1
|
Oh JY, Villaseñor KE, Kian AC, Cormode DP. Advances in Ultrasmall Inorganic Nanoparticles for Nanomedicine: From Diagnosis to Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40343711 DOI: 10.1021/acsami.5c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Inorganic nanoparticles possess unique physicochemical properties that make them attractive candidates for diverse applications in nanomedicine, including as contrast agents and as therapeutics. However, many inorganic nanoparticles are composed of high-atomic-number elements, raising safety concerns due to potential long-term retention in the body. However, ultrasmall inorganic nanoparticles (UINPs), i.e., those that are less than ∼5 nm in diameter, can offer the advantage of rapid renal clearance from the body, reducing toxicity risks associated with prolonged exposure and thereby creating a path toward clinical translation. In this review, we discuss current knowledge on the design and functionalization of UINPs, exploring their capabilities from diagnosis to therapeutics, with examples including radiosensitization, photothermal, and anti-inflammatory catalytic therapies. In addition, we discuss their limitations, the approaches taken to solve their limitations, and progress of UINPs toward clinical translation. Through this discussion, we aim to provide a comprehensive perspective on how UINPs are advancing the field of nanomedicine, underscoring their potential to significantly improve bioimaging and therapeutic outcomes.
Collapse
Affiliation(s)
- Jun Yong Oh
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kathleen E Villaseñor
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrea C Kian
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Chen Y, Li C, Yang J, Wang M, Wang Y, Cheng S, Huang W, Yuan G, Xie M. Intravascular elimination of circulating tumor cells and cascaded embolization with multifunctional 3D tubular scaffolds. J Mater Chem B 2024; 12:9018-9029. [PMID: 39158001 DOI: 10.1039/d4tb01151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The primary tumor ("root") and circulating tumor cells (CTCs; "seeds") are vital factors in tumor progression. However, current treatment strategies mainly focus on inhibiting the tumor while ignoring CTCs, resulting in tumor metastasis. Here, we design a multifunctional 3D scaffold with interconnected macropores, excellent photothermal ability and perfect bioaffinity as a blood vessel implantable device. When implanted upstream of the primary tumor, the scaffold intercepts CTCs fleeing back to the primary tumor and then forms "micro-thrombi" to block the supply of nutrients and oxygen to the tumor for embolization therapy. The scaffold implanted downstream of the tumor efficiently captures and photothermally kills the CTCs that escape from the tumor, thereby preventing metastasis. Experiments using rabbits demonstrated excellent biosafety of this scaffold with 86% of the CTC scavenging rate, 99% of the tumor inhibition rate and 100% of CTC killing efficiency. The multifunctional 3D scaffold synergistically inhibits the "root" and eliminates the "seeds" of the tumor, demonstrating its potential for localized cancer therapy with few side effects and high antitumor efficacy.
Collapse
Affiliation(s)
- Yijing Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Cuiwen Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghui Yang
- School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yike Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Shibo Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Weihua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guohua Yuan
- School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Ibrahim YO, Maalej N, Masood Pirzada B, Younis Raja A, Anjum DH, Jan N, Behouch A, Ul Haq Qurashi A. Gold nanoparticles spectral CT imaging and limit of detectability in a new materials contrast-detail phantom. Phys Med 2024; 120:103326. [PMID: 38493584 DOI: 10.1016/j.ejmp.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
This study involves the synthesis, characterization, and spectral photon counting CT (SPCCT) imaging of gold nanoparticles tailored for enhancing the contrast of small cancer lesions. We used the modified Turkevich method to produce thiol-capped gold nanoparticles (AuNPs) at different concentrations (20, 15, 10, 5, 2.5, 1.25, 0.6 mg/ml). We thoroughly characterized the AuNPs using Transmission Electron Microscopy (TEM), X-ray diffraction spectroscopy (XRD), Dynamic Light Scattering (DLS), and UV-visible absorption spectroscopy. To assess the AuNPs contrast enhancing performance, we designed and built a new material contrast detail phantom for CT imaging and determined the minimum detectable concentrations of AuNPs in simulated lesions of small diameters (1, 2, 3, and 5 mm). The synthesized AuNPs are spherical with an average size of approximately 20 ± 4 nm, with maximum UV absorption occurring at 527 nm wavelength, and exhibit a face-centered cubic structure of gold according to XRD analysis. The synthesized gold nanoparticles demonstrated high contrast in SPCCT, suggesting their potential as contrast agents for imaging cancer tissues. The AuNPs image contrast was directly proportional to the AuNPs concentration. We are the first to determine that the lowest visually distinguishable contrast was achieved at a gold concentration of 5 mg/ml for a 2 mm simulated lesion. For 1 mm size lesion the smallest visible concentration was 10 mg/ml. This newly developed phantom can be used for determining the minimal concentration required for various high-Z nanoparticles to produce detectable contrast in X-ray imaging for small-size simulated lesions.
Collapse
Affiliation(s)
- Yusuf O Ibrahim
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Centre (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Nabil Maalej
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Bilal Masood Pirzada
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Centre (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Aamir Younis Raja
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Dalaver H Anjum
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Nila Jan
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Abderaouf Behouch
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahsan Ul Haq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Centre (AMCC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Fuentealba M, Ferreira A, Salgado A, Vergara C, Díez S, Santibáñez M. An Optimized Method for Evaluating the Potential Gd-Nanoparticle Dose Enhancement Produced by Electronic Brachytherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:430. [PMID: 38470761 DOI: 10.3390/nano14050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 03/14/2024]
Abstract
This work reports an optimized method to experimentally quantify the Gd-nanoparticle dose enhancement generated by electronic brachytherapy. The dose enhancement was evaluated considering energy beams of 50 kVp and 70 kVp, determining the Gd-nanoparticle concentration ranges that would optimize the process for each energy. The evaluation was performed using delaminated radiochromic films and a Poly(methyl methacrylate) (PMMA) phantom covered on one side by a thin 2.5 μm Mylar filter acting as an interface between the region with Gd suspension and the radiosensitive film substrate. The results for the 70 kVp beam quality showed dose increments of 6±6%, 22±7%, and 9±7% at different concentrations of 10, 20, and 30 mg/mL, respectively, verifying the competitive mechanisms of enhancement and attenuation. For the 50 kVp beam quality, no increase in dose was recorded for the concentrations studied, indicating that the major contribution to enhancement is from the K-edge interaction. In order to separate the contributions of attenuation and enhancement to the total dose, measurements were replicated with a 12 μm Mylar filter, obtaining a dose enhancement attributable to the K-edge of 29±7% and 34±7% at 20 and 30 mg/mL, respectively, evidencing a significant additional dose proportional to the Gd concentration.
Collapse
Affiliation(s)
- Melani Fuentealba
- Departamento de Cs. Físicas, Universidad de La Frontera, Temuco 4811230, Chile
- Laboratorio de Radiaciones Ionizantes, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Fisiología, Universitat de Valencia, 46010 Valencia, Spain
| | - Alejandro Ferreira
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| | | | - Christopher Vergara
- Departamento de Cs. Físicas, Universidad de La Frontera, Temuco 4811230, Chile
- Laboratorio de Radiaciones Ionizantes, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sergio Díez
- Departamento de Fisiología, Universitat de Valencia, 46010 Valencia, Spain
- Medical Physics Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Mauricio Santibáñez
- Departamento de Cs. Físicas, Universidad de La Frontera, Temuco 4811230, Chile
- Laboratorio de Radiaciones Ionizantes, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Liang W, Zhou C, Jin S, Fu L, Zhang H, Huang X, Long H, Ming W, Zhao J. An update on the advances in the field of nanostructured drug delivery systems for a variety of orthopedic applications. Drug Deliv 2023; 30:2241667. [PMID: 38037335 PMCID: PMC10987052 DOI: 10.1080/10717544.2023.2241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 12/02/2023] Open
Abstract
Nanotechnology has made significant progress in various fields, including medicine, in recent times. The application of nanotechnology in drug delivery has sparked a lot of research interest, especially due to its potential to revolutionize the field. Researchers have been working on developing nanomaterials with distinctive characteristics that can be utilized in the improvement of drug delivery systems (DDS) for the local, targeted, and sustained release of drugs. This approach has shown great potential in managing diseases more effectively with reduced toxicity. In the medical field of orthopedics, the use of nanotechnology is also being explored, and there is extensive research being conducted to determine its potential benefits in treatment, diagnostics, and research. Specifically, nanophase drug delivery is a promising technique that has demonstrated the capability of delivering medications on a nanoscale for various orthopedic applications. In this article, we will explore current advancements in the area of nanostructured DDS for orthopedic use.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Songtao Jin
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of traditional Chinese Medicine, Shaoxing, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
6
|
Tarantino S, Caricato AP, Rinaldi R, Capomolla C, De Matteis V. Cancer Treatment Using Different Shapes of Gold-Based Nanomaterials in Combination with Conventional Physical Techniques. Pharmaceutics 2023; 15:500. [PMID: 36839822 PMCID: PMC9968101 DOI: 10.3390/pharmaceutics15020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The conventional methods of cancer treatment and diagnosis, such as radiotherapy, chemotherapy, and computed tomography, have developed a great deal. However, the effectiveness of such methods is limited to the possible failure or collateral effects on the patients. In recent years, nanoscale materials have been studied in the field of medical physics to develop increasingly efficient methods to treat diseases. Gold nanoparticles (AuNPs), thanks to their unique physicochemical and optical properties, were introduced to medicine to promote highly effective treatments. Several studies have confirmed the advantages of AuNPs such as their biocompatibility and the possibility to tune their shapes and sizes or modify their surfaces using different chemical compounds. In this review, the main properties of AuNPs are analyzed, with particular focus on star-shaped AuNPs. In addition, the main methods of tumor treatment and diagnosis involving AuNPs are reviewed.
Collapse
Affiliation(s)
- Simona Tarantino
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Anna Paola Caricato
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
- National Institute of Nuclear Physics (INFN), Section of Lecce, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Caterina Capomolla
- “Vito Fazzi” Hospital of Lecce, Oncological Center, Piazza Filippo Muratore 1, 73100 Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
7
|
Kumar R, Hosseinzadehtaher M, Hein N, Shadmand M, Jagadish SVK, Ghanbarian B. Challenges and advances in measuring sap flow in agriculture and agroforestry: A review with focus on nuclear magnetic resonance. FRONTIERS IN PLANT SCIENCE 2022; 13:1036078. [PMID: 36426161 PMCID: PMC9679431 DOI: 10.3389/fpls.2022.1036078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Sap flow measurement is one of the most effective methods for quantifying plant water use.A better understanding of sap flow dynamics can aid in more efficient water and crop management, particularly under unpredictable rainfall patterns and water scarcity resulting from climate change. In addition to detecting infected plants, sap flow measurement helps select plant species that could better cope with hotter and drier conditions. There exist multiple methods to measure sap flow including heat balance, dyes and radiolabeled tracers. Heat sensor-based techniques are the most popular and commercially available to study plant hydraulics, even though most of them are invasive and associated with multiple kinds of errors. Heat-based methods are prone to errors due to misalignment of probes and wounding, despite all the advances in this technology. Among existing methods for measuring sap flow, nuclear magnetic resonance (NMR) is an appropriate non-invasive approach. However, there are challenges associated with applications of NMR to measure sap flow in trees or field crops, such as producing homogeneous magnetic field, bulkiness and poor portable nature of the instruments, and operational complexity. Nonetheless, various advances have been recently made that allow the manufacture of portable NMR tools for measuring sap flow in plants. The basic concept of the portal NMR tool is based on an external magnetic field to measure the sap flow and hence advances in magnet types and magnet arrangements (e.g., C-type, U-type, and Halbach magnets) are critical components of NMR-based sap flow measuring tools. Developing a non-invasive, portable and inexpensive NMR tool that can be easily used under field conditions would significantly improve our ability to monitor vegetation responses to environmental change.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mohsen Hosseinzadehtaher
- Department of Electrical & Computer Engineering, University of Illinois, Chicago, IL, United States
| | - Nathan Hein
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mohammad Shadmand
- Department of Electrical & Computer Engineering, University of Illinois, Chicago, IL, United States
| | | | - Behzad Ghanbarian
- Porous Media Research Lab, Department of Geology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Self-therapeutic metal-based nanoparticles for treating inflammatory diseases. Acta Pharm Sin B 2022; 13:1847-1865. [DOI: 10.1016/j.apsb.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
|
9
|
Sindhu R, Sindhu S, Dagar MW, Nagoria S. Gold Nanoparticles as Antimicrobial Agents: A Mini-Review. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22300024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metal nanoparticles, such as gold nanoparticles, have abundant unusual chemical and physical properties owing to the effects of their quantum size and their large surface area, in comparison with other metal atoms. Gold nanoparticles (AuNPs), in particular, are becoming increasingly popular due to their biocompatibility, multifunctional and aqueous solubility. Many scientific reports described the important antimicrobial properties possessed by the gold nanoparticles. Therefore, the present mini-review summarizes an overview of gold nanoparticles as broad spectrum antimicrobial agents for biomedical applications.
Collapse
Affiliation(s)
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Mukhan Wati Dagar
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Savita Nagoria
- Department of Chemistry, Government College, Hisar 125001, Haryana, India
| |
Collapse
|
10
|
Multimodal bioimaging using nanodiamond and gold hybrid nanoparticles. Sci Rep 2022; 12:5331. [PMID: 35351931 PMCID: PMC8964702 DOI: 10.1038/s41598-022-09317-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractHybrid core–shell nanodiamond-gold nanoparticles were synthesized and characterized as a novel multifunctional material with tunable and tailored properties for multifunctional biomedical applications. The combination of nanostructured gold and nanodiamond properties afford new options for optical labeling, imaging, sensing, and drug delivery, as well as targeted treatment. ND@Au core–shell nanoparticles composed of nanodiamond (ND) core doped with Si vacancies (SiV) and Au shell were synthesized and characterized in terms of their biomedical applications. Several bioimaging modalities based on the combination of optical and spectroscopic properties of the hybrid nano-systems are demonstrated in cellular and developing zebrafish larvae models. The ND@Au nanoparticles exhibit isolated ND’s Raman signal of sp3 bonded carbon, one-photon fluorescence of SiV with strong zero-phonon line at 740 nm, two-photon excited fluorescence of nanogold with short fluorescence lifetime and strong absorption of X-ray irradiation render them possible imaging agent for Raman mapping, Fluorescence imaging, two-photon Fluorescence Lifetime Imaging (TP-FLIM) and high-resolution hard-X-ray microscopy in biosystems. Potential combination of the imaging facilities with other theranostic functionalities is discussed.
Collapse
|
11
|
Alkilany AM, Rachid O, Alkawareek MY, Billa N, Daou A, Murphy CJ. PLGA-Gold Nanocomposite: Preparation and Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14030660. [PMID: 35336033 PMCID: PMC8949597 DOI: 10.3390/pharmaceutics14030660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
A composite system consisting of both organic and inorganic nanoparticles is an approach to prepare a new material exhibiting “the best of both worlds”. In this review, we highlight the recent advances in the preparation and applications of poly(lactic-co-glycolic acid)-gold nanoparticles (PLGA-GNP). With its current clinically use, PLGA-based nanocarriers have promising pharmaceutical applications and can “extract and utilize” the fascinating optical and photothermal properties of encapsulated GNP. The resulting “golden polymeric nanocarrier” can be tracked, analyzed, and visualized using the encapsulated gold nanoprobes which facilitate a better understanding of the hosting nanocarrier’s pharmacokinetics and biological fate. In addition, the “golden polymeric nanocarrier” can reveal superior nanotherapeutics that combine both the photothermal effect of the encapsulated gold nanoparticles and co-loaded chemotherapeutics. To help stimulate more research on the development of nanomaterials with hybrid and exceptional properties, functionalities, and applications, this review provides recent examples with a focus on the available chemistries and the rationale behind encapsulating GNP into PLGA nanocarriers that has the potential to be translated into innovative, clinically applicable nanomedicine.
Collapse
Affiliation(s)
- Alaaldin M. Alkilany
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (O.R.); (N.B.); (A.D.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
- Correspondence: (A.M.A.); (C.J.M.)
| | - Ousama Rachid
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (O.R.); (N.B.); (A.D.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Mahmoud Y. Alkawareek
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nashiru Billa
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (O.R.); (N.B.); (A.D.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Anis Daou
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (O.R.); (N.B.); (A.D.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
- Correspondence: (A.M.A.); (C.J.M.)
| |
Collapse
|
12
|
Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Mamonova DV, Vasileva AA, Petrov YV, Koroleva AV, Danilov DV, Kolesnikov IE, Bikbaeva GI, Bachmann J, Manshina AA. Single Step Laser-Induced Deposition of Plasmonic Au, Ag, Pt Mono-, Bi- and Tri-Metallic Nanoparticles. NANOMATERIALS 2021; 12:nano12010146. [PMID: 35010096 PMCID: PMC8746481 DOI: 10.3390/nano12010146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
Multimetallic plasmonic systems usually have distinct advantages over monometallic nanoparticles due to the peculiarity of the electronic structure appearing in advanced functionality systems, which is of great importance in a variety of applications including catalysis and sensing. Despite several reported techniques, the controllable synthesis of multimetallic plasmonic nanoparticles in soft conditions is still a challenge. Here, mono-, bi- and tri-metallic nanoparticles were successfully obtained as a result of a single step laser-induced deposition approach from monometallic commercially available precursors. The process of nanoparticles formation is starting with photodecomposition of the metal precursor resulting in nucleation and the following growth of the metal phase. The deposited nanoparticles were studied comprehensively with various experimental techniques such as SEM, TEM, EDX, XPS, and UV-VIS absorption spectroscopy. The size of monometallic nanoparticles is strongly dependent on the type of metal: 140–200 nm for Au, 40–60 nm for Ag, 2–3 nm for Pt. Bi- and trimetallic nanoparticles were core-shell structures representing monometallic crystallites surrounded by an alloy of respective metals. The formation of an alloy phase took place between monometallic nanocrystallites of different metals in course of their growth and agglomeration stage.
Collapse
Affiliation(s)
- Daria V Mamonova
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
| | - Anna A Vasileva
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
| | - Yuri V Petrov
- Department of Physics, Saint-Petersburg State University, Ulyanovskaya 3, 198504 Saint-Petersburg, Russia
| | - Alexandra V Koroleva
- Center for Physical Methods of Surface Investigation, Research Park, Saint Petersburg University, Universitetskiy Prosp. 35, Lit. A, 198504 Saint-Petersburg, Russia
| | - Denis V Danilov
- Interdisciplinary Resource Center for Nanotechnology, Research Park, Saint-Petersburg State University, Ulyanovskaya 1, 198504 Saint-Petersburg, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, Research Park, Saint-Petersburg State University, Ulyanovskaya 5, 198504 Saint-Petersburg, Russia
| | - Gulia I Bikbaeva
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
| | - Julien Bachmann
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, IZNF, Cauerstr. 3, 91058 Erlangen, Germany
| | - Alina A Manshina
- Institute of Chemistry, Saint-Petersburg State University, 26 Universitetskii Prospect, 198504 Saint-Petersburg, Russia
| |
Collapse
|
14
|
Sibuyi NRS, Moabelo KL, Fadaka AO, Meyer S, Onani MO, Madiehe AM, Meyer M. Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review. NANOSCALE RESEARCH LETTERS 2021; 16:174. [PMID: 34866165 PMCID: PMC8645298 DOI: 10.1186/s11671-021-03632-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 05/07/2023]
Abstract
The medical properties of metals have been explored for centuries in traditional medicine for the treatment of infections and diseases and still practiced to date. Platinum-based drugs are the first class of metal-based drugs to be clinically used as anticancer agents following the approval of cisplatin by the United States Food and Drug Administration (FDA) over 40 years ago. Since then, more metals with health benefits have been approved for clinical trials. Interestingly, when these metals are reduced to metallic nanoparticles, they displayed unique and novel properties that were superior to their bulk counterparts. Gold nanoparticles (AuNPs) are among the FDA-approved metallic nanoparticles and have shown great promise in a variety of roles in medicine. They were used as drug delivery, photothermal (PT), contrast, therapeutic, radiosensitizing, and gene transfection agents. Their biomedical applications are reviewed herein, covering their potential use in disease diagnosis and therapy. Some of the AuNP-based systems that are approved for clinical trials are also discussed, as well as the potential health threats of AuNPs and some strategies that can be used to improve their biocompatibility. The reviewed studies offer proof of principle that AuNP-based systems could potentially be used alone or in combination with the conventional systems to improve their efficacy.
Collapse
Affiliation(s)
- Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Koena Leah Moabelo
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
15
|
Della Camera G, Madej M, Ferretti AM, La Spina R, Li Y, Corteggio A, Heinzl T, Swartzwelter BJ, Sipos G, Gioria S, Ponti A, Boraschi D, Italiani P. Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes. Front Immunol 2021; 12:692165. [PMID: 34421901 PMCID: PMC8377278 DOI: 10.3389/fimmu.2021.692165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Engineered nanoparticles used for medical purposes must meet stringent safety criteria, which include immunosafety, i.e., the inability to activate possibly detrimental immune/inflammatory effects. Even medical nanomaterials devoid of direct immunotoxic or inflammatory effects may have an impact on human health if able to modify innate memory, which is the ability to “prime” future immune responses towards a different, possibly more detrimental reactivity. Although innate memory is usually protective, anomalous innate memory responses may be at the basis of immune pathologies. In this study, we have examined the ability of two nanomaterials commonly used for diagnostic imaging purposes, gold and iron oxide nanoparticles, to induce or modulate innate memory, using an in vitro model based on human primary monocytes. Monocytes were exposed in culture to nanoparticles alone or together with the bacterial agent LPS (priming phase/primary response), then rested for six days (extinction phase), and eventually challenged with LPS (memory/secondary response). The memory response to the LPS challenge was measured as changes in the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra), as compared to unprimed monocytes. The results show that both types of nanoparticles can have an effect in the induction of memory, with changes observed in the cytokine production. By comparing nanomaterials of different shapes (spherical vs. rod-shaped gold particles) and different size (17 vs. 22 nm diameter spherical iron oxide particles), it was evident that innate memory could be differentially induced and modulated depending on size, shape and chemical composition. However, the main finding was that the innate memory effect of the particles was strongly donor-dependent, with monocytes from each donor showing a distinct memory profile upon priming with the same particles, thereby making impossible to draw general conclusions on the particle effects. Thus, in order to predict the effect of imaging nanoparticles on the innate memory of patients, a personalised profiling would be required, able to take in consideration the peculiarities of the individual innate immune reactivity.
Collapse
Affiliation(s)
- Giacomo Della Camera
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Mariusz Madej
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Anna Maria Ferretti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), National Research Council (CNR), Milano, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Yang Li
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Tommaso Heinzl
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Benjamin J Swartzwelter
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Gergö Sipos
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), National Research Council (CNR), Milano, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy.,Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| |
Collapse
|
16
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
17
|
Okolo CA, Kounatidis I, Groen J, Nahas KL, Balint S, Fish TM, Koronfel MA, Cortajarena AL, Dobbie IM, Pereiro E, Harkiolaki M. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc 2021; 16:2851-2885. [PMID: 33990802 DOI: 10.1038/s41596-021-00522-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).
Collapse
Affiliation(s)
- Chidinma A Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Kamal L Nahas
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefan Balint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Thomas M Fish
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Mohamed A Koronfel
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eva Pereiro
- Beamline 09-MISTRAL, ALBA Synchrotron, Barcelona, Spain
| | - Maria Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
18
|
Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021; 18:1261-1290. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The targeted delivery of anticancer agents to tumor is a major challenge because most of the drugs show off-target effect resulting in nonspecific cell death. Multifunctionalized metallic nanoparticles (NPs) are explored as new carrier system in the era of cancer therapeutics. Researchers investigated the potential of metallic NPs to target tumor cells by active and passive mechanisms, thereby reducing off-target effects of anticancer agents. Moreover, photocatalytic activity of upconversion nanoparticles (UCNPs) and the enhanced permeation and retention (EPR) effect have also gained wide potential in cancer treatment. Recent advancement in the field of nanotechnology highlights their potency for cancer therapy. AREAS COVERED This review summarizes the types of gold and silver metallic NPs with targeting mechanisms and their potentiality in cancer therapy. EXPERT OPINION Recent advances in the field of nanotechnology for cancer therapy offer high specificity and targeting efficiency. Targeting tumor cells through mechanistic pathways using metallic NPs for the disruption/alteration of molecular profile and survival rate of the tumor cells has led to an effective approach for cancer therapeutics. This alteration in the survival rate of the tumor cells might decrease the proliferation thereby resulting in more efficient management in the treatment of cancer.
Collapse
Affiliation(s)
- Neha Desai
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | | | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
19
|
González-Palomo AK, Saldaña-Villanueva K, Cortés-García JD, Fernández-Macias JC, Méndez-Rodríguez KB, Pérez Maldonado IN. Effect of silver nanoparticles (AgNPs) exposure on microRNA expression and global DNA methylation in endothelial cells EA.hy926. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103543. [PMID: 33166681 DOI: 10.1016/j.etap.2020.103543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine the effect of AgNPs on the epigenome of endothelial cells EA.hy926, including the levels of expression of microRNAs (miRNAs) and global DNA methylation patterns. In addition, evaluation of the expression of inflammatory genes and the levels of VCAM-1 protein (miRNA-126 target) was performed. The expression levels of analyzed miRNAs (microRNAs-126, 155 and 146) were reduced significantly and there were not observed changes in inflammatory gene expression. Regarding the levels of protein vascular cell adhesion molecule 1 (VCAM-1), they increase significantly to 0.5 μM AgNPs at 24 h of exposure. As far as DNA methylation is concerned, we found that AgNPs induce a state of global hyper-methylation. In conclusion, it was demonstrated that direct contact between AgNPs and endothelial cells resulted in the dysregulation of highly enriched and vastly functional miRNAs and DNA hypermethylation, that may have multiple effects on endothelium function and integrity.
Collapse
Affiliation(s)
- A K González-Palomo
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - K Saldaña-Villanueva
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J D Cortés-García
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J C Fernández-Macias
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - K B Méndez-Rodríguez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - I N Pérez Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
20
|
Han X, Taratula O, St Lorenz A, Moses AS, Albarqi HA, Jahangiri Y, Wu Q, Xu K, Taratula O, Farsad K. A novel multimodal nanoplatform for targeting tumor necrosis. RSC Adv 2021; 11:29486-29497. [PMID: 35479549 PMCID: PMC9040648 DOI: 10.1039/d1ra05658a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Peri-necrotic tumor regions have been found to be a source of cancer stem cells (CSC), important in tumor recurrence. Necrotic and peri-necrotic tumor zones have poor vascular supply, limiting effective exposure to systemically administered therapeutics. Therefore, there is a critical need to develop agents that can effectively target these relatively protected tumor areas. We have developed a multi-property nanoplatform with necrosis avidity, fluorescence imaging and X-ray tracking capabilities to evaluate its feasibility for therapeutic drug delivery. The developed nanoparticle consists of three elements: poly(ethylene glycol)-block-poly(ε-caprolactone) as the biodegradable carrier; hypericin as a natural compound with fluorescence and necrosis avidity; and gold nanoparticles for X-ray tracking. This reproducible nanoparticle has a hydrodynamic size of 103.9 ± 1.7 nm with a uniform spherical morphology (polydispersity index = 0.12). The nanoparticle shows safety with systemic administration and a stable 30 day profile. Intravenous nanoparticle injection into a subcutaneous tumor-bearing mouse and intra-arterial nanoparticle injection into rabbits bearing VX2 orthotopic liver tumors resulted in fluorescence and X-ray attenuation within the tumors. In addition, ex vivo and histological analysis confirmed the accumulation of hypericin and gold in areas of necrosis and peri-necrosis. This nanoplatform, therefore, has the potential to enhance putative therapeutic drug delivery to necrotic and peri-necrotic areas, and may also have an application for monitoring early response to anti-tumor therapies. Au-Hyp-NP developed by encapsulation of gold and hypericin into PEG-PCL nanoplatform for fluorescence and X-ray tracking with tumor necrosis targeting.![]()
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Anna St Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Hassan A. Albarqi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Younes Jahangiri
- Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| | - Qirun Wu
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Ke Xu
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Khashayar Farsad
- Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| |
Collapse
|
21
|
Sheeraz Z, Chow JC. Evaluation of dose enhancement with gold nanoparticles in kilovoltage radiotherapy using the new EGS geometry library in Monte Carlo simulation. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
<abstract><sec>
<title>Purpose</title>
<p>This study compared the dose enhancement predicted in kilovoltage gold nanoparticle-enhanced radiotherapy using the newly developed EGS lattice and the typical gold-water mixture method in Monte Carlo simulation. This new method considered the gold nanoparticle-added volume consisting of solid nanoparticles instead of a gold-water mixture. In addition, this particle method is more realistic in simulation.</p>
</sec><sec>
<title>Methods</title>
<p>A heterogeneous phantom containing bone and water was irradiated by the 105 and 220 kVp x-ray beams. Gold nanoparticles were added to the tumour volume with concentration varying from 3–40 mg/mL in the phantom. The dose enhancement ratio (DER), defined as the ratio of dose at the tumour with and without adding gold nanoparticles, was calculated by the gold-water mixture and particle method using Monte Carlo simulation for comparison.</p>
</sec><sec>
<title>Results</title>
<p>It is found that the DER was 1.44–4.71 (105 kVp) and 1.27–2.43 (220 kVp) for the gold nanoparticle concentration range of 3–40 mg/mL, when they were calculated by the gold-water mixture method. The DER was slightly larger and equal to 1.47–4.84 (105 kVp) and 1.29–2.5 (220 kVp) for the same concentration range, when the particle method was used. Moreover, the DER predicted by both methods increased with an increase of nanoparticle concentration, and a decrease of x-ray beam energy.</p>
</sec><sec>
<title>Conclusion</title>
<p>The deviation of DER determined by the particle and gold-water mixture method was insignificant when considering the uncertainty in the calculation of DER (2%) in the nanoparticle concentration range of 3–40 mg/mL. It is therefore concluded that the gold-water mixture method could predict the dose enhancement as accurate as the newly developed particle method.</p>
</sec></abstract>
Collapse
|
22
|
Real-time synthesis and detection of plasmonic metal (Au, Ag) nanoparticles under monochromatic X-ray nano-tomography. Sci Rep 2020; 10:20877. [PMID: 33257746 PMCID: PMC7704674 DOI: 10.1038/s41598-020-77853-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
Plasmonic nanostructures are of immense interest of research due to its widespread applications in microelectronics, photonics, and biotechnology, because of its size and shape-dependent localized surface plasmon resonance response. The great efforts have been constructed by physicists, chemists, and material scientists to deliver optimized reaction protocol to tailor the size and shape of nanostructures. Real-time characterization emerges out as a versatile tool in perspective to the optimization of synthesis parameters. Moreover, in the past decades, radiation-induced reduction of metallic-salt to nanoparticles dominates over the conventional direct chemical reduction process which overcomes the production of secondary products and yields ultra-high quality and pure nanostructures. Here we show, the real-time/in-situ synthesis and detection of plasmonic (Au andAg) nanoparticles using single synchrotron monochromatic 6.7 keV X-rays based Nano-Tomography beamline. The real-time X-ray nano-tomography of plasmonic nanostructures has been first-time successfully achieved at such a low-energy that would be leading to the possibility of these experiments at laboratory-based sources. In-situ optical imaging confirms the radiolysis of water molecule resulting in the production of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$e_{aq}^-,\,OH^\bullet ,$$\end{document}eaq-,OH∙, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O_2^-$$\end{document}O2- under X-ray irradiation. The obtained particle-size and size-distribution by X-ray tomography are in good agreement to TEM results. The effect of different chemical environment media on the particle-size has also been studied. This work provides the protocol to precisely control the size of nanostructures and to synthesize the ultrahigh-purity grade monodisperse nanoparticles that would definitely enhance the phase-contrast in cancer bio-imaging and plasmonic photovoltaic application.
Collapse
|
23
|
El-Ghareb WI, Swidan MM, Ibrahim IT, Abd El-Bary A, Tadros MI, Sakr TM. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles ( 99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm 2020; 586:119514. [PMID: 32565281 DOI: 10.1016/j.ijpharm.2020.119514] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
The development of cancer theranostic nanomedicines is recommended to concurrently achieve and evaluate the therapeutic benefit and progress. The current work aims to develop gallic acid-gold nanoparticles (GA-Au NPs) as a theranostic probe for 99mTc-Doxorubicin (99mTc-DOX) based on the spatiotemporal release pattern induced intra-tumoral (IT) delivery. DOX-loaded GA-Au NPs were developed and identified via UV-Vis spectroscopy. The system was characterized for drug loading efficiency%, particle size, zeta potential, topography, in vitro DOX release and anti-proliferative activity against the MCF-7 cell-line. The factors influencing radiolabeling efficiency of DOX with 99mTc (DOX concentration, stannous chloride concentration, reaction time and pH) were optimized. The in vitro stability in mice serum and in vivo distribution studies in mice of 99mTc-DOX-loaded GA-Au NPs were investigated following IV and IT administration. Dox-loaded GA-Au NPs had a loading efficiency of 91%, a small particle size (≈50 nm), a promising zeta potential (-20 mV) and a sustained drug release profile at pH 5.3. GA-Au NPs exhibited increased anti-proliferative activity, with approximately a four-fold lower IC50 value (0.15 μg/ml) than free DOX. The optimized radiolabeling efficiency of 99mTc-DOX was ≈93%. It showed good physiological stability in mice serum for at least 8 h. The IT delivery of 99mTc-DOX-loaded GA-Au NPs in tumor-induced mice showed dramatic tumor accumulation. A maximum magnitude of 86.73%ID/g was achieved, at 15 min post-injection, with a target/non-target ratio of ≈56. 99mTc-DOX-loaded GA-Au NPs could be used for the selective IT delivery of a chemotherapeutic agent and an imaging agent to a target organ.
Collapse
Affiliation(s)
- Walaa I El-Ghareb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Pharmacology Department, College of Pharmacy, Al-Bayan University, 10006 Baghdad, Iraq
| | - Ahmed Abd El-Bary
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Mina Ibrahim Tadros
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
24
|
Li D, Wang Y, Wang C, Li S. Research on the Wear Behavior of the Fixed Cone Liner of a Cone Crusher Based on the Discrete Element Method. ACS OMEGA 2020; 5:11186-11195. [PMID: 32455242 PMCID: PMC7241016 DOI: 10.1021/acsomega.0c01272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Taking reducing the wear of the fixed cone liner of a cone crusher as the starting point, the movement and geometry parameters of the cone crusher are studied using the discrete element method. To improve the service life and working efficiency of the whole cone crusher. The UG model and discrete element Yade model of the cone crusher are established, and the different shapes of the tin ore are represented using Yade's preprocessor through eight different ways of particle combination and superposition. The static friction coefficient between the manganese ore and the cone crusher is studied and calibrated using the slope method. The relative error between the Yade and test results is 1.58%, and the calibration result is 0.44. The repose angle of the manganese ore is studied using the collapse method. The repose angle increases with the increase of the static friction coefficient and the dynamic friction coefficient, but the change trend is different. The effect of the dynamic friction coefficient on the repose angle is obviously greater than that of the static friction coefficient. The dynamic friction coefficient obtained by Yade is 0.042. Taking the swing distance, rotating speed, and bottom angle of the fixed cone as the orthogonal experimental factors of Yade, the regression equation of the fixed cone liner was obtained through the nonlinear processing of SPSS 25.0. According to Matlab R2017b, the influences of the swinging distance, rotating speed, and bottom angle of the fixed cone on the fixed cone liner are obtained. According to Yade's research results, the order of the influence degree of liner wear is: the rotating speed of moving cone, the swinging distance of the fixed cone, and the base angle of fixed rotation. When the swinging distance of the fixed cone is 146 mm, the rotating speed of the moving cone is 198 rpm, the fixed rotation bottom angle is 28°, and the minimum value of the liner wear is 23 mm. Yade's results are consistent with the change trend of the wear amount of the bushing obtained from the test. The research results show the correctness of using the Yade method to study the wear of the fixed cone liner of a cone crusher, which provides a theoretical basis for reducing the wear of the fixed cone liner of a cone crusher, and puts forward a new method to study the wear of relevant parts of a fixed cone crusher. At the same time, the research results are of great significance for achieving energy-saving in mining enterprises.
Collapse
Affiliation(s)
- Dasheng Li
- School
of Mechanical and Vehicular Engineering, Bengbu University, Bengbu, Anhui 233030, China
| | - Yonghai Wang
- Chankoo
Mechanical and Electrical Technology (Shanghai) Co. Ltd, Shanghai 201199, China
| | - Chao Wang
- School
of Computer Science and Technology, Xidian
University, Xi’an, Shaanxi 710071, China
| | - Sehui Li
- Shanghai
Digital Design and Research Institute, Shanghai 200082, China
| |
Collapse
|
25
|
Boomi P, Poorani GP, Selvam S, Palanisamy S, Jegatheeswaran S, Anand K, Balakumar C, Premkumar K, Prabu HG. Green biosynthesis of gold nanoparticles using
Croton sparsiflorus leaves
extract and evaluation of UV protection, antibacterial and anticancer applications. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pandi Boomi
- Department of BioinformaticsAlagappa University Karaikudi 630003 Tamil Nadu India
| | | | - Samayanan Selvam
- Department of Chemical and Biochemical EngineeringDongguk University‐Seoul Seoul 04620 Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and TechnologyGangneung‐Wonju National University Gangneung Gangwon 210‐702 Republic of Korea
| | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and TextileZhejiang Sci‐Tech University, Xiasha Higher Education Park Hangzhou 310018 P.R. China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory ServiceUniversity of the Free State Bloemfontein South Africa
| | - Chandrasekaran Balakumar
- Faculty of Pharmacy, Philadelphia University, P. O. Box ‐ 1Philadelphia University (19392) Jordan
| | - Kumpati Premkumar
- Department of Biomedical ScienceBharathidasan University Tiruchirappalli 620024 India
| | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical SciencesAlagappa University Karaikudi 630003 Tamil Nadu India
| |
Collapse
|
26
|
Yu Y, Yang T, Sun T. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine (Lond) 2020; 15:1127-1145. [PMID: 32329396 DOI: 10.2217/nnm-2019-0395] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The past decades have witnessed enormous development of gold nanoparticles (AuNPs) and their applications in the biomedical field, an area in which they show infinite potential. Abundant investigations have been conducted in improving AuNP synthesis, aimed at obtaining water-dispersible ultrasmall AuNPs, which can exhibit biocompatibility, renal clearance and minimal toxicity. Due to their excellent x-ray attenuation ability, special optical properties and surface modification properties, AuNPs are reported to be promising as computed tomography contrast agents and can be applied in radiotherapy, photothermal and photodynamic therapies, and drug delivery. In this review, synthesis methods and toxicity of AuNPs have been summarized, emphasizing the preparation of ultra-small AuNPs. Applications of AuNPs in computed tomography imaging and cancer treatment are also considered, revealing their potential in the clinic.
Collapse
Affiliation(s)
- Yao Yu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Ting Yang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan, 430070, PR China.,State Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
27
|
Santibáñez M, Saavedra R, Vedelago J, Malano F, Valente M. Optimized EDXRF system for simultaneous detection of gold and silver nanoparticles in tumor phantom. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.108415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Scotson CP, Munoz-Hernando M, Duncan SJ, Ruiz SA, Keyes SD, van Veelen A, Dunlop IE, Roose T. Stabilizing gold nanoparticles for use in X-ray computed tomography imaging of soil systems. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190769. [PMID: 31824700 PMCID: PMC6837195 DOI: 10.1098/rsos.190769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/25/2019] [Indexed: 05/22/2023]
Abstract
This investigation establishes a system of gold nanoparticles that show good colloidal stability as an X-ray computed tomography (XCT) contrast agent under soil conditions. Gold nanoparticles offer numerous beneficial traits for experiments in biology including: comparatively minimal phytotoxicity, X-ray attenuation of the material and the capacity for functionalization. However, soil salinity, acidity and surface charges can induce aggregation and destabilize gold nanoparticles, hence in biomedical applications polymer coatings are commonly applied to gold nanoparticles to enhance stability in the in vivo environment. Here we first demonstrate non-coated nanoparticles aggregate in soil-water solutions. We then show coating with a polyethylene glycol (PEG) layer prevents this aggregation. To demonstrate this, PEG-coated nanoparticles were drawn through flow columns containing soil and were shown to be stable; this is in contrast with control experiments using silica and alumina-packed columns. We further determined that a suspension of coated gold nanoparticles which fully saturated soil maintained stability over at least 5 days. Finally, we used time resolved XCT imaging and image based models to approximate nanoparticle diffusion as similar to that of other typical plant nutrients diffusing in water. Together, these results establish the PEGylated gold nanoparticles as potential contrast agents for XCT imaging in soil.
Collapse
Affiliation(s)
- Callum P. Scotson
- Bioengineering Sciences Research Group, Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Maria Munoz-Hernando
- Department of Materials, Faculty of Engineering, Imperial College London, London, UK
| | - Simon J. Duncan
- Bioengineering Sciences Research Group, Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Siul A. Ruiz
- Bioengineering Sciences Research Group, Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Samuel D. Keyes
- Bioengineering Sciences Research Group, Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Arjen van Veelen
- Bioengineering Sciences Research Group, Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Iain E. Dunlop
- Department of Materials, Faculty of Engineering, Imperial College London, London, UK
| | - Tiina Roose
- Bioengineering Sciences Research Group, Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Author for correspondence: Tiina Roose e-mail:
| |
Collapse
|
29
|
Bailly AL, Correard F, Popov A, Tselikov G, Chaspoul F, Appay R, Al-Kattan A, Kabashin AV, Braguer D, Esteve MA. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep 2019; 9:12890. [PMID: 31501470 PMCID: PMC6734012 DOI: 10.1038/s41598-019-48748-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Capable of generating plasmonic and other effects, gold nanostructures can offer a variety of diagnostic and therapy functionalities for biomedical applications, but conventional chemically-synthesized Au nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au nanoparticles (AuNP) present a viable alternative to chemical counterparts and can offer exceptional purity (no trace of contaminants) and unusual surface chemistry making possible direct conjugation with biocompatible polymers (dextran, polyethylene glycol). This work presents the first pharmacokinetics, biodistribution and safety study of laser-ablated dextran-coated AuNP (AuNPd) under intravenous administration in small animal model. Our data show that AuNPd are rapidly eliminated from the blood circulation and accumulated preferentially in liver and spleen, without inducing liver or kidney toxicity, as confirmed by the plasmatic ALAT and ASAT activities, and creatininemia values. Despite certain residual accumulation in tissues, we did not detect any sign of histological damage or inflammation in tissues, while IL-6 level confirmed the absence of any chronic inflammation. The safety of AuNPd was confirmed by healthy behavior of animals and the absence of acute and chronic toxicities in liver, spleen and kidneys. Our results demonstrate that laser-synthesized AuNP are safe for biological systems, which promises their successful biomedical applications.
Collapse
Affiliation(s)
- Anne-Laure Bailly
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Florian Correard
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Anton Popov
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Bio-nanophotonics Lab., 115409, Moscow, Russia
| | - Gleb Tselikov
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France
| | - Florence Chaspoul
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Romain Appay
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Ahmed Al-Kattan
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France
| | - Andrei V Kabashin
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France.
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Bio-nanophotonics Lab., 115409, Moscow, Russia.
| | - Diane Braguer
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Marie-Anne Esteve
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France.
| |
Collapse
|
30
|
Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH. Sensitivity enhancement in lateral flow assays: a systems perspective. LAB ON A CHIP 2019; 19:2486-2499. [PMID: 31251312 DOI: 10.1039/c9lc00104b] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lateral flow assays (LFAs) are rapid, inexpensive, easy-to-manufacture and -use tests widely employed in medical and environmental applications, particularly in low resource settings. Historically, LFAs have been stigmatized as having limited sensitivity. However, as their global usage expands, extensive research has demonstrated that it is possible to substantially improve LFA sensitivity without sacrificing their advantages. In this critical review, we have compiled state-of-the-art approaches to LFA sensitivity enhancement. Moreover, we have organized and evaluated these approaches from a system-level perspective, as we have observed that the advantages and disadvantages of each approach have arisen from the integrated and tightly interconnected chemical, physical, and optical properties of LFAs.
Collapse
Affiliation(s)
| | - Helen V Hsieh
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA.
| | | | - Bernhard H Weigl
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA. and Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
31
|
Vallabani NVS, Singh S, Karakoti AS. Magnetic Nanoparticles: Current Trends and Future Aspects in Diagnostics and Nanomedicine. Curr Drug Metab 2019; 20:457-472. [DOI: 10.2174/1389200220666181122124458] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Background:
Biomedical applications of Magnetic Nanoparticles (MNPs) are creating a major impact on
disease diagnosis and nanomedicine or a combined platform called theranostics. A significant progress has been
made to engineer novel and hybrid MNPs for their multifunctional modalities such as imaging, biosensors, chemotherapeutic
or photothermal and antimicrobial agents. MNPs are successfully applied in biomedical applications
due to their unique and tunable properties such as superparamagnetism, stability, and biocompatibility. Approval of
ferumoxytol (feraheme) for MRI and the fact that several Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are
currently undergoing clinical trials have paved a path for future MNPs formulations. Intensive research is being
carried out in designing and developing novel nanohybrids for multiple applications in nanomedicine.
Objective:
The objective of the present review is to summarize recent developments of MNPs in imaging modalities
like MRI, CT, PET and PA, biosensors and nanomedicine including their role in targeting and drug delivery. Relevant
theory and examples of the use of MNPs in these applications have been cited and discussed to create a thorough
understanding of the developments in this field.
Conclusion:
MNPs have found widespread use as contrast agents in imaging modalities, as tools for bio-sensing, and
as therapeutic and theranostics agents. Multiple formulations of MNPs are in clinical testing and may be accepted in
clinical settings in near future.
Collapse
Affiliation(s)
- Naga Veera Srikanth Vallabani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ajay Singh Karakoti
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
32
|
Silver and Copper Nanoparticles-An Alternative in Future Mastitis Treatment and Prevention? Int J Mol Sci 2019; 20:ijms20071672. [PMID: 30987188 PMCID: PMC6480535 DOI: 10.3390/ijms20071672] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Nowadays, mastitis is one of the biggest problems in breeding dairy cattle. Treatment of this disease with conventional antibiotics is ineffective because many pathogens are resistant. Researchers have therefore been forced to look for new solutions, and metal nanoparticles (NPs) have been found to be the most appropriate agents. This study uses commercially available silver (AgNPs) and copper (CuNPs) nanoparticles and synthetized silver–copper nanoparticles (AgCuNPs) to evaluate the effect of these NPs on human and bovine mammary cells. The effect of AgNPs, CuNPs, and AgCuNPs on pathogen species commonly involved in udder inflammation (e.g., Staphylococcus aureus and Escherichia coli) was also established. The results show that commercially available NPs were of good quality and did not have a toxic effect on mammary gland tissue. AgNPs, CuNPs, and AgCuNPs also influenced or decreased the viability of pathogens. Therefore, the presented data suggest that metal NPs could be used in mastitis prevention and treatment in the future. However, the presented preliminary results require further in vivo analysis.
Collapse
|
33
|
Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. NANOSCALE 2019; 11:799-819. [PMID: 30603750 PMCID: PMC8112886 DOI: 10.1039/c8nr07769j] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An urgent need for early detection and diagnosis of diseases continuously pushes the advancements of imaging modalities and contrast agents. Current challenges remain for fast and detailed imaging of tissue microstructures and lesion characterization that could be achieved via development of nontoxic contrast agents with longer circulation time. Nanoparticle technology offers this possibility. Here, we review nanoparticle-based contrast agents employed in most common biomedical imaging modalities, including fluorescence imaging, MRI, CT, US, PET and SPECT, addressing their structure related features, advantages and limitations. Furthermore, their applications in each imaging modality are also reviewed using commonly studied examples. Future research will investigate multifunctional nanoplatforms to address safety, efficacy and theranostic capabilities. Nanoparticles as imaging contrast agents have promise to greatly benefit clinical practice.
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001 P. R. China.
| | | | | | | |
Collapse
|
34
|
Mahmoud NN, Harfouche M, Alkilany AM, Al-Bakri AG, El-Qirem RA, Shraim SA, Khalil EA. Synchrotron-based X-ray fluorescence study of gold nanorods and skin elements distribution into excised human skin layers. Colloids Surf B Biointerfaces 2018; 165:118-126. [DOI: 10.1016/j.colsurfb.2018.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/21/2018] [Accepted: 02/11/2018] [Indexed: 02/02/2023]
|
35
|
Dadashi S, Poursalehi R, Delavari H. H. In situ PEGylation of Bi nanoparticles prepared via pulsed Nd:YAG laser ablation in low molecular weight PEG: a potential X-ray CT imaging contrast agent. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2018. [DOI: 10.1080/21681163.2018.1452634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- S. Dadashi
- Department of Materials Engineering, Tarbiat Modares University , Tehran, Iran
| | - R. Poursalehi
- Department of Materials Engineering, Tarbiat Modares University , Tehran, Iran
| | - H. Delavari H.
- Department of Materials Engineering, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
36
|
Optical and structural properties of oxidation resistant colloidal bismuth/gold nanocomposite: An efficient nanoparticles based contrast agent for X-ray computed tomography. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Ashton JR, Castle KD, Qi Y, Kirsch DG, West JL, Badea CT. Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy. Theranostics 2018; 8:1782-1797. [PMID: 29556356 PMCID: PMC5858500 DOI: 10.7150/thno.22621] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and computed tomography (CT) imaging. AuNPs absorb x-rays and subsequently release low-energy, short-range photoelectrons during external beam radiation therapy (RT), increasing the local radiation dose. When AuNPs are near tumor vasculature, the additional radiation dose can lead to increased vascular permeability. This work focuses on understanding how tumor vascular permeability is influenced by AuNP-augmented RT, and how this effect can be used to improve the delivery of nanoparticle chemotherapeutics. Methods: Dual-energy CT was used to quantify the accumulation of both liposomal iodine and AuNPs in tumors following AuNP-augmented RT in a mouse model of primary soft tissue sarcoma. Mice were injected with non-targeted AuNPs, RGD-functionalized AuNPs (vascular targeting), or no AuNPs, after which they were treated with varying doses of RT. The mice were injected with either liposomal iodine (for the imaging study) or liposomal doxorubicin (for the treatment study) 24 hours after RT. Increased tumor liposome accumulation was assessed by dual-energy CT (iodine) or by tracking tumor treatment response (doxorubicin). Results: A significant increase in vascular permeability was observed for all groups after 20 Gy RT, for the targeted and non-targeted AuNP groups after 10 Gy RT, and for the vascular-targeted AuNP group after 5 Gy RT. Combining targeted AuNPs with 5 Gy RT and liposomal doxorubicin led to a significant tumor growth delay (tumor doubling time ~ 8 days) compared to AuNP-augmented RT or chemotherapy alone (tumor doubling time ~3-4 days). Conclusions: The addition of vascular-targeted AuNPs significantly improved the treatment effect of liposomal doxorubicin after RT, consistent with the increased liposome accumulation observed in tumors in the imaging study. Using this approach with a liposomal drug delivery system can increase specific tumor delivery of chemotherapeutics, which has the potential to significantly improve tumor response and reduce the side effects of both RT and chemotherapy.
Collapse
Affiliation(s)
- Jeffrey R. Ashton
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| | - Katherine D. Castle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27705, United States
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27705, United States
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| | - Cristian T. Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, United States
| |
Collapse
|
38
|
Liu T, Rong J, Gao P, Zhang W, Liu W, Zhang Y, Lu H. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29473348 DOI: 10.1117/1.jbo.23.2.026006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.
Collapse
Affiliation(s)
- Tianshuai Liu
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Junyan Rong
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Peng Gao
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Wenli Zhang
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Wenlei Liu
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Yuanke Zhang
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Hongbing Lu
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| |
Collapse
|
39
|
Albayedh F, Chow JCL. Monte Carlo Simulation on the Imaging Contrast Enhancement in Nanoparticle-enhanced Radiotherapy. J Med Phys 2018; 43:195-199. [PMID: 30305778 PMCID: PMC6172862 DOI: 10.4103/jmp.jmp_141_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study focused on the imaging in radiotherapy by finding the relationship between the imaging contrast ratio and appropriate gold, iodine, iron oxide, silver, and platinum nanoparticle concentrations; the relationship between the imaging contrast ratio and different beam energies for the different nanoparticle concentrations; the relationship between the contrast ratio and various beam energies for gold nanoparticles; and the relationship between the contrast ratio and different thicknesses of the incident layer of the phantom including variety of gold nanoparticles (GNPs) concentration. Monte Carlo simulation was used to model the gold, iodine, iron oxide, silver, and platinum nanoparticle concentration which were infused within a heterogeneous phantom (50 cm × 50 cm × 10.5 cm) choosing different concentrations (3, 7, 18, 30, and 40 mg), and beams (100, 120, 130, and 140 kVp) correspondingly that were delivered into the phantom. The results showed obvious connection between the high concentration and having a high imaging contrast ratio, low energy and a high contrast ratio, small thickness, and a high contrast ratio. The superior nanoparticle obtained was GNP, the better concentration was 40 mg, the better beam energy was 100 kVp, and the better thickness was 0.5 cm. It is concluded that our study successfully proved that medical imaging contrast could be improved by increasing the contrast ratio using GNP as the finest choice to accomplish this improvement considering a high concentration, low beam energy, and a small thickness.
Collapse
Affiliation(s)
- Ferdos Albayedh
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - James C L Chow
- Princess Margaret Cancer Centre, UHN, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Avila-Alejo JO, González-Palomo AK, Plascencia-Villa G, José-Yacamán M, Navarro-Contreras HR, Pérez-Maldonado IN. Low cytotoxicity of anisotropic gold nanoparticles coated with lysine on peripheral blood mononuclear cells "in vitro". ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:210-218. [PMID: 28965035 DOI: 10.1016/j.etap.2017.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to evaluate the cytotoxic effects of anisotropic (non spherical morphologies) gold nanoparticles coated with the amino acid Lysine (Lys) on peripheral blood mononuclear cells (PBMC) "in vitro". Gold (Au) nanoparticles tested in this study were synthesized by a seed-mediated growth using Lys as a structure and shape directing agent. Cytotoxic effects were evaluated by cell viability (resazurin assay), reactive oxygen species (ROS) induction (2',7'-dichlorofluorescein diacetate assay), DNA damage (comet assay) and apoptosis/necrosis (AnnexinV/propidium iodide assay) after PBMC were exposed to increasing concentrations (10, 25, 50, 100, and 250μM) of AuNPs coated with Lys (AuNPs-Lys) at different exposure times (3, 6, 12, and 24h). The results demonstrated that AuNPs-Lys exhibited low cytotoxicity towards PBMC, (high cell viability), with low levels of ROS, DNA damage and apoptosis/necrosis detected after treatment. These data suggest that AuNPs-Lys, might be viable for biomedical application subject to further investigations.
Collapse
Affiliation(s)
- Jorge O Avila-Alejo
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universi dad Autónoma de San Luis Potosí. San Luis Potosí, México, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Ana K González-Palomo
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universi dad Autónoma de San Luis Potosí. San Luis Potosí, México, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Germán Plascencia-Villa
- Departamento de Microscopia de Alta Resolución. Facultad de Ciencias. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Department of Physics and Astronomy, The University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Miguel José-Yacamán
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universi dad Autónoma de San Luis Potosí. San Luis Potosí, México, México; Department of Physics and Astronomy, The University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Hugo R Navarro-Contreras
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universi dad Autónoma de San Luis Potosí. San Luis Potosí, México, México
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universi dad Autónoma de San Luis Potosí. San Luis Potosí, México, México; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México; Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí. Rio-verde, San Luis Potosí, México.
| |
Collapse
|
41
|
Luque-Michel E, Sebastian V, Szczupak B, Imbuluzqueta E, Llop J, Blanco Prieto MJ. Visualization of hybrid gold-loaded polymeric nanoparticles in cells using scanning electron microscopy. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Yang J, Wang B, You Y, Chang WJ, Tang K, Wang YC, Zhang W, Ding F, Gunasekaran S. Probing the modulated formation of gold nanoparticles-beta-lactoglobulin corona complexes and their applications. NANOSCALE 2017; 9:17758-17769. [PMID: 28869274 PMCID: PMC5901966 DOI: 10.1039/c7nr02999c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Understanding the interactions between proteins and nanoparticles (NPs) along with the underlying structural and dynamic information is of utmost importance to exploit nanotechnology for biomedical applications. Upon adsorption onto a NP surface, proteins form a well-organized layer, termed the corona, that dictates the identity of the NP-protein complex and governs its biological pathways. Given its high biological relevance, in-depth molecular investigations and applications of NPs-protein corona complexes are still scarce, especially since different proteins form unique corona patterns, making identification of the biomolecular motifs at the interface critical. In this work, we provide molecular insights and structural characterizations of the bio-nano interface of a popular food-based protein, namely bovine beta-lactoglobulin (β-LG), with gold nanoparticles (AuNPs) and report on our investigations of the formation of corona complexes by combined molecular simulations and complementary experiments. Two major binding sites in β-LG were identified as being driven by citrate-mediated electrostatic interactions, while the associated binding kinetics and conformational changes in the secondary structures were also characterized. More importantly, the superior stability of the corona led us to further explore its biomedical applications, such as in the smartphone-based point-of-care biosensing of Escherichia coli (E. coli) and in the computed tomography (CT) of the gastrointestinal (GI) tract through oral administration to probe GI tolerance and functions. Considering their biocompatibility, edible nature, and efficient excretion through defecation, AuNPs-β-LG corona complexes have shown promising perspectives for future in vitro and in vivo clinical settings.
Collapse
Affiliation(s)
- Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
- Corresponding authors at (J.Y.), (F.D.) and (S.G.)
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA
| | - Youngsang You
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
| | - Woo-jin Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211, USA
| | - Ke Tang
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Yi-Cheng Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
| | - Wenzhao Zhang
- Department of Engineering Professional Development, University of Wisconsin-Madison, 432 North Lake Street, Madison, WI 53706, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA
- Corresponding authors at (J.Y.), (F.D.) and (S.G.)
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
- Corresponding authors at (J.Y.), (F.D.) and (S.G.)
| |
Collapse
|
43
|
Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y. An update on nanoparticle-based contrast agents in medical imaging. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1111-1121. [PMID: 28933183 DOI: 10.1080/21691401.2017.1379014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the great value of current exogenous contrast agents for providing main diagnostic information, they still have certain drawbacks such as short blood half life, nonspecific biodistribution, fast clearance, slight renal toxicity and poor contrast in fat patients. Nanoparticles (NPs) are used as novel contrast agents that represent a promising strategy for the non invasive diagnosis. As a platform, nanoparticulates are compatible for developing targeted contrast agents. Advances in nanotechnology will provide enhanced sensitivity and specificity for tumor imaging enabling earlier detection of metastases. This article focuses on fundamental issue such as biological interactions, clearance routes, coating of NPs and presents a wide discussion about most recent category of NPs that are used as contrast agents and thebenefits/concerns issues associated with their use in clinical procedures.
Collapse
Affiliation(s)
- Neda Naseri
- a Department of Medical Nanotechnology , School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences , Tehran , Iran
| | - Elham Ajorlou
- b Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Fatemeh Asghari
- a Department of Medical Nanotechnology , School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences , Tehran , Iran
| | - Younes Pilehvar-Soltanahmadi
- c Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Stem Cell and Regenerative Medicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
44
|
Gharatape A, Salehi R. Recent progress in theranostic applications of hybrid gold nanoparticles. Eur J Med Chem 2017; 138:221-233. [PMID: 28668475 DOI: 10.1016/j.ejmech.2017.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 11/16/2022]
Abstract
A significant area of research is theranostic applications of nanoparticles, which involves efforts to improve delivery and reduce side effects. Accordingly, the introduction of a safe, effective, and, most importantly, renewable strategy to target, deliver and image disease cells is important. This state-of-the-art review focuses on studies done from 2013 to 2016 regarding the development of hybrid gold nanoparticles as theranostic agents in the diagnosis and treatment of cancer and infectious disease. Several syntheses (chemical and green) methods of gold nanoparticles and their applications in imaging, targeting, and delivery are reviewed; their photothermal efficiency is discussed as is the toxicity of gold nanoparticles. Owing to the unique characterizations of hybrid gold nanoparticles and their potential to be developed as multifunctional, we predict they will present an undeniable role in clinical studies and provide treatment platforms for various diseases. Thus, their clearance and interactions with extra- and intra-cellular molecules need to be considered in future projects.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
45
|
Maiorano G, Mele E, Frassanito MC, Restini E, Athanassiou A, Pompa PP. Ultra-efficient, widely tunable gold nanoparticle-based fiducial markers for X-ray imaging. NANOSCALE 2016; 8:18921-18927. [PMID: 27812579 DOI: 10.1039/c6nr07021c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We show the development of a new class of highly efficient, biocompatible fiducial markers for X-ray imaging and radiosurgery, based on polymer shells encapsulating engineered gold nanoparticle (AuNP) suspensions. Our smart fabrication strategy enables wide tunability of the fiducial size, shape, and X-ray attenuation performance, up to record values >20 000 Hounsfield units (HU), i.e. comparable to or even higher than bulk gold. We show that the NP fiducials allow for superior imaging both in vitro and in vivo (yet requiring 2 orders of magnitude less material), with strong stability over time and the absence of classical "streak artifacts" of standard bulk fiducials. NP fiducials were probed in vivo, showing exceptional contrast efficiency, even after 2 weeks post-implant in mice.
Collapse
Affiliation(s)
- G Maiorano
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Wang W, Li J, Liu R, Zhang A, Yuan Z. Size effect of Au/PAMAM contrast agent on CT imaging of reticuloendothelial system and tumor tissue. NANOSCALE RESEARCH LETTERS 2016; 11:429. [PMID: 27671016 PMCID: PMC5037097 DOI: 10.1186/s11671-016-1650-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/20/2016] [Indexed: 05/03/2023]
Abstract
Polyamidoamine (PAMAM)-entrapped Au nanoparticles were synthesized with distinct sizes to figure out the size effect of Au-based contrast agent on CT imaging of passively targeted tissues. Au/PAMAM nanoparticles were first synthesized with narrow distribution of particles size of 22.2 ± 3.1, 54.2 ± 3.7, and 104.9 ± 4.7 nm in diameters. Size effect leads no significant difference on X-ray attenuation when Au/PAMAM was ≤0.05 mol/L. For CT imaging of a tumor model, small Au/PAMAM were more easily internalized via endocytosis in the liver, leading to more obviously enhanced contrast. Similarly, contrast agents with small sizes were more effective in tumor imaging because of the enhanced permeability and retention effect. Overall, the particle size of Au/PAMAM heavily affected the efficiency of CT enhancement in imaging RES and tumors.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, He Xi District, Tianjin, 300060 China
| | - Jian Li
- Department of Radiology, Tianjin Hospital, Tianjin, 300060 China
| | - Ransheng Liu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, He Xi District, Tianjin, 300060 China
| | - Aixu Zhang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, He Xi District, Tianjin, 300060 China
| | - Zhiyong Yuan
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, He Xi District, Tianjin, 300060 China
| |
Collapse
|
47
|
Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A, Baptista PV. Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics (Basel) 2016; 6:diagnostics6040043. [PMID: 27879660 PMCID: PMC5192518 DOI: 10.3390/diagnostics6040043] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/13/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022] Open
Abstract
The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted developments in the exploration of biomolecular interactions with AuNP-containing systems, in particular for biomedical applications in diagnostics. These systems show great promise in improving sensitivity, ease of operation and portability. Despite this endeavor, most platforms have yet to reach maturity and make their way into clinics or points of care (POC). Here, we present an overview of emerging and available molecular diagnostics using AuNPs for biomedical sensing that are currently being translated to the clinical setting.
Collapse
Affiliation(s)
- Mílton Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
- Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Fábio Ferreira Carlos
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Pedro Pedrosa
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - António Lopez
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
48
|
Silvestri A, Zambelli V, Ferretti AM, Salerno D, Bellani G, Polito L. Design of functionalized gold nanoparticle probes for computed tomography imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:405-414. [DOI: 10.1002/cmmi.1704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Alessandro Silvestri
- CNR - ISTM; Nanotechnology Lab.; Via G. Fantoli 16/15 20138 Milan Italy
- Department of Chemistry; University of Milan; Via C. Golgi 19 20133 Milan Italy
| | - Vanessa Zambelli
- Department of Medicine and Surgery; University of Milano-Bicocca; Via Cadore 48 20900 Monza Italy
| | - Anna M. Ferretti
- CNR - ISTM; Nanotechnology Lab.; Via G. Fantoli 16/15 20138 Milan Italy
| | - Domenico Salerno
- Department of Medicine and Surgery; University of Milano-Bicocca; Via Cadore 48 20900 Monza Italy
| | - Giacomo Bellani
- Department of Medicine and Surgery; University of Milano-Bicocca; Via Cadore 48 20900 Monza Italy
| | - Laura Polito
- CNR - ISTM; Nanotechnology Lab.; Via G. Fantoli 16/15 20138 Milan Italy
| |
Collapse
|
49
|
|
50
|
Loizidou EZ, Inoue NT, Ashton-Barnett J, Barrow DA, Allender CJ. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur J Pharm Biopharm 2016; 107:1-6. [PMID: 27373753 DOI: 10.1016/j.ejpb.2016.06.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Computerized tomography scan (CT scan) imaging and finite element analysis were employed to investigate how the geometric composition of microneedles affects their mechanical strength and penetration characteristics. Simulations of microneedle arrays, comprising triangular, square and hexagonal microneedle base, revealed a linear dependence of the mechanical strength to the number of vertices in the polygon base. A laser-enabled, micromoulding technique was then used to fabricate 3×3 microneedle arrays, each individual microneedle having triangular, square or hexagonal base geometries. Their penetration characteristics into ex-vivo porcine skin, were investigated for the first time by CT scan imaging. This revealed greater penetration depths for the triangular and square-based microneedles, demonstrating CT scan as a powerful and reliable technique for studying microneedle skin penetration.
Collapse
Affiliation(s)
- Eriketi Z Loizidou
- School of Pharmacy, Cardiff University, CF10 3NB, United Kingdom; School of Science and Technology, Middlesex University, NW4 4BT, United Kingdom.
| | - Nicholas T Inoue
- School of Engineering, Cardiff University, CF24 3AA, United Kingdom
| | | | - David A Barrow
- School of Engineering, Cardiff University, CF24 3AA, United Kingdom.
| | - Chris J Allender
- School of Pharmacy, Cardiff University, CF10 3NB, United Kingdom.
| |
Collapse
|