1 plays a critical role in restoring the physiological mechanisms of inducible proteins such as COX2 and iNOS, and that the down-regulation of TAK-1/JNK/AP-1 signalling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Mirko Pesce
- Department of Psychological, Humanistic and Territorial Sciences, University G. D'Annunzio, Chieti, Italy
| | - Sara Franceschelli
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Maria Anna De Lutiis
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Alfredo Grilli
- Department of Psychological, Humanistic and Territorial Sciences, University G. D'Annunzio, Chieti, Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| |
Collapse
|
37
|
Somi MH, Bagheri M, Ghojazadeh M. Efficacy of an Iranian herbal preparation (Lax-Asab) in treating functional constipation: A randomized, placebo-controlled clinical trial. J Tradit Complement Med 2015; 5:153-6. [PMID: 26151027 PMCID: PMC4488565 DOI: 10.1016/j.jtcme.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/26/2014] [Accepted: 07/13/2014] [Indexed: 12/28/2022] Open
Abstract
Functional constipation is a common clinical complaint of patients with unsatisfactory treatment outcome. We designed this study to evaluate the efficiency of a traditional herbal preparation (Lax-Asab) in treating chronic constipation. In this double-blind, randomized, placebo-controlled clinical trial, participants with chronic constipation (n = 48) were randomly selected to receive either the Lax-Asab powder (n = 24) or placebo (n = 24) on alternative days for 4 weeks. The Lax-Asab powder contains equal amounts of Cassia angustifolia Vahl. (狹葉番瀉葉 xiá yè fān xiè yè), Mentha piperita L. (胡椒薄荷 hú jiāo bò hé), Zingiber officinale Rosc. (生薑 shēng jiāng), Glycyrrhiza glabra L. (甘草 gān cǎo). A total of 40 patients completed the study. We determined the severity of constipation based on defecation frequency (per week) and defecation difficulties. Of the total of 48 patients who participated, 40 completed the trial [24 men (60%), mean age, 21.0 ± 4.2 years; 16 women (40%), mean age, 20.1 ± 4.3 years]. The mean of weekly defecation frequency increased in both groups; from 1.8 ± 0.41 to 4.8 ± 1.12 times in patients who received Lax-Asab and from 1.7 ± 0.44 to 2.2 ± 0.61 times in patients who received placebo. A time–treatment interaction showed that this increase was significantly higher in the intervention group. Defecation difficulties improved significantly more in patients who received Lax-Asab than patients who received placebo. There was no statistically significant difference between the two groups with regard to the side effects observed. This study confirms the efficacy and tolerability of an Iranian herbal preparation, Lax-Asab, in treating patients with chronic functional constipation.
Collapse
Affiliation(s)
- Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Masood Bagheri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Ghojazadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
38
|
Patruno A, Fornasari E, Di Stefano A, Cerasa LS, Marinelli L, Baldassarre L, Sozio P, Turkez H, Franceschelli S, Ferrone A, Di Giacomo V, Speranza L, Felaco M, Cacciatore I. Synthesis of a Novel Cyclic Prodrug of S-Allyl-glutathione Able To Attenuate LPS-Induced ROS Production through the Inhibition of MAPK Pathways in U937 Cells. Mol Pharm 2014; 12:66-74. [DOI: 10.1021/mp500431r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Hasan Turkez
- Department
of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | | | | | | | | | | | | |
Collapse
|
39
|
Ma LQ, Pan CS, Yang N, Liu YY, Yan L, Sun K, Wei XH, He K, Xiao MM, Fan JY, Han JY. Posttreatment with Ma-Xing-Shi-Gan-Tang, a Chinese Medicine Formula, Ameliorates Lipopolysaccharide-Induced Lung Microvessel Hyperpermeability and Inflammatory Reaction in Rat. Microcirculation 2014; 21:649-63. [DOI: 10.1111/micc.12144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Li-Qian Ma
- Department of Integration of Chinese and Western Medicine; School of Basic Medical Sciences; Peking University; Beijing China
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Ning Yang
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Li Yan
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Kai Sun
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Ke He
- Department of Integration of Chinese and Western Medicine; School of Basic Medical Sciences; Peking University; Beijing China
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Meng-Meng Xiao
- Department of Integration of Chinese and Western Medicine; School of Basic Medical Sciences; Peking University; Beijing China
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine; School of Basic Medical Sciences; Peking University; Beijing China
- Tasly Microcirculation Research Center; Peking University Health Science Center; Beijing China
- Key Laboratory of Microcirculation; State Administration of Traditional Chinese Medicine of China; Beijing China
- Key Laboratory of Stasis and Phlegm; State Administration of Traditional Chinese Medicine of China; Beijing China
| |
Collapse
|
40
|
Dal Picolo CR, Bezerra MP, Gomes KS, Passero LFD, Laurenti MD, Martins EGA, Sartorelli P, Lago JHG. Antileishmanial activity evaluation of adunchalcone, a new prenylated dihydrochalcone from Piper aduncum L. Fitoterapia 2014; 97:28-33. [PMID: 24862066 DOI: 10.1016/j.fitote.2014.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
Abstract
Bioactivity-guided fractionation of EtOH extract from the leaves of Piper aduncum L. (Piperaceae) afforded a new dihydrochalcone, named adunchalcone. Its structure was elucidated on the basis of their spectroscopic data, primarily NMR and MS. Adunchalcone was evaluated against promastigote forms of Leishmania (L.) amazonensis, L. (V.) braziliensis, L. (V.) shawi, and L. (L.) chagasi and displayed 50% effective concentrations (EC50) of 11.03, 26.70, and 11.26 μM, as well as selective indexes of 4.86, 2.01, 4.76 and 0.50, respectively. This compound was also tested against intracellular forms of L. (L.) amazonensis, displaying weak activity, in comparison to reference drug amphotericin B. However, despite reduced effect of adunchalcone against amastigotes of L. (L.) amazonensis, this work opens the perspective to use this particular molecule as a scaffold for the design of novel and selective drug candidates for neglected diseases, mainly leishmaniasis.
Collapse
Affiliation(s)
- Camilla R Dal Picolo
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana P Bezerra
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kaio S Gomes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Felipe D Passero
- Laboratório de Patologia de Moléstias Infecciosas (LIM-50), Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia D Laurenti
- Laboratório de Patologia de Moléstias Infecciosas (LIM-50), Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Euder Glendes A Martins
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia Sartorelli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Henrique G Lago
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Franceschelli S, Pesce M, Ferrone A, De Lutiis MA, Patruno A, Grilli A, Felaco M, Speranza L. Astaxanthin treatment confers protection against oxidative stress in U937 cells stimulated with lipopolysaccharide reducing O2- production. PLoS One 2014; 9:e88359. [PMID: 24520374 PMCID: PMC3919765 DOI: 10.1371/journal.pone.0088359] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/11/2014] [Indexed: 01/08/2023] Open
Abstract
Recently, astaxanthin (ASTA) studies have focused on several biological functions such as radical scavenging, singlet oxygen quenching, anti-carcinogenesis, anti-diabetic, anti-obesity, anti-inflammatory, anti-melanogenesis, and immune enhancement activities. In this study, we investigated the potential role protective of ASTA, an antioxidant marine carotenoid, in restoring physiological conditions in U937 cells stimulated with LPS (10 µg/ml). Our results show that pre-treatment with ASTA (10 µM) for 1 h attenuates the LPS-induced toxicity and ROS production. The beneficial effect of ASTA is associated with a reduction intracellular O2 (-) production by restoring the antioxidant network activity of superoxide dismutase (SOD) and catalase (CAT), which influence HO-1 expression and activity by inhibiting nuclear translocation of Nrf2. We accordingly hypothesize that ASTA has therapeutic properties protecting U937 cells from LPS-induced inflammatory and oxidative stress.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging, University G. D’Annunzio, Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Science of Aging, University G. D’Annunzio, Chieti, Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University G. D’Annunzio, Chieti, Italy
| | - Maria Anna De Lutiis
- Department of Medicine and Science of Aging, University G. D’Annunzio, Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University G. D’Annunzio, Chieti, Italy
| | - Alfredo Grilli
- Department of Psychological, Humanistic and Territorial Sciences, University G. D’Annunzio, Chieti, Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging, University G. D’Annunzio, Chieti, Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University G. D’Annunzio, Chieti, Italy
- * E-mail:
| |
Collapse
|
42
|
Franceschelli S, Ferrone A, Pesce M, Riccioni G, Speranza L. Biological functional relevance of asymmetric dimethylarginine (ADMA) in cardiovascular disease. Int J Mol Sci 2013; 14:24412-21. [PMID: 24351825 PMCID: PMC3876119 DOI: 10.3390/ijms141224412] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022] Open
Abstract
There is growing evidence that increased levels of the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) may contribute to endothelial dysfunction. Studies in animal models as well as in humans have suggested that the increase in ADMA occurs at a time when vascular disease has not yet become clinically evident. ADMA competitively inhibits NO elaboration by displacing L-arginine from NO synthase. In a concentration-dependent manner, it thereby interferes not only with endothelium-dependent, NO-mediated vasodilation, but also with other biological functions exerted by NO. The upshot may be a pro-atherogenic state. Recently, several studies have investigated the effect of various therapeutical interventions on ADMA plasma concentrations.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Mirko Pesce
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Graziano Riccioni
- Intensive Cardiology Care Unit, San Camillo de Lellis Hospital, San Severo (FG) 71016, Italy; E-Mail:
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-871-355-4550; Fax: +39-871-355-4551
| |
Collapse
|
43
|
Kim JS, Park MR, Lee SY, Kim DK, Moon SM, Kim CS, Cho SS, Yoon G, Im HJ, You JS, Oh JS, Kim SG. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway. Oncol Rep 2013; 31:755-62. [PMID: 24337492 PMCID: PMC3983909 DOI: 10.3892/or.2013.2929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Mi-Ra Park
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sook-Young Lee
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Do Kyoung Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sung-Min Moon
- Department of Oral Biochemistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729, Republic of Korea
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju 501-759, Republic of Korea
| | - Ji-Su Oh
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Su-Gwan Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|
44
|
Wang Z, Cao Y, Paudel S, Yoon G, Cheon SH. Concise synthesis of licochalcone C and its regioisomer, licochalcone H. Arch Pharm Res 2013; 36:1432-6. [PMID: 23897165 DOI: 10.1007/s12272-013-0222-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Licochalone C (7a) is a retrochalcone isolated from Glycyrrhiza inflata, which shows potent antioxidant properties and inhibition of bacterial growth and cellular respiration. Biological studies have suggested that licochalcone C attenuates the lipopolysaccharide and interferon-gamma induced inflammatory response by decreasing the expression and activity of inducible nitric oxide synthase and modulating the antioxidant network activity of superoxide dismutase, catalase, and glutathione peroxidase activity. Licochalcone C also inhibits NADH-cytochrome C reductase in the membrane fraction of Micrococcus luteus. Since pharmacological activity studies of licochalcone C are ongoing and the yield of the compound is poor from natural product, we report a concise four step synthesis of licochalcone C (7a) and its regioisomer, tentatively called licochalcone H (7b), by employing acid-mediated Claisen-Schmidt condensation as a key step with 6 and 20 % overall yield, respectively.
Collapse
Affiliation(s)
- Zengtao Wang
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | | | |
Collapse
|
45
|
Man S, Wang J, Gao W, Guo S, Li Y, Zhang L, Xiao P. Chemical analysis and anti-inflammatory comparison of the cell culture of Glycyrrhiza with its field cultivated variety. Food Chem 2013; 136:513-7. [DOI: 10.1016/j.foodchem.2012.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/31/2012] [Accepted: 08/08/2012] [Indexed: 02/08/2023]
|
46
|
|
47
|
Yang CLH, Or TCT, Ho MHK, Lau ASY. Scientific Basis of Botanical Medicine as Alternative Remedies for Rheumatoid Arthritis. Clin Rev Allergy Immunol 2012; 44:284-300. [PMID: 22700248 DOI: 10.1007/s12016-012-8329-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cindy L H Yang
- Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | |
Collapse
|
48
|
Kim MJ, Lee YH, Kwak J, Na Y, Yoon HG. Protective effects of a chalcone derivative against Aβ-induced oxidative stress and neuronal damage. BMB Rep 2012; 44:730-4. [PMID: 22118539 DOI: 10.5483/bmbrep.2011.44.11.730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amyloid Β-peptide (AΒ-peptide)-induced oxidative stress is thought to be a critical component of the pathophysiology of Alzheimer's disease (AD). New chalcone derivatives, the Chana series, were recently synthesized from the retrochalcones of licorice. In this study, we investigated the protective effects of the Chana series against neurodegenerative changes in vitro and in vivo. Among the Chana series, Chana 30 showed the highest free radical scavenging activity (90.7%) in the 1,1-diphenyl-2- picrylhydrazyl assay. Chana 30 also protected against AΒ-induced neural cell injury in vitro. Furthermore, Chana 30 reduced the learning and memory deficits of AΒ(1-42)-peptide injected mice. Taken together, these results suggest that Chana 30 may be a promising candidate as a potent therapeutic agent against neurodegenerative diseases. [BMB reports 2011; 44(11): 730-734].
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences,Yonsei University College of Medicine, Seoul
| | | | | | | | | |
Collapse
|
49
|
Riccioni G, Speranza L, Pesce M, Cusenza S, D'Orazio N, Glade MJ. Novel phytonutrient contributors to antioxidant protection against cardiovascular disease. Nutrition 2012; 28:605-10. [PMID: 22480801 DOI: 10.1016/j.nut.2011.11.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 11/25/2011] [Accepted: 11/25/2011] [Indexed: 11/26/2022]
Abstract
The associations linking endothelial inflammation, endothelial oxidative stress, and atherogenesis and the potential for dietary phytonutrients to decrease the impact of these associations were assessed. A detailed literature review was conducted and summarized. A large body of scientific evidence describes the interactions among endothelial inflammation, endothelial oxidative stress, and atherogenesis. A growing body of research indicates that several dietary phytonutrients (astaxanthin, lycopene, lutein, and glabridin) can decrease the risk for atherosclerosis by decreasing endothelial inflammation and oxidative stress. The consumption of foods or dietary supplements that provide astaxanthin, lycopene, lutein, and glabridin can ameliorate endothelial inflammation and oxidative stress, retard atherogenesis, and decrease the risk for atherogenic cardiovascular disease.
Collapse
Affiliation(s)
- Graziano Riccioni
- Cardiology Unit, San Camillo de Lellis Hospital, Manfredonia, Foggia, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Hua H, Liang Z, Li W, Meng Y, Li X, Zhang Z, Lu C, Meng J, Shan F. Phenotypic and functional maturation of murine dendritic cells (DCs) induced by purified Glycyrrhizin (GL). Int Immunopharmacol 2012; 12:518-25. [PMID: 22293534 DOI: 10.1016/j.intimp.2012.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/25/2022]
Abstract
The aim of this study is to investigate phenotypic and functional modulation of murine dendritic cells (DCs) with use of purified Glycyrrhizin (GL). These impacts of GL on DCs both from bone marrow derived DCs and established DC cell 2.4 were assessed with conventional scanning electron microscopy (SEM), flow cytometry (FCM), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that the purified GL induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD80, CD83 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs2.4 cells were down- regulated after treatment with GL (which occurs when phagocytosis of DCs2.4 cells were decreased). Finally, we proved that GL increased the production of IL-12, IL-10 and decreased the production of tumor necrosis factor alpha (TNF-α). These data indicated that GL could promote maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that GL could exert positive modulation on murine DCs.
Collapse
Affiliation(s)
- Hui Hua
- Department of Immunology, School of Basic Medical Science, China Medical University, No.92, North Second Road, Heping District, Shenyang 110001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|