1
|
Kharwade R, Kazi M, Mahajan N, Badole P, More S, Kayali A, Noushad Javed M, Kaleem M. Mannosylated PAMAM G2 dendrimers mediated rate programmed delivery of efavirenz target HIV viral latency at reservoirs. Saudi Pharm J 2024; 32:102154. [PMID: 39282004 PMCID: PMC11399684 DOI: 10.1016/j.jsps.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
In this current research, we conceptualized a novel nanotechnology-enabled synthesis approach of targeting HIV-harboring tissues via second-generation (G2) polyamidoamine (PAMAM) mannosylated (MPG2) dendrimers for programmed delivery of anti-HIV drugs efavirenz (EFV) and ritonavir (RTV). Briefly, here mannose served purpose of ligand in this EFV and RTV-loaded PAMAM G2 dendrimers, synthesized by divergent techniques, denoted as MPG2ER. The developed nanocarriers were characterized by different analytical tools FTIR, NMR, zeta potential, particle size, and surface morphology. The results of confocal microscopy showed substantial alterations in the morphology of H9 cells, favored by relatively higher drug uptake through the MPG2ER. Interestingly, the drug uptake study and cytotoxicity assay of MPG2ER demonstrated that it showed no significant toxicity up to 12.5 µM. A typical flow cytometry histogram also revealed that MPG2ER efficiently internalized both drugs, with an increase in drug uptake of up to 81.2 %. It also enhanced the plasma pharmacokinetics of EFV, with Cmax7.68 μg/ml, AUC of 149.19 (μg/ml) * hr, and MRT of 26.87 hrs. Subsequently, tissue pharmacokinetics further evidence that MPG2ER accumulated more in distant Human immunodeficiency virus (HIV) reservoir tissues, such as the lymph nodes and spleen, but without exhibiting significant toxicity. Abovementioned compelling evidences strongly favored translational roles of MPG2 as a potential therapeutic strategy in the clinical eradication of HIV from viral reservoir tissue.
Collapse
Affiliation(s)
- Rohini Kharwade
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS, India
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nilesh Mahajan
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS, India
| | - Payal Badole
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS, India
| | - Sachin More
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440037, India
| | - Asaad Kayali
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Md Noushad Javed
- NationNanotechnology Center of Excellence, College of Engineering and Computer Science, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440037, India
| |
Collapse
|
2
|
Handali S, Rezaei M. Aptamer-decorated nanocarriers for viral adsorption: A special look at COVID-19. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102310. [PMID: 39281706 PMCID: PMC11401170 DOI: 10.1016/j.omtn.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Viral infections are one of the leading causes of death in the world. One main challenge in fighting against these diseases is the unavailability of effective eradicating drugs and specific treatments. Nanocarriers and aptamer-decorated nanocarriers are designed to attach to many targets, including viral particles. By lowering the viral infectivity and attachment capability, they add therapeutic values even without containing antiviral drugs. Nevertheless, the nanoparticles (NPs) with encapsulated antiviral drugs can display extra therapeutic effects. Furthermore, it has been shown that aptamers can bind to viral particles and nanocarriers, presenting promising approaches for the identification of viruses and treatment of viral infections. Although there is no satisfying literature revealing the strong therapeutic potential of nanotechnology against COVID-19, the following information can provide new perspectives for upcoming investigations pertaining to developing effective aptamer-nanocarrier agents against COVID-19.
Collapse
Affiliation(s)
- Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Srivastava N, Mishra Y, Mishra V. Dendrimers: A novel and efficient carrier for anti-HIV drugs. AIP CONFERENCE PROCEEDINGS 2024; 3007:030154. [DOI: 10.1063/5.0195747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Wibowo YG, Ramadan BS, Taher T, Khairurrijal K. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-24. [PMID: 37363141 PMCID: PMC10171735 DOI: 10.1007/s44174-023-00086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identified as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomaterials and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.
Collapse
Affiliation(s)
- Yudha Gusti Wibowo
- Department of Mining Engineering, Institut Teknologi Sumatrea, Lampung, 35365 Indonesia
| | | | - Tarmizi Taher
- Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, 40132 Indonesia
| |
Collapse
|
5
|
Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022; 213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Antiretroviral drugs employed for the treatment of human immunodeficiency virus (HIV) infections have remained largely ineffective due to their poor bioavailability, numerous adverse effects, modest uptake in infected cells, undesirable drug-drug interactions, the necessity for long-term drug therapy, and lack of access to tissues and reservoirs. Nanotechnology-based interventions could serve to overcome several of these disadvantages and thereby improve the therapeutic efficacy of antiretrovirals while reducing the morbidity and mortality due to the disease. However, attempts to use nanocarriers for the delivery of anti-retroviral drugs have started gaining momentum only in the past decade. This review explores in-depth the various nanocarriers that have been employed for the treatment of HIV infections highlighting their merits and possible demerits.
Collapse
|
6
|
Hu B, Liu R, Liu Q, Lin Z, Shi Y, Li J, Wang L, Li L, Xiao X, Wu Y. Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. J Mater Chem B 2022; 10:2357-2383. [DOI: 10.1039/d1tb02549j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of nanoparticles affect their fates in biological systems. Based on nanotechnology and methodology, pioneering works have explored the effects of chemical surface patterns on the behavior of...
Collapse
|
7
|
Abstract
The field of nanotechnology has been a significant research focus in the last thirty years. This emphasis is due to the unique optical, electrical, magnetic, chemical and biological properties of materials approximately ten thousand times smaller than the diameter of a hair strand. Researchers have developed methods to synthesize and characterize large libraries of nanomaterials and have demonstrated their preclinical utility. We have entered a new phase of nanomedicine development, where the focus is to translate these technologies to benefit patients. This review article provides an overview of nanomedicine's unique properties, the current state of the field, and discusses the challenge of clinical translation. Finally, we discuss the need to build and strengthen partnerships between engineers and clinicians to create a feedback loop between the bench and bedside. This partnership will guide fundamental studies on the nanoparticle-biological interactions, address clinical challenges and change the development and evaluation of new drug delivery systems, sensors, imaging agents and therapeutic systems.
Collapse
Affiliation(s)
- Shrey Sindhwani
- From the, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Warren C W Chan
- From the, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada.,Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.,Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Bolhassani A, Milani A. Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections. Curr Mol Pharmacol 2021; 13:173-181. [PMID: 31760929 DOI: 10.2174/1874467212666191023120954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Small interfering RNAs (siRNAs) have rapidly developed into biomedical research as a novel tool for the potential treatment of various human diseases. They are based on altered gene expression. In spite of the availability of highly active antiretroviral therapy (HAART), there is a specific interest in developing siRNAs as a therapeutic agent for human immunodeficiency virus (HIV) due to several problems including toxicity and drug resistance along with long term treatment. The successful use of siRNAs for therapeutic goals needs safe and effective delivery to specific cells and tissues. Indeed, the efficiency of gene silencing depends on the potency of the carrier used for siRNA delivery. The combination of siRNA and nano-carriers is a potent method to prevent the limitations of siRNA formulation. Three steps were involved in non-viral siRNA carriers such as the complex formation of siRNA with a cationic carrier, conjugation of siRNA with small molecules, and encapsulation of siRNA within nanoparticles. In this mini-review, the designed siRNAs and their carriers are described against HIV-1 infections both in vitro and in vivo.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
9
|
Akilesh M S, Wadhwani A. Novel Applications of Nanotechnology in Controlling HIV and HSV Infections. Curr Drug Res Rev 2020; 13:120-129. [PMID: 33238862 DOI: 10.2174/2589977512999201124121931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
Infectious diseases have been prevalent since many decades and viral pathogens have caused global health crisis and economic meltdown on a devastating scale. High occurrence of newer viral infections in the recent years, in spite of the progress achieved in the field of pharmaceutical sciences defines the critical need for newer and more effective antiviral therapies and diagnostics. The incidence of multi-drug resistance and adverse effects due to the prolonged use of anti-viral therapy is also a major concern. Nanotechnology offers a cutting edge platform for the development of novel compounds and formulations for biomedical applications. The unique properties of nano-based materials can be attributed to the multi-fold increase in the surface to volume ratio at the nano-scale, tunable surface properties of charge and chemical moieties. Idealistic pharmaceutical properties such as increased bioavailability and retention times, lower toxicity profiles, sustained release formulations, lower dosage forms and most importantly, targeted drug delivery can be achieved through the approach of nanotechnology. The extensively researched nano-based materials are metal and polymeric nanoparticles, dendrimers and micelles, nano-drug delivery vesicles, liposomes and lipid based nanoparticles. In this review article, the impact of nanotechnology on the treatment of Human Immunodeficiency Virus (HIV) and Herpes Simplex Virus (HSV) viral infections during the last decade are outlined.
Collapse
Affiliation(s)
- Sai Akilesh M
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty - 643001, The Nilgiris, Tamil Nadu. India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty - 643001, The Nilgiris, Tamil Nadu. India
| |
Collapse
|
10
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Weiyue S, Ying L, Kanamoto T, Asai D, Takemura H, Nakashima H, Miyazaki K, Yoshida T. Elucidation of anti-HIV mechanism of sulfated cellobiose-polylysine dendrimers. Carbohydr Res 2020; 495:108084. [PMID: 32658833 DOI: 10.1016/j.carres.2020.108084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
Three new spherical sulfated cellobiose-polylysine dendrimers of increasing generations bearing negatively charged sulfate groups were prepared by sulfating the corresponding cellobiose-polylysine dendrimers. The first, second, and third-generation derivatives exhibited potent anti-HIV activity with EC50 values of 3.7, 0.6, and 1.5 μg/mL, respectively, in constant to sulfated oligosaccharides with low anti-HIV activity, while the second-generation sulfated dendrimer was the most active. Surface plasmon resonance measurements with poly-l-lysine bearing positively charged amino acids as a model of the HIV surface glycoprotein gp120, indicated that the second-generation dendrimer had the lowest dissociation constant (KD = 1.86 × 10-12 M). Both the particle size and ζ potential increased in the presence of poly-l-lysine. It was proven that the moderate distance between the terminal sulfated cellobiose units in the second-generation dendrimer favored the high anti-HIV activity, owing to the electrostatic interactions developed due to the cluster effect.
Collapse
Affiliation(s)
- Song Weiyue
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Li Ying
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Taisei Kanamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Daisuke Asai
- St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Hiromu Takemura
- St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Hideki Nakashima
- St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Kensuke Miyazaki
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Takashi Yoshida
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan.
| |
Collapse
|
12
|
Jain K, Mehra NK, Jain VK, Jain NK. IPN Dendrimers in Drug Delivery. INTERPENETRATING POLYMER NETWORK: BIOMEDICAL APPLICATIONS 2020:143-181. [DOI: 10.1007/978-981-15-0283-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Saxena SK, Maurya VK, Kumar S, Bhatt MLB. Modern Approaches in Nanomedicine for NeuroAIDS and CNS Drug Delivery. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Gutierrez-Ulloa CE, Sepúlveda-Crespo D, García-Broncano P, Malý M, Muñoz-Fernández MA, de la Mata FJ, Gómez R. Synthesis of bow-tie carbosilane dendrimers and their HIV antiviral capacity: A comparison of the dendritic topology on the biological process. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Maciel D, Guerrero-Beltrán C, Ceña-Diez R, Tomás H, Muñoz-Fernández MÁ, Rodrigues J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. NANOSCALE 2019; 11:9679-9690. [PMID: 31066407 DOI: 10.1039/c9nr00303g] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acquired immune deficiency syndrome (AIDS) due to human immunodeficiency virus type-1 (HIV-1) represents one of the most important sexually transmitted infections (STI) worldwide. Great international efforts have been made to stop new infections but, to date, several compounds failed as microbicides at different stages of clinical trials. The quest to design new molecules that could prevent these infections is essential. In this work, we synthesized the first, second and third generations of anionic dendrimers having carboxylate and sulfonate terminal groups, respectively named G1C, G2C, G3C and G1S, G2S, and G3S, starting from a family of poly(alkylideneamine) dendrimers with nitrile termini. The anionic terminal groups of these dendrimers were expected to prompt them to act against HIV-1 infection. All dendrimers were fully characterized by 1H- and 13C-NMR, FTIR, MS and zeta potential techniques. Importantly, they were able to remain stable in the solid state and aqueous solutions at least for one and a half years. Screening of these six new dendrimers was then performed to shed light on their potential anti-HIV-1 activity and their mechanism of action. Results showed that the dendrimers were cytocompatible and that G1C and G1S dendrimers had important activity against R5-HIV-1NLAD8 and X4-HIV-1NL4.3 isolates by acting directly on viral particles and blocking their entry in host cells. Additionally, G1C and G1S dendrimers maintained their inhibitory effect at different pH values. Through a vaginal irritation assay carried out in BALB/c mice, the safety of these new dendrimers for topical application was also shown. Taken together, our results clearly show that G1C and G1S dendrimers are strong candidates for developing an effective microbicide to prevent HIV-1 new infections.
Collapse
Affiliation(s)
- Dina Maciel
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| | | | | | | | | | | |
Collapse
|
16
|
Grande F, Ioele G, Occhiuzzi MA, De Luca M, Mazzotta E, Ragno G, Garofalo A, Muzzalupo R. Reverse Transcriptase Inhibitors Nanosystems Designed for Drug Stability and Controlled Delivery. Pharmaceutics 2019; 11:E197. [PMID: 31035595 PMCID: PMC6572254 DOI: 10.3390/pharmaceutics11050197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
An in-depth analysis of nanotechnology applications for the improvement of solubility, distribution, bioavailability and stability of reverse transcriptase inhibitors is reported. Current clinically used nucleoside and non-nucleoside agents, included in combination therapies, were examined in the present survey, as drugs belonging to these classes are the major component of highly active antiretroviral treatments. The inclusion of such agents into supramolecular vesicular systems, such as liposomes, niosomes and lipid solid NPs, overcomes several drawbacks related to the action of these drugs, including drug instability and unfavorable pharmacokinetics. Overall results reported in the literature show that the performances of these drugs could be significantly improved by inclusion into nanosystems.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
17
|
Kandi MR, Mohammadnejad J, Shafiee Ardestani M, Zabihollahi R, Soleymani S, Aghasadeghi MR, Baesi K. Inherent anti-HIV activity of biocompatible anionic citrate-PEG-citrate dendrimer. Mol Biol Rep 2018; 46:143-149. [PMID: 30414104 DOI: 10.1007/s11033-018-4455-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
Abstract
The development of new combinations to empower better protection against HIV infection is particularly important. Anionic polymers can block HIV infection. In the current study, first generation (G1) and second generation (G2) novel water-soluble anionic citrate-PEG-citrate dendrimers were synthesized and characterized with Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and dynamic light scattering (DLS) methods. After the biocompatibility of the G2 dendrimer was determined, its antiviral activity was evaluated. This function may contribute to the peripheral groups of this dendrimer (carboxylate group). In order to measure the inhibitory effect of G2 on HIV infection, both pre-treatment (treated with G2 dendrimer before HIV infection) and co-treatment (simultaneously treated with G2 dendrimer and HIV infection) were used in vitro. The results showed the good synthesis of the G2 dendrimer, and the dendrimer showed antiviral properties (ICC50:0.4 mM) and low toxicity (CC50:0.6 mM) at high concentrations. A strong inhibitory effect was found when the co-treatment approach was used. This study achieved promising results which encourage the use of G2 dendrimers as anti-HIV agents.
Collapse
Affiliation(s)
- Mohammad Reza Kandi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Zabihollahi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, P. O. Box 14115-331, Tehran, Iran
| | - Sepehr Soleymani
- Hepatitis and AIDS Department, Pasteur Institute of Iran, P. O. Box 14115-331, Tehran, Iran
| | | | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, P. O. Box 14115-331, Tehran, Iran.
| |
Collapse
|
18
|
Mhlwatika Z, Aderibigbe BA. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules 2018; 23:E2205. [PMID: 30200314 PMCID: PMC6225509 DOI: 10.3390/molecules23092205] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/14/2023] Open
Abstract
Dendrimers are drug delivery systems that are characterized by a three-dimensional, star-shaped, branched macromolecular network. They possess ideal properties such as low polydispersity index, biocompatibility and good water solubility. They are made up of the interior and the exterior layers. The exterior layer consists of functional groups that are useful for conjugation of drugs and targeting moieties. The interior layer exhibits improved drug encapsulation efficiency, reduced drug toxicity, and controlled release mechanisms. These unique properties make them useful for drug delivery. Dendrimers have attracted considerable attention as drug delivery system for the treatment of infectious diseases. The treatment of infectious diseases is hampered severely by drug resistance. Several properties of dendrimers such as their ability to overcome drug resistance, toxicity and control the release mechanism of the encapsulated drugs make them ideal systems for the treatment of infectious disease. The aim of this review is to discuss the potentials of dendrimers for the treatment of viral and parasitic infections.
Collapse
Affiliation(s)
- Zandile Mhlwatika
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
19
|
Malik T, Chauhan G, Rath G, Murthy RSR, Goyal AK. "Fusion and binding inhibition" key target for HIV-1 treatment and pre-exposure prophylaxis: targets, drug delivery and nanotechnology approaches. Drug Deliv 2017; 24:608-621. [PMID: 28240046 PMCID: PMC8241151 DOI: 10.1080/10717544.2016.1228717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
More than 35 million people are living with HIV worldwide with approximately 2.3 million new infections per year. Cascade of events (cell entry, virus replication, assembly and release of newly formed virions) is involved in the HIV-1 transmission process. Every single step offers a potential therapeutic strategy to halt this progression and HIV fusion into the human host cell is one such stage. Controlling the initial event of HIV-1 transmission is the best way to control its dissemination especially when prophylaxis is concerned. Action is required either on the HIV’s or host’s cell surface which is logically more rational when compared with other intracellular acting moieties. Aim of this manuscript is to detail the significance and current strategies to halt this initial step, thus blocking the entry of HIV-1 for further infection. Both HIV-1 and the possible host cell’s receptors/co-receptors are under focus while specifying the targets available for inhibiting this fusion. Current and under investigation moieties are categorized based on their versatile mechanisms. Advanced drug delivery and nanotechnology approaches present a key tool to exploit the therapeutic potential in a boosted way. Current drug delivery and the impact of nanotechnology in potentiating this strategy are detailed.
Collapse
Affiliation(s)
- Tanushree Malik
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and
| | - Gaurav Chauhan
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and.,b Centre for Nanosciences, Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur , India
| | - Goutam Rath
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and
| | - R S R Murthy
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and
| | - Amit K Goyal
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and
| |
Collapse
|
20
|
Abdoli A, Radmehr N, Bolhassani A, Eidi A, Mehrbod P, Motevalli F, Kianmehr Z, Chiani M, Mahdavi M, Yazdani S, Ardestani MS, Kandi MR, Aghasadeghi MR. Conjugated anionic PEG-citrate G2 dendrimer with multi-epitopic HIV-1 vaccine candidate enhance the cellular immune responses in mice. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1762-1768. [PMID: 28278580 DOI: 10.1080/21691401.2017.1290642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multi-epitope vaccines might cause immunity against multiple antigenic targets. Four immunodominant epitopes of HIV-1 genome were used to construct a polytope vaccine, formulated by dendrimer. Two regimens of polytopes mixture with dendrimer were utilized to immunize BALB/c mice. Adjuvants were also used to boost immune responses. The conjugated polytope could arouse significant cellular immune responses (P < 0.05) and Th1 response showed higher intensity compared to Th2 (P < 0.05). Our study depicted that conjugated dendrimer with multi-epitopic rHIVtop4 would efficiently induce cell-mediated immune responses and might be considered as promising delivery system for vaccines formulation.
Collapse
Affiliation(s)
- Asghar Abdoli
- a Hepatitis and AIDS Department , Pasteur Institute of Iran , Tehran , Iran
| | - Nina Radmehr
- b Faculty of Basic Sciences , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Azam Bolhassani
- a Hepatitis and AIDS Department , Pasteur Institute of Iran , Tehran , Iran
| | - Akram Eidi
- b Faculty of Basic Sciences , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Parvaneh Mehrbod
- c Influenza and Other Respiratory Viruses Department , Pasteur Institute of Iran , Tehran , Iran
| | - Fatemeh Motevalli
- a Hepatitis and AIDS Department , Pasteur Institute of Iran , Tehran , Iran
| | - Zahra Kianmehr
- d Immunoregulation Research Centre , Shahed University , Tehran , Iran
| | - Mohsen Chiani
- e Department of Pilot Biotechnology , Pasteur Institute of Iran , Tehran , Iran
| | - Mehdi Mahdavi
- f Department of Immunology , Pasteur Institute of Iran , Tehran , Iran
| | - Shaghayegh Yazdani
- g Department of Virology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Mehdi Shafiee Ardestani
- h Department of Radiopharmacy, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Kandi
- i Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran
| | | |
Collapse
|
21
|
Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N. Nanoparticles in Antiviral Therapy. ANTIMICROBIAL NANOARCHITECTONICS 2017. [PMCID: PMC7173505 DOI: 10.1016/b978-0-323-52733-0.00014-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to general unavailability of specific antiviral therapeutics for a variety of viral diseases, usage of most antiviral drugs is linked to their limited solubility in aqueous media, short half-life time, and inadequate penetration to specified anatomic compartments. Accordingly, there is continuous effort to improve physicochemical characteristics of existing antiviral drugs. Since nanomaterials display remarkable physical and chemical properties, high surface area to volume ratio, and increased reactivity, new approaches for antiviral therapies include combinations of nanomaterials and current antiviral agents. Multivalent nanostructures, polymers, dendrimers, and liposomes can establish multivalent binding interactions with many biological systems and thus can target pathogenic interactions. There are reports about anitiviral activities of different metal nanoparticles, especially silver nanoparticles and their potential for treatment, prophylaxis, and control of viral infections. Integration of classic antiviral drugs, in the form of multiple ligands, onto nanostructures provides the advantages by creating a high local concentration of active molecules. This article will summarize the antiviral activity of different nanoparticle-based approaches currently available for the treatment of viral infections, and it will discuss metal nanoparticles as possible future antiviral drugs.
Collapse
|
22
|
Melikishvili S, Poturnayova A, Ionov M, Bryszewska M, Vary T, Cirak J, Muñoz-Fernández MÁ, Gomez-Ramirez R, de la Mata FJ, Hianik T. The effect of polyethylene glycol-modified lipids on the interaction of HIV-1 derived peptide–dendrimer complexes with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3005-3016. [DOI: 10.1016/j.bbamem.2016.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
|
23
|
Abstract
Human immunodeficiency virus (HIV) is a neurotropic virus that enters the central nervous system (CNS) early in the course of infection. Although highly active antiretroviral therapy (HAART) has resulted in remarkable decline in the morbidity and mortality in AIDS patients, controlling HIV infections still remains a global health priority. HIV access to the CNS serves as the natural viral preserve because most antiretroviral (ARV) drugs possess inadequate or zero delivery across the brain barriers. The structure of the blood-brain barrier (BBB), the presence of efflux pumps, and the expression of metabolic enzymes pose hurdles for ARV drug-brain entry. Thus, development of target-specific, effective, safe, and controllable drug delivery approach is an important health priority for global elimination of AIDS progression. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release, and ingress across the barrier. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This review focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed NanoART, across the BBB and affect the biodistribution and clinical benefit for NeuroAIDS.
Collapse
|
24
|
Assadi A, Najafabadi VS, Shandiz SAS, Boroujeni AS, Ashrafi S, Vaziri AZ, Ghoreishi SM, Aghasadeghi MR, Ebrahimi SES, Pirali-Hamedani M, Ardestani MS. Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity. Onco Targets Ther 2016; 9:5531-43. [PMID: 27660471 PMCID: PMC5019448 DOI: 10.2147/ott.s103487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evaluating the efficacy of anticancer drugs is an evolving and research-oriented issue. The objective of this study was to reduce the insolubility of chlorambucil (CBL) in water and improve the anticancer activity of CBL in vitro and in vivo through the conjugation of CBL with anionic linear-globular dendrimer (second generation, G2). In the current study, the anticancer activity among three groups that include CBL, CBL–G2 dendrimer, and control was measured in vitro and in vivo. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which conjugated to the CBL exterior through an ester linkage, was able to significantly improve the treatment efficacy over clinical CBL alone with respect to proliferation assay, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide; half maximal inhibitory concentration (IC50) was calculated to be 141 µg/mL for CBL alone and 27.7 µg/mL for CBL–G2 dendrimer; P<0.05. In addition, CBL–G2 dendrimer conjugate forestalled the growth of MCF-7 cancerous cells in addition to enhancing the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. CBL–G2 dendrimer conjugate was able to checkmate antiapoptotic Bcl-2 expression and Bcl-2/Bax ratio in a large scale compared with the control group and CBL alone (P<0.005). In vivo studies showed that tumor treatment by CBL–G2 dendrimer conjugate outstrips the efficacy of treatment compared with CBL alone. The evaluation was based on reduction in tumor volume and tumor growth inhibition of murine 4T1 mammary tumor cells. Tumor volume of 140%±8% was measured in the treatment with CBL–G2 dendrimer, whereas 152%±13.5% was calculated in the treatment with free CBL (P<0.05). However, there were no significant differences in histological assay among the three groups. In conclusion, tumor growth suppression potential of CBL–G2 dendrimer, which was assessed in both in vitro and in vivo experiments, has provided empirical evidence to buttress the fact that this compound could be considered for functional cancer treatment with low side effects.
Collapse
Affiliation(s)
- Artin Assadi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences
| | | | | | | | - Sepehr Ashrafi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences
| | - Ali Zaman Vaziri
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences
| | | | | | | | - Morteza Pirali-Hamedani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
25
|
Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 2016; 103:202-217. [PMID: 26944096 PMCID: PMC4935582 DOI: 10.1016/j.addr.2016.02.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022]
Abstract
In spite of significant advances in antiretroviral (ARV) therapy, the elimination of human immunodeficiency virus (HIV) reservoirs from the periphery and the central nervous system (CNS) remains a formidable task. The incapability of ARV to go across the blood-brain barrier (BBB) after systemic administration makes the brain one of the dominant HIV reservoirs. Thus, screening, monitoring, and elimination of HIV reservoirs from the brain remain a clinically daunting and key task. The practice and investigation of nanomedicine possesses potentials for therapeutics against neuroAIDS. This review highlights the advancements in nanoscience and nanotechnology to design and develop specific size therapeutic cargo for efficient navigation across BBB so as to recognize and eradicate HIV brain reservoirs. Different navigation and drug release strategies, their biocompatibility and efficacy with related challenges and future prospects are also discussed. This review would be an excellent platform to understand nano-enable multidisciplinary research to formulate efficient nanomedicine for the management of neuroAIDS.
Collapse
Key Words
- Anti-retroviral (ARV) therapy
- Blood–brain barrier (BBB)
- Bradykinin (PubChem CID: 439,201)
- CNS drug delivery
- Enfuvirtide (PubChem CID: 16,130,199), Lamivudine & Zidovudine (PubChem CID: 160,352)
- Ferrous oxide or iron (II) oxide (PubChem CID: 14,945)
- Foscarnet sodium (PubChem CID: 44,561)
- HIV monitoring
- HIV-1
- Magnetic nanoparticle
- Mannitol (PubChem CID: 6251)
- Nanotechnology
- Neopterin (PubChem CID: 4455)
- NeuroAIDS
- Pluronic-P85 (PubChem CID: 24,751)
- Saquinavir mesylate (PubChem CID: 60,934)
- Tenofovir disoproxil fumarate (PubChem CID: 6,398,764)
Collapse
Affiliation(s)
- Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
26
|
Rata-Aguilar A, Maldonado-Valderrama J, Jódar-Reyes AB, Ortega-Vinuesa JL, Santoyo-Gonzalez F, Martín-Rodríguez A. Improved DNA condensation, stability, and transfection with alkyl sulfonyl-functionalized PAMAM G2. JOURNAL OF NANOPARTICLE RESEARCH 2015; 17:198. [DOI: 10.1007/s11051-015-3009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: a review. J Control Release 2014; 190:500-14. [PMID: 24830303 DOI: 10.1016/j.jconrel.2014.04.033] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 11/26/2022]
Abstract
Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted.
Collapse
Affiliation(s)
- Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore 21231, USA.
| | - Richard Cone
- Center for Nanomedicine, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore 21231, USA; Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore 21218, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore 21205, USA; Center for Cancer Nanotechnology Excellence, Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore 21218, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore 21287, USA; Department of Oncology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore 21287, USA
| |
Collapse
|
28
|
New hope for eradication of HIV from the body: the role of polymeric nanomedicines in HIV/AIDS pharmacotherapy. J Nanobiotechnology 2014; 12:9. [PMID: 24655921 PMCID: PMC3994339 DOI: 10.1186/1477-3155-12-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus continued to be the greatest challenge and killer disease of the 21st century despite the advent of potent highly active antiretroviral therapy which are limited by their severe adverse effects, significant drug interactions, frequent dosing, limited bioavailability, and less access to viral reservoir sites like macrophages. Nano-medicines are becoming new hopes in avoiding these shortcomings of conventional antiretroviral drugs. The emphasis of this review is mainly the application of polymers based nanomedicines in pharmacotherapy of HIV/AIDS. Most of the studies to date on this area are in vitro and human clinical trials are totally missed. However, many interesting points are uncovered through this review like the possibility of achieving high intracellular concentration of drugs, very good antiretroviral activity, improved bioavailability, reduced toxicity and release of the drugs from nanocarriers for long time reducing the need for frequent dosing. Indeed, a lot of assignments left behind for researchers to overcome the challenges hindering the wider application of nanomedicines in treatment of HIV/AIDS.
Collapse
|