1
|
Ouellet S, Ferguson L, Lau AZ, Lim TKY. CysPresso: a classification model utilizing deep learning protein representations to predict recombinant expression of cysteine-dense peptides. BMC Bioinformatics 2023; 24:200. [PMID: 37193950 PMCID: PMC10189939 DOI: 10.1186/s12859-023-05327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Cysteine-dense peptides (CDPs) are an attractive pharmaceutical scaffold that display extreme biochemical properties, low immunogenicity, and the ability to bind targets with high affinity and selectivity. While many CDPs have potential and confirmed therapeutic uses, synthesis of CDPs is a challenge. Recent advances have made the recombinant expression of CDPs a viable alternative to chemical synthesis. Moreover, identifying CDPs that can be expressed in mammalian cells is crucial in predicting their compatibility with gene therapy and mRNA therapy. Currently, we lack the ability to identify CDPs that will express recombinantly in mammalian cells without labour intensive experimentation. To address this, we developed CysPresso, a novel machine learning model that predicts recombinant expression of CDPs based on primary sequence. RESULTS We tested various protein representations generated by deep learning algorithms (SeqVec, proteInfer, AlphaFold2) for their suitability in predicting CDP expression and found that AlphaFold2 representations possessed the best predictive features. We then optimized the model by concatenation of AlphaFold2 representations, time series transformation with random convolutional kernels, and dataset partitioning. CONCLUSION Our novel model, CysPresso, is the first to successfully predict recombinant CDP expression in mammalian cells and is particularly well suited for predicting recombinant expression of knottin peptides. When preprocessing the deep learning protein representation for supervised machine learning, we found that random convolutional kernel transformation preserves more pertinent information relevant for predicting expressibility than embedding averaging. Our study showcases the applicability of deep learning-based protein representations, such as those provided by AlphaFold2, in tasks beyond structure prediction.
Collapse
Affiliation(s)
| | - Larissa Ferguson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Angus Z Lau
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tony K Y Lim
- , Vancouver, Canada.
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Schwalen C, Babu C, Phulera S, Hao Q, Wall D, Nettleton DO, Pathak TP, Siuti P. Scalable Biosynthetic Production of Knotted Peptides Enables ADME and Thermodynamic Folding Studies. ACS OMEGA 2021; 6:29555-29566. [PMID: 34778627 PMCID: PMC8582066 DOI: 10.1021/acsomega.1c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Knotted peptides present a wealth of structurally diverse, biologically active molecules, with the inhibitor cystine knot/knottin class among the most ecologically common ones. Many of these natural products interact with extracellular targets such as voltage-gated ion channels with exquisite selectivity and potency, making them intriguing therapeutic modalities. Such compounds are often produced in low concentrations by intractable organisms, making structural and biological characterization challenging, which is frequently overcome by various expression strategies. Here, we sought to test a biosynthetic route for the expression and study of knotted peptides. We screened expression constructs for a biosynthesized knotted peptide to determine the most influential parameters for successful disulfide folding and used NMR spectroscopic fingerprinting to validate topological structures. We performed pharmacokinetic characterization, which indicated that the interlocking disulfide structure minimizes liabilities of linear peptide sequences, and propose a mechanism by which knotted peptides are cleared. We then developed an assay to monitor solution folding in real time, providing a strategy for studying the folding process during maturation, which provided direct evidence for the importance of backbone organization as the driving force for topology formation.
Collapse
Affiliation(s)
- Christopher
J. Schwalen
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charles Babu
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Swastik Phulera
- Chemical
Biology and Therapeutics, Novartis Institutes
for Biomedical Research, Cambridge Massachusetts, 02139, United States
| | - Qin Hao
- Pharmacokinetic
Sciences, Novartis Institutes for Biomedical
Research, Cambridge, Massachusetts 02139, United States
| | - Daniel Wall
- Pharmacokinetic
Sciences, Novartis Institutes for Biomedical
Research, Cambridge, Massachusetts 02139, United States
| | - David O. Nettleton
- Pharmacokinetic
Sciences, Novartis Institutes for Biomedical
Research, Cambridge, Massachusetts 02139, United States
| | - Tejas P. Pathak
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Piro Siuti
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Duggan NM, Saez NJ, Clayton D, Budusan E, Watson EE, Tucker IJ, Rash LD, King GF, Payne RJ. Total Synthesis of the Spider-Venom Peptide Hi1a. Org Lett 2021; 23:8375-8379. [PMID: 34632783 DOI: 10.1021/acs.orglett.1c03112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hi1a is a venom peptide from the Australian funnel-web spider Hadronyche infensa with a complex tertiary structure. Hi1a has neuroprotective and cardioprotective properties due to its potent inhibition of acid-sensing ion channel 1a (ASIC1a) and is currently being pursued as a novel therapy for acute ischemic events. Herein, we describe the total synthesis of Hi1a using native chemical ligation. The synthetic peptide was successfully folded and exhibited similar inhibitory activity on ASIC1a to recombinant Hi1a.
Collapse
Affiliation(s)
- Nisharnthi M Duggan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Daniel Clayton
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elena Budusan
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emma E Watson
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Isaac J Tucker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lachlan D Rash
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Stability and Safety of Inhibitor Cystine Knot Peptide, GTx1-15, from the Tarantula Spider Grammostola rosea. Toxins (Basel) 2021; 13:toxins13090621. [PMID: 34564625 PMCID: PMC8473062 DOI: 10.3390/toxins13090621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
Inhibitor cystine knot (ICK) peptides are knotted peptides with three intramolecular disulfide bonds that affect several types of ion channels. Some are proteolytically stable and are promising scaffolds for drug development. GTx1-15 is an ICK peptide that inhibits the voltage-dependent calcium channel Cav3.1 and the voltage-dependent sodium channels Nav1.3 and Nav1.7. As a model molecule to develop an ICK peptide drug, we investigated several important pharmaceutical characteristics of GTx1-15. The stability of GTx1-15 in rat and human blood plasma was examined, and no GTx1-15 degradation was observed in either rat or human blood plasma for 24 h in vitro. GTx1-15 in blood circulation was detected for several hours after intravenous and intramuscular administration, indicating high stability in plasma. The thermal stability of GTx1-15 as examined by high thermal incubation and protein thermal shift assays indicated that GTx1-15 possesses high heat stability. The cytotoxicity and immunogenicity of GTx1-15 were examined using the human monocytic leukemia cell line THP-1. GTx1-15 showed no cytotoxicity or immunogenicity even at high concentrations. These results indicate that GTx1-15 itself is suitable for peptide drug development and as a peptide library scaffold.
Collapse
|
5
|
Dao Y, Wang B, Dong W, Zhang J, Zhong C, Zhang Z, Dong S. Facile Generation of Strained Peptidyl Thiolactones from Hydrazides and Its Application in Assembling
MUC
‐1
VNTR
Oligomers
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuankun Dao
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
- Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 China
| | - Biao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Chao Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 China
| | - Zhili Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| |
Collapse
|
6
|
Darwish M, Gao X, Shatz W, Li H, Lin M, Franke Y, Tam C, Mortara K, Zilberleyb I, Hannoush RN, Blanchette C. Nanolipoprotein particles for co-delivery of cystine-knot peptides and Fab-based therapeutics. NANOSCALE ADVANCES 2021; 3:3929-3941. [PMID: 36133017 PMCID: PMC9419673 DOI: 10.1039/d1na00218j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 06/16/2023]
Abstract
Nanolipoprotein particles (NLPs) have been evaluated as an in vivo delivery vehicle for a variety of molecules of therapeutic interest. However, delivery of peptide-like drugs in combination with therapeutic Fabs has not yet been evaluated. In this study, we describe the development and characterization of cystine-knot peptide (CKP)-containing NLPs and Fab-CKP-NLP conjugates. CKPs were incorporated into NLPs using a self-assembly strategy. The trypsin inhibitor EETI-II, a model CKP, was produced with a C16 fatty acyl chain to enable incorporation of the CKP into the lipid bilayer core during NLP assembly. The CKP-NLP retained trypsin inhibitory function although the overall activity was reduced by ∼5 fold compared to free CKP, which was presumably due to steric hindrance. The NLP platform was also shown to accommodate up to ∼60 CKP molecules. Moreover, the stability of the CKP-NLP was comparable to the NLP control, displaying a relatively short half-life (∼1 h) in 50% serum at 37 °C. Therapeutic Fabs were also loaded onto the CKP-NLP by introducing thiol-reactive lipids that would undergo a covalent reaction with the Fab. Using this strategy, Fab loading could be reliably controlled from 1-50 Fabs per CKP-NLP and was found to be independent of CKP density. Surprisingly, Fab incorporation into CKP-NLPs led to a substantial improvement in NLP stability (half-life > 24 h) at 37 °C; also, there was no reduction in CKP activity in the Fab-CKP-NLP conjugates compared to CKP-NLPs. Altogether, our data demonstrate the potential of NLPs as a promising platform for the targeted or multidrug delivery of peptide-based drug candidates in combination with Fabs.
Collapse
Affiliation(s)
| | - Xinxin Gao
- Genentech Inc 1 DNA way So San Francisco 94080 USA
| | | | - Hong Li
- Genentech Inc 1 DNA way So San Francisco 94080 USA
| | - May Lin
- Genentech Inc 1 DNA way So San Francisco 94080 USA
| | | | | | - Kyle Mortara
- Genentech Inc 1 DNA way So San Francisco 94080 USA
| | | | | | | |
Collapse
|
7
|
Attah AF, Omobola AI, Moody JO, Sonibare MA, Adebukola OM, Onasanwo SA. Detection of cysteine-rich peptides in Tragia benthamii Baker (Euphorbiaceae) and in vivo antiinflammatory effect in a chick model. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Tragia benthamii (TBM) commonly called the climbing nettle is a tropical plant claimed to have numerous anti inflammatory effects in sub Saharan African ethnomedicine which lacks scientific evidence. Aqueous extracts of TBM were further prepurified on a RP-C18 parked solid phase system to obtain 20% aqueous fraction. This fraction was enzymatically and chemically analyzed (by MALDI TOF MS and MS/MS) to contain interesting low molecular weight cysteine-rich stable peptides within the range of 2.5–3.2 KDa. The 20% aqueous fraction was further tested in vivo using carrageenan-induced foot edema (acute inflammation) in seven-day old chicks with diclofenac as reference drug. The cytotoxicity of this active fraction was investigated using the brine shrimp lethality assay. The brine shrimp cytotoxicity assay produced LC50 above 1000 μg/mL. Pretreatment with the TBM extract (30–300 mg/kg, i.p) dose dependently (P<0.01) reduced foot edema with maximal inhibition of 0.253 ± 0.180 (84.3%) at 300 mg/kg body weight, which was comparable to that of diclofenac with inhibition (P<0.05) of 0.410 ± 0.271 (74.5%) at 10 mg/kg body weight. The study has therefore shown for the first time, the detection of cysteine-rich biologically active peptides in T. benthamii and the stable peptide extracts from this ethnomedicinal plant, which is not toxic to Artemia salina, exhibits anti inflammatory activity in a chick in vivo model. This may provide scientific evidence for its use in the treatment of inflammation and pain in traditional medicine. Further in-depth vivo and in vitro studies will be required to investigate its anti inflammatory activity including effect on HUVEC-TERT, the possible inhibition of ICAM-1 surface expression and the mechanism of the anti inflammatory effect.
Collapse
Affiliation(s)
- Alfred F. Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences , University of Ilorin , Ilorin , Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy , University of Ibadan , Ibadan , Nigeria
| | - Abobarin I. Omobola
- Department of Pharmacognosy, Faculty of Pharmacy , University of Ibadan , Ibadan , Nigeria
| | - Jones O. Moody
- Department of Pharmacognosy, Faculty of Pharmacy , University of Ibadan , Ibadan , Nigeria
| | - Mubo A. Sonibare
- Department of Pharmacognosy, Faculty of Pharmacy , University of Ibadan , Ibadan , Nigeria
| | - Olubori M. Adebukola
- Department of Physiology, College of Medicine , University of Ibadan , Ibadan , Nigeria
| | - Samuel A. Onasanwo
- Department of Physiology, College of Medicine , University of Ibadan , Ibadan , Nigeria
| |
Collapse
|
8
|
Chen T, Tang S, Hecht ES, Yen CW, Andersen N, Chin S, Cadang L, Roper B, Estevez A, Rohou A, Chang D, Dai L, Liu P, Al-Sayah M, Nagapudi K, Lin F, Famili A, Hu C, Kuhn R, Stella C, Crittenden CM, Gruenhagen JA, Venkatramani C, Hannoush RN, Leung D, Vandlen R, Yehl P. Discovery of a dual pathway aggregation mechanism for a therapeutic constrained peptide. J Pharm Sci 2021; 110:2362-2371. [PMID: 33652014 DOI: 10.1016/j.xphs.2020.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Constrained peptides (CPs) have emerged as attractive candidates for drug discovery and development. To fully unlock the therapeutic potential of CPs, it is crucial to understand their physical stability and minimize the formation of aggregates that could induce immune responses. Although amyloid like aggregates have been researched extensively, few studies have focused on aggregates from other peptide scaffolds (e.g., CPs). In this work, a streamlined approach to effectively profile the nature and formation pathway of CP aggregates was demonstrated. Aggregates of various sizes were detected and shown to be amorphous. Though no major changes were found in peptide structure upon aggregation, these aggregates appeared to have mixed natures, consisting of primarily non-covalent aggregates with a low level of covalent species. This co-existence phenomenon was also supported by two kinetic pathways observed in time- and temperature-dependent aggregation studies. Furthermore, a stability study with 8 additional peptide variants exhibited good correlation between aggregation propensity and peptide hydrophobicity. Therefore, a dual aggregation pathway was proposed, with the non-covalent aggregates driven by hydrophobic interactions, whereas the covalent ones formed through disulfide scrambling. Overall, the workflow presented here provides a powerful strategy for comprehensive characterization of peptide aggregates and understanding their mechanisms of formation.
Collapse
Affiliation(s)
- Tao Chen
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Shijia Tang
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Elizabeth S Hecht
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Chun-Wan Yen
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Nisana Andersen
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Steven Chin
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Brian Roper
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Alberto Estevez
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Alexis Rohou
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Debby Chang
- Department of Drug Delivery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Peter Liu
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Mohammad Al-Sayah
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Fiona Lin
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Amin Famili
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Chloe Hu
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Robert Kuhn
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Christopher M Crittenden
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jason A Gruenhagen
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Cadapakam Venkatramani
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Dennis Leung
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Richard Vandlen
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Peter Yehl
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| |
Collapse
|
9
|
McCarthy S, Robinson J, Thalassinos K, Tabor AB. A Chemical Biology Approach to Probing the Folding Pathways of the Inhibitory Cystine Knot (ICK) Peptide ProTx-II. Front Chem 2020; 8:228. [PMID: 32309273 PMCID: PMC7145985 DOI: 10.3389/fchem.2020.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 11/24/2022] Open
Abstract
Peptide toxins that adopt the inhibitory cystine knot (ICK) scaffold have very stable three-dimensional structures as a result of the conformational constraints imposed by the configuration of the three disulfide bonds that are the hallmark of this fold. Understanding the oxidative folding pathways of these complex peptides, many of which are important therapeutic leads, is important in order to devise reliable synthetic routes to correctly folded, biologically active peptides. Previous research on the ICK peptide ProTx-II has shown that in the absence of an equilibrating redox buffer, misfolded intermediates form that prevent the formation of the native disulfide bond configuration. In this paper, we used tandem mass spectrometry to examine these misfolded peptides, and identified two non-native singly bridged peptides, one with a Cys(III)-Cys(IV) linkage and one with a Cys(V)-Cys(VI) linkage. Based on these results, we propose that the C-terminus of ProTx-II has an important role in initiating the folding of this peptide. To test this hypothesis, we have also studied the folding pathways of analogs of ProTx-II containing the disulfide-bond directing group penicillamine (Pen) under the same conditions. We find that placing Pen residues at the C-terminus of the ProTx-II analogs directs the folding pathway away from the singly bridged misfolded intermediates that represent a kinetic trap for the native sequence, and allows a fully oxidized final product to be formed with three disulfide bridges. However, multiple two-disulfide peptides were also produced, indicating that further study is required to fully control the folding pathways of this modified scaffold.
Collapse
Affiliation(s)
| | | | - Konstantinos Thalassinos
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | | |
Collapse
|
10
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
11
|
Chemical Synthesis and Functional Analysis of VarvA Cyclotide. Molecules 2018; 23:molecules23040952. [PMID: 29671790 PMCID: PMC6017059 DOI: 10.3390/molecules23040952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Cyclotides are circular peptides found in various plant families. A cyclized backbone, together with multiple disulfide bonds, confers the peptides’ exceptional stability against protease digestion and thermal denaturation. In addition, the features of these antimicrobial molecules make them suitable for use in animal farming, such as aquaculture. Fmoc solid phase peptide synthesis on 2-chlorotrityl chlorine (CTC) resin using the “tea-bag” approach was conducted to generate the VarvA cyclotide identified previously from Viola arvensis. MALDI-TOF mass spectrometry determined the correct peptide amino acid sequence and the cyclization sites-critical in this multicyclic compound. The cyclotide showed antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens present in Chilean aquaculture. The highest antimicrobial activity was found to be against Flavobacterium psychrophilum. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and the Sytox Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that this compound can be proposed for the control of fish farming infections.
Collapse
|
12
|
Correnti CE, Gewe MM, Mehlin C, Bandaranayake AD, Johnsen WA, Rupert PB, Brusniak MY, Clarke M, Burke SE, De Van Der Schueren W, Pilat K, Turnbaugh SM, May D, Watson A, Chan MK, Bahl CD, Olson JM, Strong RK. Screening, large-scale production and structure-based classification of cystine-dense peptides. Nat Struct Mol Biol 2018; 25:270-278. [PMID: 29483648 PMCID: PMC5840021 DOI: 10.1038/s41594-018-0033-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 12/04/2022]
Abstract
Peptides folded through interwoven disulfides display extreme biochemical properties and unique medicinal potential. However, their exploitation has been hampered by the limited amounts isolatable from natural sources and the expense of chemical synthesis. We developed reliable biological methods for high-throughput expression, screening and large-scale production of these peptides: 46 were successfully produced in multimilligram quantities, and >600 more were deemed expressible through stringent screening criteria. Many showed extreme resistance to temperature, proteolysis and/or reduction, and all displayed inhibitory activity against at least 1 of 20 ion channels tested, thus confirming their biological functionality. Crystal structures of 12 confirmed proper cystine topology and the utility of crystallography to study these molecules but also highlighted the need for rational classification. Previous categorization attempts have focused on limited subsets featuring distinct motifs. Here we present a global definition, classification and analysis of >700 structures of cystine-dense peptides, providing a unifying framework for these molecules.
Collapse
Affiliation(s)
- Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mesfin M Gewe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher Mehlin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashok D Bandaranayake
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William A Johnsen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B Rupert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Midori Clarke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Skyler E Burke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Kristina Pilat
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shanon M Turnbaugh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Damon May
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alex Watson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Man Kid Chan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Roland K Strong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
13
|
Schwarz E. Cystine knot growth factors and their functionally versatile proregions. Biol Chem 2017; 398:1295-1308. [PMID: 28771427 DOI: 10.1515/hsz-2017-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/16/2017] [Indexed: 12/23/2022]
Abstract
The cystine knot disulfide pattern has been found to be widespread in nature, since it has been detected in proteins from plants, marine snails, spiders and mammals. Cystine knot proteins are secreted proteins. Their functions range from defense mechanisms as toxins, e.g. ion channel or enzyme inhibitors, to hormones, blood factors and growth factors. Cystine knot proteins can be divided into two superordinate groups. (i) The cystine knot peptides, also referred to - with other non-cystine knot proteins - as knottins, with linear and cyclic polypeptide chains. (ii) The cystine knot growth factor family, which is in the focus of this article. The disulfide ring structure of the cystine knot peptides is made up by the half-cystines 1-4 and 2-5, and the threading disulfide bond is formed by the half-cystines, 3-6. In the growth factor group, the disulfides of half-cystines 1 and 4 pass the ring structure formed by the half-cystines 2-5 and 3-6. In this review, special emphasis will be devoted to the growth factor cystine knot proteins and their proregions. The latter have shifted into the focus of scientific interest as their important biological roles are just to be unravelled.
Collapse
|
14
|
Corpuz N, Schwans JP. Generation of a cysteine sulfinic acid analog for incorporation in peptides using solid phase peptide synthesis. Bioorg Med Chem Lett 2017; 27:2410-2414. [DOI: 10.1016/j.bmcl.2017.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 11/15/2022]
|
15
|
Kuznetsova SS, Kolesanova EF, Talanova AV, Veselovsky AV. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:353-68. [PMID: 27562989 DOI: 10.18097/pbmc20166204353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given.
Collapse
Affiliation(s)
| | | | - A V Talanova
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
16
|
Meissner GO, de Resende Lara PT, Scott LPB, Braz ASK, Chaves-Moreira D, Matsubara FH, Soares EM, Trevisan-Silva D, Gremski LH, Veiga SS, Chaim OM. Molecular cloning and in silico characterization of knottin peptide, U2-SCRTX-Lit2, from brown spider (Loxosceles intermedia) venom glands. J Mol Model 2016; 22:196. [PMID: 27488102 DOI: 10.1007/s00894-016-3067-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/10/2016] [Indexed: 01/16/2023]
Abstract
Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of μ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from μ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.
Collapse
Affiliation(s)
- Gabriel Otto Meissner
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Pedro Túlio de Resende Lara
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Luis Paulo Barbour Scott
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Antônio Sérgio Kimus Braz
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Fernando Hitomi Matsubara
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Eduardo Mendonça Soares
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Dilza Trevisan-Silva
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil.,Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital of Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil.
| |
Collapse
|
17
|
Synthetic Cystine-Knot Miniproteins - Valuable Scaffolds for Polypeptide Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:121-44. [PMID: 27236555 DOI: 10.1007/978-3-319-32805-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Peptides with the cystine-knot architecture, often termed knottins, are promising scaffolds for biomolecular engineering. These unique molecules combine diverse bioactivities with excellent structural, thermal, and proteolytical stability. Being different in the composition and structure of their amino acid backbone, knottins share the same core element, namely cystine knot, which is built by six cysteine residues forming three disulfides upon oxidative folding. This motif ensures a notably rigid framework that highly tolerates both rational and combinatorial changes in the primary structure. Being accessible through recombinant production and total chemical synthesis, cystine-knot miniproteins can be endowed with novel bioactivities by variation of surface-exposed loops and incorporation of non-natural elements within their non-conserved regions towards the generation of tailor-made peptidic compounds. In this chapter the topology of cystine-knot peptides, their synthesis and applications for diagnostics and therapy is discussed.
Collapse
|
18
|
High Proteolytic Resistance of Spider-Derived Inhibitor Cystine Knots. INTERNATIONAL JOURNAL OF PEPTIDES 2015; 2015:537508. [PMID: 26843868 PMCID: PMC4710912 DOI: 10.1155/2015/537508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Proteolytic stability in gastrointestinal tract and blood plasma is the major obstacle for oral peptide drug development. Inhibitor cystine knots (ICKs) are linear cystine knot peptides which have multifunctional properties and could become promising drug scaffolds. ProTx-I, ProTx-II, GTx1-15, and GsMTx-4 were spider-derived ICKs and incubated with pepsin, trypsin, chymotrypsin, and elastase in physiological conditions to find that all tested peptides were resistant to pepsin, and ProTx-II, GsMTx-4, and GTx1-15 showed resistance to all tested proteases. Also, no ProTx-II degradation was observed in rat blood plasma for 24 hours in vitro and ProTx-II concentration in circulation decreased to half in 40 min, indicating absolute stability in plasma and fast clearance from the system. So far, linear peptides are generally thought to be unsuitable in vivo, but all tested ICKs were not degraded by pepsin and stomach could be selected for the alternative site of drug absorption for fast onset of the drug action. Since spider ICKs are selective inhibitors of various ion channels which are related to the pathology of many diseases, engineered ICKs will make a novel class of peptide medicines which can treat variety of bothering symptoms.
Collapse
|
19
|
Upert G, Mourier G, Pastor A, Verdenaud M, Alili D, Servent D, Gilles N. High-throughput production of two disulphide-bridge toxins. Chem Commun (Camb) 2015; 50:8408-11. [PMID: 24947561 DOI: 10.1039/c4cc02679a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A quick and efficient production method compatible with high-throughput screening was developed using 36 toxins belonging to four different families of two disulphide-bridge toxins. Final toxins were characterized using HPLC co-elution, CD and pharmacological studies.
Collapse
Affiliation(s)
- Grégory Upert
- CEA, DSV, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA Saclay, Gif sur Yvette F-91191, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Maaß F, Wüstehube-Lausch J, Dickgießer S, Valldorf B, Reinwarth M, Schmoldt HU, Daneschdar M, Avrutina O, Sahin U, Kolmar H. Cystine-knot peptides targeting cancer-relevant human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J Pept Sci 2015; 21:651-60. [PMID: 25964162 DOI: 10.1002/psc.2782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 11/09/2022]
Abstract
Cystine-knot peptides sharing a common fold but displaying a notably large diversity within the primary structure of flanking loops have shown great potential as scaffolds for the development of therapeutic and diagnostic agents. In this study, we demonstrated that the cystine-knot peptide MCoTI-II, a trypsin inhibitor from Momordica cochinchinensis, can be engineered to bind to cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, that has emerged as a target for the treatment of metastatic melanoma. Directed evolution was used to convert a cystine-knot trypsin inhibitor into a CTLA-4 binder by screening a library of variants using yeast surface display. A set of cystine-knot peptides possessing dissociation constants in the micromolar range was obtained; the most potent variant was synthesized chemically. Successive conjugation with neutravidin, fusion to antibody Fc domain or the oligomerization domain of C4b binding protein resulted in oligovalent variants that possessed enhanced (up to 400-fold) dissociation constants in the nanomolar range. Our data indicate that display of multiple knottin peptides on an oligomeric scaffold protein is a valid strategy to improve their functional affinity with ramifications for applications in diagnostics and therapy.
Collapse
Affiliation(s)
- Franziska Maaß
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Stephan Dickgießer
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Bernhard Valldorf
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Reinwarth
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | - Olga Avrutina
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Harald Kolmar
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
21
|
Kheria S, Nair RV, Kotmale AS, Rajamohanan PR, Sanjayan GJ. The role of N-terminal proline in stabilizing the Ant–Pro zipper motif. NEW J CHEM 2015. [DOI: 10.1039/c4nj02151g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper deals with the role of N-terminal proline in stabilizing the Ant–Pro zipper structure by the co-operative contribution of competing forces viz. hydrogen bonding, aromatic stacking and backbone chirality.
Collapse
Affiliation(s)
- Sanjeev Kheria
- Division of Organic Chemistry
- National Chemical Laboratory
- Pune 411 008
- India
| | - Roshna V. Nair
- Division of Organic Chemistry
- National Chemical Laboratory
- Pune 411 008
- India
| | - Amol S. Kotmale
- Central NMR Facility
- National Chemical Laboratory
- Pune 411 008
- India
| | | | | |
Collapse
|
22
|
Stanger K, Maurer T, Kaluarachchi H, Coons M, Franke Y, Hannoush RN. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A. FEBS Lett 2014; 588:4487-96. [DOI: 10.1016/j.febslet.2014.10.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 11/15/2022]
|
23
|
Reinwarth M, Avrutina O, Fabritz S, Kolmar H. Fragmentation follows structure: top-down mass spectrometry elucidates the topology of engineered cystine-knot miniproteins. PLoS One 2014; 9:e108626. [PMID: 25303319 PMCID: PMC4193770 DOI: 10.1371/journal.pone.0108626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decades the field of pharmaceutically relevant peptides has enormously expanded. Among them, several peptide families exist that contain three or more disulfide bonds. In this context, elucidation of the disulfide patterns is extremely important as these motifs are often prerequisites for folding, stability, and activity. An example of this structure-determining pattern is a cystine knot which comprises three constrained disulfide bonds and represents a core element in a vast number of mechanically interlocked peptidic structures possessing different biological activities. Herein, we present our studies on disulfide pattern determination and structure elucidation of cystine-knot miniproteins derived from Momordica cochinchinensis peptide MCoTI-II, which act as potent inhibitors of human matriptase-1. A top-down mass spectrometric analysis of the oxidised and bioactive peptides is described. Following the detailed sequencing of the peptide backbone, interpretation of the MS(3) spectra allowed for the verification of the knotted topology of the examined miniproteins. Moreover, we found that the fragmentation pattern depends on the knottin's folding state, hence, tertiary structure, which to our knowledge has not been described for a top-down MS approach before.
Collapse
Affiliation(s)
- Michael Reinwarth
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Olga Avrutina
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Harald Kolmar
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail: (SF); (HK)
| |
Collapse
|
24
|
Native peptide folding dominates over stereoelectronic effects of prolyl hydroxylation in loop 5 of the macrocyclic peptide kalata B1. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Seitkalieva MM, Grachev AA, Egorova KS, Ananikov VP. Nanoscale organization of ionic liquids and their interaction with peptides probed by 13C NMR spectroscopy. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
|
27
|
Guan X, Chaffey PK, Zeng C, Tan Z. New Methods for Chemical Protein Synthesis. Top Curr Chem (Cham) 2014; 363:155-92. [DOI: 10.1007/128_2014_599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Góngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chem Rev 2013; 114:901-26. [DOI: 10.1021/cr400031z] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Miriam Góngora-Benítez
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Judit Tulla-Puche
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
- Department
of Organic Chemistry, University of Barcelona, Barcelona, 08028 Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001 Durban, South Africa
| |
Collapse
|
29
|
Glotzbach B, Reinwarth M, Weber N, Fabritz S, Tomaszowski M, Fittler H, Christmann A, Avrutina O, Kolmar H. Combinatorial optimization of cystine-knot peptides towards high-affinity inhibitors of human matriptase-1. PLoS One 2013; 8:e76956. [PMID: 24146945 PMCID: PMC3795654 DOI: 10.1371/journal.pone.0076956] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/27/2013] [Indexed: 12/02/2022] Open
Abstract
Cystine-knot miniproteins define a class of bioactive molecules with several thousand natural members. Their eponymous motif comprises a rigid structured core formed by six disulfide-connected cysteine residues, which accounts for its exceptional stability towards thermic or proteolytic degradation. Since they display a remarkable sequence tolerance within their disulfide-connected loops, these molecules are considered promising frameworks for peptide-based pharmaceuticals. Natural open-chain cystine-knot trypsin inhibitors of the MCoTI (Momordica cochinchinensis trypsin inhibitor) and SOTI (Spinacia oleracea trypsin inhibitor) families served as starting points for the generation of inhibitors of matriptase-1, a type II transmembrane serine protease with possible clinical relevance in cancer and arthritic therapy. Yeast surface-displayed libraries of miniproteins were used to select unique and potent matriptase-1 inhibitors. To this end, a knowledge-based library design was applied that makes use of detailed information on binding and folding behavior of cystine-knot peptides. Five inhibitor variants, four of the MCoTI family and one of the SOTI family, were identified, chemically synthesized and oxidatively folded towards the bioactive conformation. Enzyme assays revealed inhibition constants in the low nanomolar range for all candidates. One subnanomolar binder (Ki = 0.83 nM) with an inverted selectivity towards trypsin and matriptase-1 was identified.
Collapse
Affiliation(s)
- Bernhard Glotzbach
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Reinwarth
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Niklas Weber
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Michael Tomaszowski
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heiko Fittler
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Andreas Christmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
30
|
Moore SJ, Leung CL, Norton HK, Cochran JR. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One 2013; 8:e60498. [PMID: 23573262 PMCID: PMC3616073 DOI: 10.1371/journal.pone.0060498] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cystine-knot miniproteins, also known as knottins, have shown great potential as molecular scaffolds for the development of targeted therapeutics and diagnostic agents. For this purpose, previous protein engineering efforts have focused on knottins based on the Ecballium elaterium trypsin inhibitor (EETI) from squash seeds, the Agouti-related protein (AgRP) neuropeptide from mammals, or the Kalata B1 uterotonic peptide from plants. Here, we demonstrate that Agatoxin (AgTx), an ion channel inhibitor found in spider venom, can be used as a molecular scaffold to engineer knottins that bind with high-affinity to a tumor-associated integrin receptor. METHODOLOGY/PRINCIPAL FINDINGS We used a rational loop-grafting approach to engineer AgTx variants that bound to αvβ3 integrin with affinities in the low nM range. We showed that a disulfide-constrained loop from AgRP, a structurally-related knottin, can be substituted into AgTx to confer its high affinity binding properties. In parallel, we identified amino acid mutations required for efficient in vitro folding of engineered integrin-binding AgTx variants. Molecular imaging was used to evaluate in vivo tumor targeting and biodistribution of an engineered AgTx knottin compared to integrin-binding knottins based on AgRP and EETI. Knottin peptides were chemically synthesized and conjugated to a near-infrared fluorescent dye. Integrin-binding AgTx, AgRP, and EETI knottins all generated high tumor imaging contrast in U87MG glioblastoma xenograft models. Interestingly, EETI-based knottins generated significantly lower non-specific kidney imaging signals compared to AgTx and AgRP-based knottins. CONCLUSIONS/SIGNIFICANCE In this study, we demonstrate that AgTx, a knottin from spider venom, can be engineered to bind with high affinity to a tumor-associated receptor target. This work validates AgTx as a viable molecular scaffold for protein engineering, and further demonstrates the promise of using tumor-targeting knottins as probes for in vivo molecular imaging.
Collapse
Affiliation(s)
- Sarah J. Moore
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Cheuk Lun Leung
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Heidi K. Norton
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Jennifer R. Cochran
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Stanford Cancer Institute and Bio-X Program, Stanford, California, United States of America
| |
Collapse
|
31
|
Reinwarth M, Glotzbach B, Tomaszowski M, Fabritz S, Avrutina O, Kolmar H. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions. Chembiochem 2012; 14:137-46. [PMID: 23229141 DOI: 10.1002/cbic.201200604] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Indexed: 11/07/2022]
Abstract
Bioactive peptides often contain several disulfide bonds that provide the main contribution to conformational rigidity and structural, thermal, or biological stability. Among them, cystine-knot peptides-commonly named "knottins"-make up a subclass with several thousand natural members. Hence, they are considered promising frameworks for peptide-based pharmaceuticals. Although cystine-knot peptides are available through chemical and recombinant synthetic routes, oxidative folding to afford the bioactive isomers still remains a crucial step. We therefore investigated the oxidative folding of ten protease-inhibiting peptides from two knottin families, as well as that of an HIV entry inhibitor and of aprotinin, under two conventional sets of folding conditions and by a newly developed procedure. Kinetic studies identified folding conditions that resulted in correctly folded miniproteins with high rates of conversion even for highly hydrophobic and aggregation-prone peptides in concentrated solutions.
Collapse
Affiliation(s)
- Michael Reinwarth
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Petersenstr. 22, 64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|