1
|
Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics (Basel) 2023; 12:532. [PMID: 36978399 PMCID: PMC10044335 DOI: 10.3390/antibiotics12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Peptide-based drugs are gaining significant momentum in the modern drug discovery, which is witnessed by the approval of new drugs by the FDA in recent years. On the other hand, small molecules-based drugs are an integral part of drug development since the past several decades. Peptide-containing drugs are placed between small molecules and the biologics. Both the peptides as well as the small molecules (mainly heterocycles) pose several drawbacks as therapeutics despite their success in curing many diseases. This gap may be bridged by utilising the so called 'conjugation chemistry', in which both the partners are linked to one another through a stable chemical bond, and the resulting conjugates are found to possess attracting benefits, thus eliminating the stigma associated with the individual partners. Over the past decades, the field of molecular hybridisation has emerged to afford us new and efficient molecular architectures that have shown high promise in medicinal chemistry. Taking advantage of this and also considering our experience in this field, we present herein a review concerning the molecules obtained by the conjugation of peptides (amino acids) to small molecules (heterocycles as well as bioactive compounds). More than 125 examples of the conjugates citing nearly 100 references published during the period 2000 to 2022 having therapeutic applications in curing infectious diseases have been covered.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Sanjay S. Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Channe Gowda D
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru 570005, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| |
Collapse
|
2
|
Udompholkul P, Baggio C, Gambini L, Sun Y, Zhao M, Hoffman RM, Pellecchia M. Effective Tumor Targeting by EphA2-Agonist-Biotin-Streptavidin Conjugates. Molecules 2021; 26:3687. [PMID: 34204178 PMCID: PMC8235110 DOI: 10.3390/molecules26123687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
We recently reported on a potent synthetic agent, 135H11, that selectively targets the receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis of dimeric versions of such agent (namely 135H12). This was expected given that the natural ephrin ligands also need to be dimerized or clustered to elicit agonistic activity in cell. In the present report we investigated whether the agonistic activity of 135H11 could be enhanced by biotin conjugation followed by complex formation with streptavidin. Therefore, we measured the agonistic EphA2 activity of 135H11-biotin (147B5) at various agent/streptavidin ratios, side by side with 135H12, and a scrambled version of 147B5 in pancreatic- and breast-cancer cell lines. The (147B5)n-streptavidin complexes (when n = 2, 3, 4, but not when n = 1) induced a strong receptor degradation effect in both cell lines compared to 135H12 or the (scrambled-147B5)4-streptavidin complex as a control, indicating that multimerization of the targeting agent resulted in an increased ability to cause receptor clustering and internalization. Subsequently, we prepared an Alexa-Fluor-streptavidin conjugate to demonstrate that (147B5)4-AF-streptavidin, but not the scrambled equivalent complex, concentrates in pancreatic and breast cancers in orthotopic nude-mouse models. Hence, we conclude that these novel targeting agents, with proper derivatization with imaging reagents or chemotherapy, can be used as diagnostics, and/or to deliver chemotherapy selectively to EphA2-expressing tumors.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| | - Yu Sun
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
- Department of Surgery, University of California, 9300 Campus Point Dr #7220, La Jolla, San Diego, CA 92037, USA
| | - Ming Zhao
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
| | - Robert M. Hoffman
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (M.Z.); (R.M.H.)
- Department of Surgery, University of California, 9300 Campus Point Dr #7220, La Jolla, San Diego, CA 92037, USA
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (P.U.); (C.B.); (L.G.)
| |
Collapse
|
3
|
Salem AF, Gambini L, Billet S, Sun Y, Oshiro H, Zhao M, Hoffman RM, Bhowmick NA, Pellecchia M. Prostate Cancer Metastases Are Strongly Inhibited by Agonistic Epha2 Ligands in an Orthotopic Mouse Model. Cancers (Basel) 2020; 12:cancers12102854. [PMID: 33023262 PMCID: PMC7600344 DOI: 10.3390/cancers12102854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
Simple Summary We demonstrate that pro-oncogenic EphA2 (ephrin type-A receptor 2) expression is activated in aggressive prostate cancers, and in mouse models of prostate cancers that are treated with enzalutamide. We also demonstrate in mouse models, that agonistic EphA2 targeting agents are very effective in suppressing cell migration and tumor metastases, hence anticipating the possible use of such agents in innovative anti-metastatic therapeutic modalities. Abstract The EphA2 tyrosine kinase receptor is highly expressed in several types of solid tumors. In our recent studies, we targeted EphA2 in pancreatic cancer with agonistic agents and demonstrated that suppression of EphA2 significantly reduced cancer-cell migration in cell-based assays. In the present study, we focused on targeting EphA2 in prostate cancer. While not all prostate cancers express EphA2, we showed that enzalutamide induced EphA2 expression in prostate cancer cells and in a patient-derived xenograft (PDX) animal model, which provides further impetus to target EphA2 in prostate cancer. Western blot studies showed that agonistic dimeric synthetic (135H12) and natural (ephrinA1-Fc) ligands effectively degraded EphA2 receptor in the prostate cancer cell line PC-3. The agents also delayed cell migration of prostate cancer (PC-3) cells, while an in vivo PC-3 orthotopic metastatic nude-mouse model also revealed that administration of ephrinA1-Fc or 135H12 strongly reduced metastases. The present study further validates EphA2 as an important target in metastatic prostate cancer treatment. Our results should incentivize further efforts aimed at developing potent and effective EphA2 synthetic agonistic agents for the treatment of EphA2-driven aggressive metastatic tumors including prostate, pancreatic, and breast cancer.
Collapse
Affiliation(s)
- Ahmed F. Salem
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (A.F.S.); (L.G.)
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (A.F.S.); (L.G.)
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; (S.B.); (N.A.B.)
| | - Yu Sun
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (H.O.); (M.Z.); (R.M.H.)
- Department of Surgery, University of California, San Diego, CA 92037, USA
| | - Hiromichi Oshiro
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (H.O.); (M.Z.); (R.M.H.)
| | - Ming Zhao
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (H.O.); (M.Z.); (R.M.H.)
| | - Robert M. Hoffman
- AntiCancer Inc., 7917 Ostrow St., San Diego, CA 92111, USA; (Y.S.); (H.O.); (M.Z.); (R.M.H.)
- Department of Surgery, University of California, San Diego, CA 92037, USA
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; (S.B.); (N.A.B.)
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA; (A.F.S.); (L.G.)
- Correspondence: ; Tel.: +1-951-8277829
| |
Collapse
|
4
|
Salem AF, Gambini L, Udompholkul P, Baggio C, Pellecchia M. Therapeutic Targeting of Pancreatic Cancer via EphA2 Dimeric Agonistic Agents. Pharmaceuticals (Basel) 2020; 13:ph13050090. [PMID: 32397624 PMCID: PMC7281375 DOI: 10.3390/ph13050090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, we reported on potent EphA2 targeting compounds and demonstrated that dimeric versions of such agents can exhibit remarkably increased agonistic activity in cellular assays compared to the monomers. Here we further characterize the activity of dimeric compounds at the structural, biochemical, and cellular level. In particular, we propose a structural model for the mechanism of receptor activation by dimeric agents and characterize the effect of most potent compounds in inducing EphA2 activation and degradation in a pancreatic cancer cell line. These cellular studies indicate that the pro-migratory effects induced by the receptor can be reversed in EphA2 knockout cells, by treatment with either a dimeric natural ligand (ephrinA1-Fc), or by our synthetic agonistic dimers. Based on these data we conclude that the proposed agents hold great potential as possible therapeutics in combination with standard of care, where these could help suppressing a major driver for cell migration and tumor metastases. Finally, we also found that, similar to ephrinA1-Fc, dimeric agents cause a sustained internalization of the EphA2 receptor, hence, with proper derivatizations, these could also be used to deliver chemotherapy selectively to pancreatic tumors.
Collapse
|
5
|
Singla P, Salunke DB. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur J Med Chem 2020; 187:111909. [PMID: 31830636 DOI: 10.1016/j.ejmech.2019.111909] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
6
|
Jedwabny W, Lodola A, Dyguda-Kazimierowicz E. Theoretical Model of EphA2-Ephrin A1 Inhibition. Molecules 2018; 23:molecules23071688. [PMID: 29997324 PMCID: PMC6099714 DOI: 10.3390/molecules23071688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 02/03/2023] Open
Abstract
This work aims at the theoretical description of EphA2-ephrin A1 inhibition by small molecules. Recently proposed ab initio-based scoring models, comprising long-range components of interaction energy, is tested on lithocholic acid class inhibitors of this protein–protein interaction (PPI) against common empirical descriptors. We show that, although limited to compounds with similar solvation energy, the ab initio model is able to rank the set of selected inhibitors more effectively than empirical scoring functions, aiding the design of novel compounds.
Collapse
Affiliation(s)
- Wiktoria Jedwabny
- Department of Chemistry, Wrocław University of Science and Technology, 50370 Wrocław, Poland.
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43100 Parma, Italy.
| | | |
Collapse
|
7
|
Chu M, Zhang C. Inhibition of angiogenesis by leflunomide via targeting the soluble ephrin-A1/EphA2 system in bladder cancer. Sci Rep 2018; 8:1539. [PMID: 29367676 PMCID: PMC5784165 DOI: 10.1038/s41598-018-19788-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis plays an important role in bladder cancer (BCa). The immunosuppressive drug leflunomide has attracted worldwide attention. However, the effects of leflunomide on angiogenesis in cancer remain unclear. Here, we report the increased expression of soluble ephrin-A1 (sEphrin-A1) in supernatants of BCa cell lines (RT4, T24, and TCCSUP) co-cultured with human umbilical vein endothelial cells (HUVECs) compared with that in immortalized uroepithelial cells (SV-HUC-1) co-cultured with HUVECs. sEphrin-A1 is released from BCa cells as a monomeric protein that is a functional form of the ligand. The co-culture supernatants containing sEphrin-A1 caused the internalization and down-regulation of EphA2 on endothelial cells and dramatic functional activation of HUVECs. This sEphrin-A1/EphA2 system is mainly functional in regulating angiogenesis in BCa tissue. We showed that leflunomide (LEF) inhibited angiogenesis in a N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder carcinogenesis model and a tumor xenograft model, as well as in BCa cell and HUVEC co-culture systems, via significant inhibition of the sEphrin-A1/EphA2 system. Ephrin-A1 overexpression could partially reverse LEF-induced suppression of angiogenesis and subsequent tumor growth inhibition. Thus, LEF has a significant anti-angiogenesis effect on BCa cells and BCa tissue via its inhibition of the functional angiogenic sEphrin-A1/EphA2 system and may have potential for treating BCa beyond immunosuppressive therapy.
Collapse
Affiliation(s)
- Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu St., Nan Gang District, Harbin, China.
| | - Chunying Zhang
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu St., Nan Gang District, Harbin, China.
| |
Collapse
|
8
|
Russo S, Callegari D, Incerti M, Pala D, Giorgio C, Brunetti J, Bracci L, Vicini P, Barocelli E, Capoferri L, Rivara S, Tognolini M, Mor M, Lodola A. Exploiting Free-Energy Minima to Design Novel EphA2 Protein-Protein Antagonists: From Simulation to Experiment and Return. Chemistry 2016; 22:8048-52. [DOI: 10.1002/chem.201600993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Simonetta Russo
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Donatella Callegari
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Matteo Incerti
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Daniele Pala
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Carmine Giorgio
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Jlenia Brunetti
- Dipartimento di Biotecnologie Mediche; Università degli Studi di Siena; Via Fiorentina 1 53100 Siena Italy
| | - Luisa Bracci
- Dipartimento di Biotecnologie Mediche; Università degli Studi di Siena; Via Fiorentina 1 53100 Siena Italy
| | - Paola Vicini
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Elisabetta Barocelli
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Luigi Capoferri
- Department of Chemistry and Pharmaceutical Sciences; VU University; De Boelelaan 1083 1081 HV Amsterdam the Netherlands
| | - Silvia Rivara
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Massimiliano Tognolini
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Marco Mor
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| | - Alessio Lodola
- Dipartimento di Farmacia; Università degli Studi di Parma; Viale delle Scienze 27A 43124 Parma Italy
| |
Collapse
|
9
|
Callegari D, Pala D, Scalvini L, Tognolini M, Incerti M, Rivara S, Mor M, Lodola A. Comparative Analysis of Virtual Screening Approaches in the Search for Novel EphA2 Receptor Antagonists. Molecules 2015; 20:17132-51. [PMID: 26393553 PMCID: PMC6331951 DOI: 10.3390/molecules200917132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 11/29/2022] Open
Abstract
The EphA2 receptor and its ephrin-A1 ligand form a key cell communication system, which has been found overexpressed in many cancer types and involved in tumor growth. Recent medicinal chemistry efforts have identified bile acid derivatives as low micromolar binders of the EphA2 receptor. However, these compounds suffer from poor physicochemical properties, hampering their use in vivo. The identification of compounds able to disrupt the EphA2-ephrin-A1 complex lacking the bile acid scaffold may lead to new pharmacological tools suitable for in vivo studies. To identify the most promising virtual screening (VS) protocol aimed at finding novel EphA2 antagonists, we investigated the ability of both ligand-based and structure-based approaches to retrieve known EphA2 antagonists from libraries of decoys with similar molecular properties. While ligand-based VSs were conducted using UniPR129 and ephrin-A1 ligand as reference structures, structure-based VSs were performed with Glide, using the X-ray structure of the EphA2 receptor/ephrin-A1 complex. A comparison of enrichment factors showed that ligand-based approaches outperformed the structure-based ones, suggesting ligand-based methods using the G-H loop of ephrin-A1 ligand as template as the most promising protocols to search for novel EphA2 antagonists.
Collapse
Affiliation(s)
- Donatella Callegari
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma 43124, Italy.
| | - Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma 43124, Italy.
| | - Laura Scalvini
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma 43124, Italy.
| | | | - Matteo Incerti
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma 43124, Italy.
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma 43124, Italy.
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma 43124, Italy.
| | - Alessio Lodola
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma 43124, Italy.
- Department of Applied Sciences, Northumbria University at Newcastle, Newcastle-Upon-Tyne, NE1 8ST, UK.
| |
Collapse
|
10
|
In situ dendritic cell vaccination for the treatment of glioma and literature review. Tumour Biol 2015; 37:1797-801. [PMID: 26318301 DOI: 10.1007/s13277-015-3958-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022] Open
Abstract
Glioma is one of the greatest threats to human health, and invasive growth of glioma is its major cause of death. Inhibiting or blocking angiogenesis can effectively inhibit tumor growth and metastasis or dramatically reduce the size of the original lesion. Therefore, anti-angiogenic therapy has currently become the most promising treatment strategy for glioma. Although dendritic cells (DCs) used in DC-based immunotherapy are loaded with tumor-associated antigens, the anti-tumor immune response is effectively stimulated in cytotoxic specific T lymphocytes (CTLs), thereby achieving targeted killing of tumor cells without harming surrounding normal cells. This makes it a highly promising new form of therapy. This article reviews the existing evidence regarding in situ DC vaccination for the treatment of glioma and puts forward hypotheses regarding patient, tumor, and technical factors and warrant further investigation.
Collapse
|
11
|
Δ(5)-Cholenoyl-amino acids as selective and orally available antagonists of the Eph-ephrin system. Eur J Med Chem 2015; 103:312-24. [PMID: 26363867 DOI: 10.1016/j.ejmech.2015.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/22/2023]
Abstract
The Eph receptor-ephrin system is an emerging target for the development of novel anti-angiogenic therapies. Research programs aimed at developing small-molecule antagonists of the Eph receptors are still in their initial stage as available compounds suffer from pharmacological drawbacks, limiting their application in vitro and in vivo. In the present work, we report the design, synthesis and evaluation of structure-activity relationships of a class of Δ(5)-cholenoyl-amino acid conjugates as Eph-ephrin antagonists. As a major achievement of our exploration, we identified N-(3β-hydroxy-Δ(5)-cholen-24-oyl)-L-tryptophan (UniPR1331) as the first small molecule antagonist of the Eph-ephrin system effective as an anti-angiogenic agent in endothelial cells, bioavailable in mice by the oral route and devoid of biological activity on G protein-coupled and nuclear receptors targeted by bile acid derivatives.
Collapse
|
12
|
Li M, Wang B, Wu Z, Zhang J, Shi X, Cheng W, Han S. A novel recombinant protein of ephrinA1-PE38/GM-CSF activate dendritic cells vaccine in rats with glioma. Tumour Biol 2015; 36:5497-503. [PMID: 25677907 DOI: 10.1007/s13277-015-3217-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells loaded with tumor-associated antigens can effectively stimulate the antitumor immune response of cytotoxic T lymphocytes in the body, which facilitates the development of novel and effective treatments for cancer. In this study, the adenovirus-mediated ephrinA1-PE38/GM-CSF was successfully constructed using the overlap extension method, and verified with sequencing analysis. HEK293 cells were infected with the adenovirus and the cellular expression of ephrinA1-PE38/GM-CSF was measured with an enzyme-linked immunosorbent assay. The recombinant adenovirus was then delivered into the tumor-bearing rats and the results showed that such treatment significantly reduced the volumes of gliomas and improved the survival of the transplanted rats. The results from immunohistochemistry and flow cytometry suggested that this immunomodulatory agent cause activation of dendritic cells. The findings that ephrinA1-PE38/GM-CSF had a high efficacy in the activation of the dendritic cells would facilitate the development of in vivo dendritic-cell vaccines for the treatment of gliomas in rats. Our new method of DC vaccine production induces not only a specific local antitumor immune response but also a systemic immunotherapeutic effect. In addition, this method completely circumvents the risk of contamination related to the in vitro culture of DCs, thus greatly improving the safety and feasibility of clinical application of the DC vaccines in glioma.
Collapse
Affiliation(s)
- Ming Li
- Department of Neurosurgery, Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou City, Henan Province, 450003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Pala D, Castelli R, Incerti M, Russo S, Tognolini M, Giorgio C, Hassan-Mohamed I, Zanotti I, Vacondio F, Rivara S, Mor M, Lodola A. Combining ligand- and structure-based approaches for the discovery of new inhibitors of the EPHA2-ephrin-A1 interaction. J Chem Inf Model 2014; 54:2621-6. [PMID: 25289483 DOI: 10.1021/ci5004619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The EPH receptor A2 (EPHA2) represents an attractive anticancer target. With the aim to identify novel EPHA2 receptor antagonists, a virtual screening campaign, combining shape-similarity and docking calculations, was conducted on a set of commercially available compounds. A combined score, taking into account both ligand- and structure-based results, was then used to identify the most promising candidates. Two compounds, selected among the best-ranked ones, were identified as EPHA2 receptor antagonists with micromolar affinity.
Collapse
Affiliation(s)
- Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|