1
|
Astolfi BS, Bessas NC, Graminha AE, Becceneri AB, da Silva RS, de Lima RG. Gelatin Carbon Dots Interaction with Nitrosyl Ruthenium Complex: Fluorescence Quenching and Chemiluminescence Mechanisms. J Fluoresc 2024; 34:2881-2893. [PMID: 37948004 DOI: 10.1007/s10895-023-03490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Carbon dots (CDs) exhibit luminescence, biocompatibility, and higher water solubility. This material has been developed for biological applications, specifically in bioimaging. In this work, the gelatin carbon dots (CDg) was obtained from commercial gelatin using a hydrothermal method in domestic microwave, and the suppression fluorescent mechanism were enhanced by the addition of the [RuII(bdq)(NO)(tpy)]3+ (Rubdq-NO+) complex ion. After purification through a dialysis bag, the resulting CDs (CDg) exhibit fluorescent emission at 400 nm and maintained fluorescence stability in an aqueous solution (pH = 7) for 30 days under 5 ◦C. Fluorescence quenching studies revealed an electrostatic interaction between the negative charge from CDg (δ = - 20 mV) and the positively charged nitrosyl (NO+) ligand of the ruthenium complex (Rubdq-NO+), resulting in quenching of the CDg fluorescence due to the inner filter effects (IFE). The chemiluminescence reaction of CDg and Rubdq-NO-CDg in presence of norepinephrine (NOR) were evaluated. NOR in PBS are liable to undergo spontaneous oxidation to quinone form (NOR-quinone). CDg are believed interact with NOR-quinone and an electron transfer occur obtained CDg+ accompanied to green emission fluorescence (520 nm). While for Rubdq-NO-CDg in presence of NOR, the green emission occurs accompanied by NO0 release using DAF-2 probe.
Collapse
Affiliation(s)
- Bianca Soares Astolfi
- Instituto de Ciências Exatas e Naturais do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, Tupã, Ituiutaba, MG, 1600, 38304-402, Brazil
| | - Naiara Cristina Bessas
- Instituto de Ciências Exatas e Naturais do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, Tupã, Ituiutaba, MG, 1600, 38304-402, Brazil
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Ávila, Uberlândia, MG, 2121, 38400-902, Brazil
| | - Angelica Ellen Graminha
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Avenida do Café s/n, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
- Instituto de Química, Universidade do Estado de São Paulo, Av. Prof. Francisco Degni, 55, Araraquara, São Paulo, 14800-900, Brazil
| | - Amanda Blanque Becceneri
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Avenida do Café s/n, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Roberto Santana da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Avenida do Café s/n, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Renata Galvão de Lima
- Instituto de Ciências Exatas e Naturais do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, Tupã, Ituiutaba, MG, 1600, 38304-402, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Ávila, Uberlândia, MG, 2121, 38400-902, Brazil.
| |
Collapse
|
2
|
Moraes RA, Brito DS, Araujo FA, Jesus RLC, Silva LB, Sá DS, Silva da Silva CD, Pernomian L, Wenceslau CF, Priviero F, Webb RC, Silva DF. NONO2P, a novel nitric oxide donor, causes vasorelaxation through NO/sGC/PKG pathway, K + channels opening and SERCA activation. Eur J Pharmacol 2024; 979:176822. [PMID: 39047965 PMCID: PMC11908109 DOI: 10.1016/j.ejphar.2024.176822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND & AIMS The treatment of cardiovascular diseases (CVD) could greatly benefit from using nitric oxide (NO) donors. This study aimed to investigate the mechanisms of action of NONO2P that contribute to the observed responses in the mesenteric artery. The hypothesis was that NONO2P would have similar pharmacological actions to sodium nitroprusside (SNP) and NO. METHODS Male Wistar rats were euthanized to isolate the superior mesenteric artery for isometric tension recordings. NO levels were measured using the DAF-FM/DA dye, and cyclic guanosine monophosphate (cGMP) levels were determined using a cGMP-ELISA Kit. RESULTS NONO2P presented a similar maximum efficacy to SNP. The free radical of NO (NO•) scavengers (PTIO; 100 μM and hydroxocobalamin; 30 μM) and nitroxyl anion (NO-) scavenger (L-cysteine; 3 mM) decreased relaxations promoted by NONO2P. The presence of the specific soluble guanylyl cyclase (sGC) inhibitor (ODQ; 10 μM) nearly abolished the vasorelaxation. The cGMP-dependent protein kinase (PKG) inhibition (KT5823; 1 μM) attenuated the NONO2P relaxant effect. The vasorelaxant response was significantly attenuated by blocking inward rectifying K+ channels (Kir), voltage-operated K+ channels (KV), and large conductance Ca2+-activated K+ channels (BKCa). NONO2P-induced relaxation was attenuated by cyclopiazonic acid (10 μM), indicating that sarcoplasmic reticulum Ca2+-ATPase (SERCA) activation is involved in this relaxation. Moreover, NONO2P increased NO levels in endothelial cells and cGMP production. CONCLUSIONS NONO2P induces vasorelaxation with the same magnitude as SNP, releasing NO• and NO-. Its vasorelaxant effect involves sGC, PKG, K+ channels opening, and SERCA activation, suggesting its potential as a therapeutic option for CVD.
Collapse
Affiliation(s)
- Raiana A Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
| | - Daniele S Brito
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
| | - Fênix A Araujo
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
| | - Rafael L C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil
| | - Liliane B Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil
| | - Denise S Sá
- Federal Institute of Bahia, IFBA, Salvador, BA, Brazil
| | | | - Laena Pernomian
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, USA
| | - Camilla F Wenceslau
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, USA
| | - Fernanda Priviero
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA; Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, USA
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Bioregulation Department, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil.
| |
Collapse
|
3
|
Bessas NC, Christine de Souza Arantes E, Cassani NM, Aquino Ruiz UE, Santos IA, Silva Martins DO, Costa Oliveira AL, Antoniucci GA, de Oliveira AHC, DeFreitas-Silva G, Gomes Jardim AC, Galvão de Lima R. Influence of diimine bidentate ligand in the nitrosyl and nitro terpyridine ruthenium complex on the HSA/DNA interaction and antiviral activity. Nitric Oxide 2024; 147:26-41. [PMID: 38614230 DOI: 10.1016/j.niox.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.
Collapse
Affiliation(s)
- Naiara Cristina Bessas
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Avila, 2121, 38400-902, Uberlândia, MG, Brazil
| | | | - Natasha Marques Cassani
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Uriel Enrique Aquino Ruiz
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Daniel Oliveira Silva Martins
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil; Instituto de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, 1600, 38304-402, Tupã, Ituiutaba, MG, Brazil
| | - Ana Laura Costa Oliveira
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Giovanna André Antoniucci
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Gilson DeFreitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Renata Galvão de Lima
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Avila, 2121, 38400-902, Uberlândia, MG, Brazil; Instituto de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, 1600, 38304-402, Tupã, Ituiutaba, MG, Brazil.
| |
Collapse
|
4
|
Kostin GA, Tolstikov SE, Kuratieva NV, Nadolinny VA, Ovcharenko VI. FIRST EXAMPLE OF RUTHENIUM NITROSO COMPLEXES WITH A NITROXYL RADICAL AS A LIGAND. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Effects of First‐Coordination Sphere and Buffers on the Nitrosyl‐Nitrite Conversion Rate in Ru(II) Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Luiz Moreira do Amaral M, Nascimento RD, Franco Silva L, Christine de Souza Arantes E, Graminha AE, Santana da Silva R, Ueno LT, Luiz Bogado A, DeFreitas-Silva G, Galvão de Lima R. New trans-[Ru(NO)(NO2)(dppb)(o-bdqi)]+ complex as NO donor encapsulated Pluronic F-127 micelles. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Fomenko IS, Mikhailov AA, Vorobyev V, Kuratieva NV, Kostin GA, Schaniel D, Nadolinny VA, Gushchin AL. Solution and solid-state light-induced transformations in heterometallic vanadium-ruthenium nitrosyl complex. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Bessas NC, Silva LA, Comar Júnior M, Lima RG. Interaction of the nitrosyl ruthenium complex [Ru
II
(NH.NHq‐R)(tpy)NO]
3+
with human serum albumin: a spectroscopic and computational investigation. LUMINESCENCE 2020; 36:391-408. [DOI: 10.1002/bio.3955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Naiara Cristina Bessas
- Instituto de Ciências Exatas e Naturais do Pontal, ICENP Universidade Federal de Uberlândia Rua Vinte, 1600, 38304‐402, Tupã Ituiutaba MG Brazil
- Instituto de Química Universidade Federal de Uberlândia Avenida João Naves de Avila, 2121, 38400‐902 Uberlândia MG Brazil
| | - Letícia Alves Silva
- Instituto de Química Universidade Federal de Uberlândia Avenida João Naves de Avila, 2121, 38400‐902 Uberlândia MG Brazil
| | - Moacyr Comar Júnior
- Instituto de Química Universidade Federal de Uberlândia Avenida João Naves de Avila, 2121, 38400‐902 Uberlândia MG Brazil
| | - Renata Galvão Lima
- Instituto de Ciências Exatas e Naturais do Pontal, ICENP Universidade Federal de Uberlândia Rua Vinte, 1600, 38304‐402, Tupã Ituiutaba MG Brazil
- Instituto de Química Universidade Federal de Uberlândia Avenida João Naves de Avila, 2121, 38400‐902 Uberlândia MG Brazil
| |
Collapse
|
9
|
A ruthenium nitrosyl cyclam complex with appended anthracenyl fluorophore. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Primary and secondary photochemical transformations of biologically active precursor - Nitro-Nitrosyl ruthenium complex. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
The role of ancillary ligand substituents in the biological activity of triruthenium-NO complexes. J Inorg Biochem 2018; 186:197-205. [DOI: 10.1016/j.jinorgbio.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 11/19/2022]
|
12
|
Ramos LCB, Rodrigues FP, Biazzotto JC, de Paula Machado S, Slep LD, Hamblin MR, da Silva RS. Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex. J Biol Inorg Chem 2018; 23:903-916. [PMID: 29971501 PMCID: PMC6091522 DOI: 10.1007/s00775-018-1589-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
The rational design of anti-cancer agents includes a new approach based on ruthenium complexes that can act as nitric oxide (NO) donor agents against specific cellular targets. One of the most studied classes of those compounds is based on bis(bipyridine) ruthenium fragment and its derivative species. In this work, we present the chemical and cytotoxicity properties against the liver hepatocellular carcinoma cell line HepG2 of cis-[RuII(NO+)Cl(dcbpy)2]2- conjugated to a polyclonal antibody IgG (anti-VDAC) recognizing a cell surface marker. UV-visible bands of the ruthenium complex were assigned with the aid of density functional theory, which also allowed estimation of the structures that explain the biological effects of the ruthenium complex-IgG conjugate. The interaction of cis-[RuII(NO+)Cl(dcbpy)2]3- with mitochondria was evaluated due to the potential of these organelles as anti-cancer targets, and considering they interact with the anti-VDAC antibody. The cytotoxicity of cis-[RuII(NO+)Cl(dcbpy)2]3--anti-VDAC antibody was up to 80% greater in comparison to the free cis-[RuII(NO+)Cl(dcbpy)2]3- complex. We suggest that this effect is due to site-specific interaction of the complex followed by NO release.
Collapse
Affiliation(s)
- Loyanne C. B. Ramos
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando P. Rodrigues
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana C. Biazzotto
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Sergio de Paula Machado
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Leonardo D. Slep
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Michael R. Hamblin
- Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Roberto S. da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Nakagawa H. Photo-Controlled Release of Small Signaling Molecules to Induce Biological Responses. CHEM REC 2018; 18:1708-1716. [PMID: 30040190 DOI: 10.1002/tcr.201800035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Chemical modifications of proteins or cofactors, including acetylation and oxidation of amino acid residues of various signal proteins, whether transient or successive, play key roles in modulating biological functions. Small molecules that have signaling functions in biological systems through the chemical modification of proteins include nitric oxide (NO), hydrogen peroxide, carbon monoxide, and hydrogen sulfide. To investigate the pathophysiological roles of these molecules, caged compounds have been developed that allow precise spatiotemporal control of the release of these species in response to photoirradiation in the ultraviolet or visible region. For example, photocontrollable NO releasers can regulate the responses of blood vessels in vivo and ex vivo. In addition, photocontrollable (caged) inhibitors of histone deacetylase (HDAC) can be used to regulate HDAC activity in response to photoirradiation. Such photocontrol technology has provided chemical tools for a variety of biological studies, including investigations of epigenetic mechanisms.
Collapse
Affiliation(s)
- Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
14
|
Huang HW, Lin YH, Lin MH, Huang YR, Chou CH, Hong HC, Wang MR, Tseng YT, Liao PC, Chung MC, Ma YJ, Wu SC, Chuang YJ, Wang HD, Wang YM, Huang HD, Lu TT, Liaw WF. Extension of C. elegans lifespan using the ·NO-delivery dinitrosyl iron complexes. J Biol Inorg Chem 2018; 23:775-784. [DOI: 10.1007/s00775-018-1569-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
|
15
|
Abstract
Despite the incessant efforts to decrease exorbitant number of daily deaths, malaria remains a major threat to the public health in many countries. Transmitted by Anopheles mosquitoes, it is caused by infection with Plasmodium parasites that have become resistant to many antimalarial drugs. In this context, series of metal-based compounds have been screened for optimal activity against different Plasmodium species and strains. This chapter briefly reviews current and potential uses of metal complexes (such as iron, cobalt, nickel, gallium, copper, gold, and silver), metal chelators, and organometallic compounds, as interesting medicinal agents that greatly benefits the fight against malaria.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra India
| | - Avinash P. Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra India
| | - Serenella Medici
- Departmento Di Chimica Farmacia, University of Sassari, Sassari, Italy
| |
Collapse
|
16
|
Serafim RAM, Pernichelle FG, Ferreira EI. The latest advances in the discovery of nitric oxide hybrid drug compounds. Expert Opin Drug Discov 2017; 12:941-953. [PMID: 28664751 DOI: 10.1080/17460441.2017.1344400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION There is a great interest in Nitric oxide (NO) within medicinal chemistry since it's involved in human signaling pathways. Prodrugs or hybrid compounds containing NO-donor scaffolds linked to an active compound are valuable, due to their potential for modulating many pathological conditions due to NO's biological properties when released in addition to the native drug. Compounds that selectively inhibit nitric oxide synthase isoforms (NOS) can also increase therapeutic capacity, particularly in the treatment of chronic diseases. However, search for bioactive compounds to efficiently and selectively modulate NO is still a challenge in drug discovery. Areas covered: In this review, the authors highlight the recent advances in the strategies used to discover NO-hybrid derivatives, especially those related to anti-inflammatory, cardiovascular, anticancer and anti-microorganism activities. They also focus on: nitric oxide synthase inhibitors, NO delivery materials and other related activities. Expert opinion: The process of molecular hybridization can be used to obtain NO-releasing compounds that also interact with different targets. The main problem with this approach is to control NO multiple actions in the right biological system. However, the use of NO-releasing groups with many different scaffolds leads to new molecular structures for bioactive compounds, suggesting synergies.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Filipe G Pernichelle
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Elizabeth I Ferreira
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| |
Collapse
|
17
|
Special Issue on Ruthenium Complexes. Molecules 2017; 22:molecules22020255. [PMID: 28208737 PMCID: PMC6155890 DOI: 10.3390/molecules22020255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 01/25/2017] [Accepted: 02/04/2017] [Indexed: 11/17/2022] Open
Abstract
The organic chemistry of ruthenium has been one of the most vigorously growing research areas over the past decades. Considerable effort has been extended towards the design and application of a broad series of ruthenium complexes, which culminated with the development by Ryoji Noyori (2001 Nobel Prize for Chemistry) of chiral ruthenium catalysts for stereoselective hydrogenation reactions [1], and the discovery by Robert H. Grubbs (2005 Nobel Prize for Chemistry) of well-defined ruthenium- benzylidene catalysts for olefin metathesis [2] [...].
Collapse
|
18
|
Xiang HJ, Guo M, Liu JG. Transition-Metal Nitrosyls for Photocontrolled Nitric Oxide Delivery. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601135] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hui-Jing Xiang
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| | - Min Guo
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| | - Jin-Gang Liu
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| |
Collapse
|
19
|
Elnaggar MA, Subbiah R, Han DK, Joung YK. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv 2017; 14:1341-1353. [PMID: 28117595 DOI: 10.1080/17425247.2017.1285904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahmoud A. Elnaggar
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
20
|
Drug discovery targeting heme-based sensors and their coupled activities. J Inorg Biochem 2017; 167:12-20. [DOI: 10.1016/j.jinorgbio.2016.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 01/10/2023]
|
21
|
Nitric oxide: a novel inducer for enhancement of microbial lipase production. Bioprocess Biosyst Eng 2016; 39:1671-8. [DOI: 10.1007/s00449-016-1642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
|
22
|
Oishi JC, Buzinnari TC, Pestana CR, De Moraes TF, Vatanabe IP, Wink DA, da Silva RS, Bendhack LM, Rodrigues GJ. In vitro Treatment with cis-[Ru(H-dcbpy-)2(Cl)(NO)] Improves the Endothelial Function in Aortic Rings with Endothelial Dysfunction. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2016; 18:696-704. [PMID: 26670366 DOI: 10.18433/j3cc9k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE The ruthenium complex cis-[Ru(H-dcbpy-)2(Cl)(NO)] (DCBPY) is a nitric oxide (NO) donor and studies suggested that the ruthenium compounds can inactivate O2-. The aim of this study is to test if DCBPY can revert and/or prevent the endothelial dysfunction. METHODS Normotensive (2K) and hypertensive (2K-1C) wistar rats were used. To vascular reactivity study, thoracic aortas were isolated, rings with intact endothelium were incubated with: DCBPY: 0.1; 1 and 10μM, DCBPY plus hydroxocobalin (NO scavenger) or tempol during 30 minutes, and concentration effect curves to acetylcholine were performed. The potency values (pD2) and maximum effect (ME) were analyzed. The O2- was generated using hypoxantine xantine oxidase and the reduction of cytochrome c, NO consumption by O2- and the effect in avoid NO consumption was measured. RESULTS In 2K-1C DCBPY at 0.1; 1 or 10μM improved the relaxation endothelium dependent induced by acetylcholine in aortic rings compared to control 2K-1C, and also improved ME. In rings from 2K incubation with DCBPY (0.1; 1.0 and 10 μM) did not change pD2 or ME. Incubation with 0.1 μM of DCBPY plus hydroxocobalamin did not modify the potency and ME in 2K-1C compared to DCBPY (0.1 μM). DCBPY and SOD inhibits the reduction of cytochrome c and inhibited the NO consumption by O2-, showing that O2- has been removed from the solution. CONCLUSION Our results suggest that DCBPY at a lower concentration (0.1 µM) is not an NO generator, but can inactivate superoxide and improves the endothelial function.
Collapse
Affiliation(s)
- Jorge Camargo Oishi
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de Oliveira RS, Boffo EF, Reis FC, Nikolaou S, Andriani KF, Caramori GF, Doro FG. A ruthenium polypyridyl complex with the antihypertensive drug valsartan: Synthesis, theoretical calculations and interaction studies with human serum albumin. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Bijelic A, Theiner S, Keppler BK, Rompel A. X-ray Structure Analysis of Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) Bound to Human Serum Albumin Reveals Two Ruthenium Binding Sites and Provides Insights into the Drug Binding Mechanism. J Med Chem 2016; 59:5894-903. [PMID: 27196130 PMCID: PMC4921950 DOI: 10.1021/acs.jmedchem.6b00600] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Ruthenium(III) complexes are promising
candidates for anticancer
drugs, especially the clinically studied indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019)
and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (NKP-1339). Several studies have
emphasized the likely role of human serum proteins in the transportation
and accumulation of ruthenium(III) complexes in tumors. Therefore,
the interaction between KP1019 and human serum albumin was investigated
by means of X-ray crystallography and inductively coupled plasma mass
spectrometry (ICP-MS). The structural data unambiguously reveal the
binding of two ruthenium atoms to histidine residues 146 and 242,
which are both located within well-known hydrophobic binding pockets
of albumin. The ruthenium centers are octahedrally coordinated by
solvent molecules revealing the dissociation of both indazole ligands
from the ruthenium-based drug. However, a binding mechanism is proposed
indicating the importance of the indazole ligands for binding site
recognition and thus their indispensable role for the binding of KP1019.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien , Althanstraße 14, 1090 Wien, Austria
| | | | | | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien , Althanstraße 14, 1090 Wien, Austria
| |
Collapse
|
25
|
Evaluation of the Nano-TiO2 as a Novel Deswelling Material. Molecules 2016; 21:57. [PMID: 26742025 PMCID: PMC6272895 DOI: 10.3390/molecules21010057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022] Open
Abstract
Nano-TiO2 is widely applied in the automobile exhaust hose reels as a catalyst to reduce oxynitride emissions, including nitric oxide (NO). In the biomedicine field, NO plays an important role in vasodilation and edema formation in human bodies. However, the deswelling activity of nano-TiO2 has not been reported. Here, we demonstrated that nano-TiO2 can significantly degrade the production of NO in LPS-induced RAW264.7 mouse macrophages. Further study indicated that nano-TiO2 exhibited an effect on vascular permeability inhibition, and prevented carrageenan-induced footpad edema. Therefore, we prepared a nano-TiO2 ointment and observed similar deswelling effects. In conclusion, nano-TiO2 might act as a novel deswelling agent related with its degradation of NO, which will aid in our ability to design effective interventions for edema involved diseases.
Collapse
|
26
|
Doro FG, Ferreira KQ, da Rocha ZN, Caramori GF, Gomes AJ, Tfouni E. The versatile ruthenium(II/III) tetraazamacrocycle complexes and their nitrosyl derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Rodrigues FP, Carneiro ZA, Mascharak P, Curti C, da Silva RS. Incorporation of a ruthenium nitrosyl complex into liposomes, the nitric oxide released from these liposomes and HepG2 cell death mechanism. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Dragutan I, Dragutan V, Demonceau A. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015; 20:17244-74. [PMID: 26393560 PMCID: PMC6332046 DOI: 10.3390/molecules200917244] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
Recent trends in Ru complex chemistry are surveyed with emphasis on the development of anticancer drugs and applications in catalysis, polymers, materials science and nanotechnology.
Collapse
Affiliation(s)
- Ileana Dragutan
- Romanian Academy, Institute of Organic Chemistry "C.D. Nenitescu", Bucharest 060023, Romania.
| | - Valerian Dragutan
- Romanian Academy, Institute of Organic Chemistry "C.D. Nenitescu", Bucharest 060023, Romania.
| | - Albert Demonceau
- Department of Chemistry, University of Liège, Sart-Tilman (B.6a), Liège 4000, Belgium.
| |
Collapse
|
29
|
da Silva RS, de Lima RG, de Paula Machado S. Design, Reactivity, and Biological Activity of Ruthenium Nitrosyl Complexes. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Nakamura G, Kondo M, Crisalli M, Lee SK, Shibata A, Ford PC, Masaoka S. Syntheses and properties of phosphine-substituted ruthenium(ii) polypyridine complexes with nitrogen oxides. Dalton Trans 2015; 44:17189-200. [DOI: 10.1039/c5dt02994e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The substitution lability of the nitrogen oxide ligands of novel phosphine-substituted ruthenium(ii) polypyridine complexes is discussed in comparison with that of the corresponding acetonitrile complexes.
Collapse
Affiliation(s)
- Go Nakamura
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
- Department of Structural Molecular Science
- School of Physical Sciences
| | - Mio Kondo
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
- Department of Structural Molecular Science
- School of Physical Sciences
| | - Meredith Crisalli
- Department of Chemistry and Biochemistry
- University of California at Santa Barbara
- Santa Barbara
- USA
| | - Sze Koon Lee
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
| | | | - Peter C. Ford
- Department of Chemistry and Biochemistry
- University of California at Santa Barbara
- Santa Barbara
- USA
| | - Shigeyuki Masaoka
- Institute for Molecular Science (IMS)
- Okazaki
- Japan
- Department of Structural Molecular Science
- School of Physical Sciences
| |
Collapse
|
31
|
Andriani KF, Caramori GF, Muñoz-Castro A, Doro FG. The influence of L ligands on the {RuNO}6/7 bonding situation in cis-[Ru(NO)(NO2)L1–4]q complexes: a theoretical insight. RSC Adv 2015. [DOI: 10.1039/c5ra10888h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nature of the Ru–NO interaction before and after reduction of cis-[Ru(NO)(NO2)L1–4]q complexes is modulated by the coordination environment of the metallic center, resulting in more labile on complexes with weak π-acceptor ligands.
Collapse
Affiliation(s)
- K. F. Andriani
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Campus Universitário
- Florianópolis
- Brazil
| | - G. F. Caramori
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Campus Universitário
- Florianópolis
- Brazil
| | - A. Muñoz-Castro
- Facultad de Ingenieria
- Universidad Autonoma de Chile
- Santiago
- Chile
| | - F. G. Doro
- Departamento de Química Geral e Inorgânica
- Universidade Federal da Bahia – UFBA
- Salvador
- Brazil
| |
Collapse
|