1
|
Golnari M, Bahrami N, Milanian Z, Rabbani Khorasgani M, Asadollahi MA, Shafiei R, Fatemi SSA. Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Sci Rep 2024; 14:1457. [PMID: 38228716 PMCID: PMC10791968 DOI: 10.1038/s41598-024-51823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Despite the current use of some Bacillus spp. as probiotics, looking for and introducing new efficient and safe potential probiotic strains is one of the most important topics in both microbiology and food industry. This study aimed to isolate, identify, and evaluate the probiotic characteristics and safety of some Bacillus spp. from natural sources. Thirty-six spore-forming, Gram-positive, and catalase-positive Bacillus isolates were identified in 54 samples of soil, feces and dairy products. Bacterial identification was performed using 16S rDNA sequencing. To evaluate the probiotic potential of isolates, the resistance of bacterial cells to simulated gastrointestinal tract (GIT) conditions, the presence of enterotoxin genes, their susceptibility to antibiotics, antimicrobial and hemolytic activities and biochemical profiles were investigated. The results revealed that eight sporulating Bacillus spp. isolates fulfilled all tested probiotic criteria. They showed a high growth rate, non-hemolytic and lecithinase activity, and resistance to simulated GIT conditions. These strains exhibited broad-spectrum antibacterial activity against pathogenic bacteria. In addition, they did not exhibit antibacterial resistance to the 12 tested antibiotics. The results of this study suggest that these isolates can be considered as candidates for functional foods and as safe additives to improve diet quality.
Collapse
Affiliation(s)
- Mohsen Golnari
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Nastaran Bahrami
- Department of Microbiology, NourDanesh Institute of Higher Education, Meymeh, Iran
| | - Zahra Milanian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Rabbani Khorasgani
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Rasoul Shafiei
- Department of Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Safa-Ali Fatemi
- Department of Systems Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Huang H, Li J, Tao W, Li S. A Functionalized Polysaccharide from Sphingomonas sp. HL-1 for High-Performance Flocculation. Polymers (Basel) 2022; 15:polym15010056. [PMID: 36616408 PMCID: PMC9853492 DOI: 10.3390/polym15010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The characterization and flocculation mechanism of a biopolymer flocculant produced by Sphingomonas sp. HL-1, were investigated. The bio-flocculant HL1 was identified as an acidic polysaccharide, mainly composed of glucose, and also contained a small amount of mannose, galacturonic acid and guluronic acid. The flocculating activity of the purified HL1 polysaccharide could be activated by trivalent cations, and its flocculation mechanism was mainly charge neutralization and bridging. The working concentration of fermentation broth HL1 in a kaolin suspension was only 1/10,000 (v/v), in which the polysaccharide concentration was about 2 mg/L. The bio-flocculant HL1 maintained high efficiency at a wide range of pH (pH 3-10). It also exhibited good flocculating activity at a temperature range of 20-40 °C; it could even tolerate high salinity and kept activity at a mineralization degree of 50,000 mg/L. Therefore, the bio-flocculant HL1 has a good application prospect in the treatment of wastewater over a broad pH range and in high salinity.
Collapse
Affiliation(s)
- Haolin Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingsong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weiyi Tao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence: ; Tel./Fax: +86-25-58139942
| |
Collapse
|
3
|
Isolation, Identification and Characterization of Bioflocculant-Producing Bacteria from Activated Sludge of Vulindlela Wastewater Treatment Plant. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The low microbial flocculant yields and efficiencies limit their industrial applications. There is a need to identify bacteria with high bioflocculant production. The aim of this study was to isolate and identify a bioflocculant-producing bacterium from activated sludge wastewater and characterise its bioflocculant activity. The identification of the isolated bacterium was performed by 16S rRNA gene sequencing analysis. The optimal medium composition (carbon and nitrogen sources, cations and inoculum size) and culture conditions (temperature, pH, shaking speed and time) were evaluated by the one-factor-at-a-time method. The morphology, functional groups, crystallinity and pyrolysis profile of the bioflocculant were analysed using scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The bacterium was identified as Proteus mirabilis AB 932526.1. Its optimal medium and culture conditions were: sucrose (20 g/L), yeast extract (1.2 g/L), MnCl2 (1 g/L), pH 6, 30 °C, inoculation volume (3%), shaking speed (120 rpm) for 72 h of cultivation. SEM micrograph revealed the bioflocculant to be amorphous. FTIR analysis indicated the presence of hydroxyl, carboxyl and amino groups. The bioflocculant was completely pyrolyzed at temperatures above 800 °C. The bacterium has potential to produce bioflocculant of industrial importance.
Collapse
|
4
|
Liu C, Sun D, Liu J, Zhu J, Liu W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. BIORESOUR BIOPROCESS 2021; 8:51. [PMID: 38650196 PMCID: PMC10992557 DOI: 10.1186/s40643-021-00405-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial flocculants are macromolecular substances produced by microorganisms. Due to its non-toxic, harmless, and biodegradable advantages, microbial flocculants have been widely used in various industrial fields, such as wastewater treatment, microalgae harvest, activated sludge dewatering, heavy metal ion adsorption, and nanoparticle synthesis, especially in the post-treatment process of fermentation with high safety requirement. However, compared with the traditional inorganic flocculants and organic polymeric flocculants, the high production cost is the main bottleneck that restricts the large-scale production and application of microbial flocculants. To reduce the production cost of microbial flocculant, a series of efforts have been carried out and some exciting research progresses have been achieved. This paper summarized the research advances in the last decade, including the screening of high-yield strains and the construction of genetically engineered strains, search of cheap alternative medium, the extraction and preservation methods, microbial flocculants production as an incidental product of other biological processes, combined use of traditional flocculant and microbial flocculant, and the production of microbial flocculant promoted by inducer. Moreover, this paper prospects the future research directions to further reduce the production cost of microbial flocculants, thereby promoting the industrial production and large-scale application of microbial flocculants.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
5
|
Luo JC, Long H, Zhang J, Zhao Y, Sun L. Characterization of a Deep Sea Bacillus toyonensis Isolate: Genomic and Pathogenic Features. Front Cell Infect Microbiol 2021; 11:629116. [PMID: 33777842 PMCID: PMC7988205 DOI: 10.3389/fcimb.2021.629116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023] Open
Abstract
Bacillus toyonensis is a group of Gram-positive bacteria belonging to the Bacillus cereus group and used in some cases as probiotics or biocontrol agents. To our knowledge, B. toyonensis from the deep sea (depth >1,000 m) has not been documented. Here, we report the isolation and characterization of a B. toyonensis strain, P18, from a deep sea hydrothermal field. P18 is aerobic, motile, and able to grow at low temperatures (4°C) and high concentrations of NaCl (8%). P18 possesses a circular chromosome of 5,250,895 bp and a plasmid of 536,892 bp, which encode 5,380 and 523 genes, respectively. Of these genes, 2,229 encode hypothetical proteins that could not be annotated based on the COG database. Comparative genomic analysis showed that P18 is most closely related to the type strain of B. toyonensis, BCT-7112T. Compared to BCT-7112T, P18 contains 1,401 unique genes, 441 of which were classified into 20 COG functional categories, and the remaining 960 genes could not be annotated. A total of 319 putative virulence genes were identified in P18, including toxin-related genes, and 24 of these genes are absent in BCT-7112T. P18 exerted strong cytopathic effects on fish and mammalian cells that led to rapid cell death. When inoculated via injection into fish and mice, P18 rapidly disseminated in host tissues and induced acute infection and mortality. Histopathology revealed varying degrees of tissue lesions in the infected animals. Furthermore, P18 could survive in fish and mouse sera and possessed hemolytic activity. Taken together, these results provide the first evidence that virulent B. toyonensis exists in deep sea environments.
Collapse
Affiliation(s)
- Jing-Chang Luo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jian Zhang
- School of Ocean, Yan Tai University, Yantai, China
| | - Yan Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Okaiyeto K, Ekundayo TC, Okoh AI. Global research trends on bioflocculant potentials in wastewater remediation from 1990 to 2019 using a bibliometric approach. Lett Appl Microbiol 2020; 71:567-579. [PMID: 32780872 DOI: 10.1111/lam.13361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
The preference of biofloculants over chemical flocculants in water and wastewater remediation systems has gained wider attention due to their biodegradability, innocuousness, safety to human and environmental friendliness. The present study aimed to evaluate research outputs on bioflocculant potentials in wastewater remediation from 1990 to 2019 using bibliometric analyses. To the best of our knowledge, this is the first bibliometric report in bioflocculant research. The subject bibliometric dataset was extracted from the Web of Science Core Collection (WoSCC) and Scopus using the Boolean, 'bioflocculant* and waste*' and analysed for indicators such as a yearly trend, productivity (authors, articles, country, institution and journal source), conceptual framework and collaboration network. We found 119 documents with 347 authors from 78 journal sources on the subject, an annual growth rate of 12·1%, and average citations/document of 15·08. Guo J. and Wang Y. were the top researchers with 15 and 12 outputs respectively. China (42%) and South Africa (9·24%) ranked the top two dominant countries in the field. The top journals were Bioresource Technology (9 papers, 506 citations), Applied Microbiology and Biotechnology (5 papers, 268 citations), whereas, the top institution was Chengdu University of Information and Technology (n = 9 documents) followed by Sichuan Univ. Sci. & Engn, China (n = 8 documents). This study found that lack of intercountry collaboration and research funding adversely affects research participants in the field.
Collapse
Affiliation(s)
- K Okaiyeto
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Eastern Cape, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Eastern Cape, South Africa
| | - T C Ekundayo
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Eastern Cape, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Eastern Cape, South Africa.,Department of Biological Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - A I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Eastern Cape, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Eastern Cape, South Africa
| |
Collapse
|
7
|
Rashid N, Nayak M, Suh WI, Lee B, Chang YK. Efficient microalgae removal from aqueous medium through auto-flocculation: investigating growth-dependent role of organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27396-27406. [PMID: 31327138 DOI: 10.1007/s11356-019-05904-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the growth-dependent role of algal organic matters (AOMs) to achieve high removal efficiency (R.E) of microalgae. The results showed that the microalgae cells produced 96 ± 2% of total AOMs as loose bound AOMSS (LB-AOMs) and 4 ± 1% as cell-bound (CB-AOMs) in exponential phase. In stationary phase, LB-AOMs and CB-AOMs were 46 ± 0.7percentage and 54 ± 0.2 percentage, respectively. The R.Es in exponential and stationary phase were 83 ± 2.6% and 66 ± 1.2%, respectively. It is found that the difference of biomass concentration (between exponential and stationary phase) had no significant impact on the R.E (P > 0.01). Further investigations revealed that LB-AOMs inhibit flocculation in exponential and CB-AOMs in stationary phase; however, CB-AOMs showed stronger inhibition than the LB-AOMs (P < 0.01). The provision of calcium (17 ± 0.9 mg/L) to the culture reduced the AOMs inhibition and improved the R.E from 66 ± 1.2% (in control) to 90 ± 4.2%. An increase in R.E was attributed to the interaction of calcium with AOMs and subsequently acting as a flocculant. The findings of this study can be valuable to improve the performance of auto-flocculation technology, which is mainly limited by the presence of AOMs. Graphical Abstract.
Collapse
Affiliation(s)
- Naim Rashid
- Advanced Biomass R&D Center, Korea Advanced Institute of Science and Technology (KAIST), 291- Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manoranjan Nayak
- Advanced Biomass R&D Center, Korea Advanced Institute of Science and Technology (KAIST), 291- Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - William I Suh
- Advanced Biomass R&D Center, Korea Advanced Institute of Science and Technology (KAIST), 291- Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Bongsoo Lee
- Advanced Biomass R&D Center, Korea Advanced Institute of Science and Technology (KAIST), 291- Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea.
| | - Yong-Keun Chang
- Advanced Biomass R&D Center, Korea Advanced Institute of Science and Technology (KAIST), 291- Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Xia X, Lan S, Li X, Xie Y, Liang Y, Yan P, Chen Z, Xing Y. Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. CHEMOSPHERE 2018; 206:701-708. [PMID: 29783055 DOI: 10.1016/j.chemosphere.2018.04.159] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Klebsiella variicola B16, a microbial bioflocculant (MBF-B16)-producing bacteria, was isolated and identified by its 16S rRNA sequence, biochemical properties, and physiological characteristics. The effects of culture conditions on MBF-B16 production, including carbon source, nitrogen source, C/N ratio, initial pH, and culture temperature, were investigated in this study. Results showed that 6.96 g of MBF-B16 could be extracted from a 1-L culture broth under optimized conditions. Chemical analysis showed that polysaccharide and protein were the main components. The neutral sugar consisted of galactose only, which was proposed in Klebsiella genus for the first time. In addition, a composite flocculant (CF) that contains polyaluminum ferric chloride (PAFC) and MBF-B16 for the removal of turbidity and SS in drinking water was optimized by response surface methodology. CF could reduce PAFC dosage by about 56.2-72%. Charge neutralization and adsorption bridging effect were the primary flocculation mechanisms.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Peihan Yan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Zhengyang Chen
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology State Environmental Protection, Chengdu University of Technology, 610059, Chengdu, PR China
| | - Yunxiao Xing
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Sichuan, PR China
| |
Collapse
|
9
|
Chouchane H, Mahjoubi M, Ettoumi B, Neifar M, Cherif A. A novel thermally stable heteropolysaccharide-based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal. ENVIRONMENTAL TECHNOLOGY 2018; 39:859-872. [PMID: 28357896 DOI: 10.1080/09593330.2017.1313886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/27/2017] [Indexed: 06/06/2023]
Abstract
A new bioflocculant named pKr produced by hydrocarbonoclastic strain Kocuria rosea BU22S (KC152976) was investigated. Gas chromatography-flame ionization detector (GC-FID) analysis confirmed the high potential of the strain BU22S in the degradation of n-alkanes. Plackett-Burman experimental design and response surface methodology were carried out to optimize pKr production. Glucose, peptone and incubation time were found to be the most significant factors affecting bioflocculant production. Maximum pKr production was about 4.72 ± 0.02 g/L achieved with 15.61 g/L glucose, 6.45 g/L peptone and 3 days incubation time. Chemical analysis of pKr indicated that it contained 71.62% polysaccharides, 16.36% uronic acid and 2.83% proteins. Thin layer chromatography analysis showed that polysaccharides fraction consisted of galactose and xylose. Fourier transform infrared analysis revealed the presence of many functional groups, hydroxyl, carboxyl, methoxyl, acetyl and amide that likely contribute to flocculation. K. rosea pKr showed high flocculant potential using kaolin clay at different pH (2-11), temperature (0-100°C) and cation concentrations. The bioflocculant was particularly effective in flocculating soluble anionic dyes, Reactive Blue 4 and Acid Yellow, with a decolorization efficiency of 76.4% and 72.6%, respectively. The outstanding flocculating performances suggest that pKr could be useful for bioremediation applications.
Collapse
Affiliation(s)
- Habib Chouchane
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| | - Mouna Mahjoubi
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
- b Faculty of Science of Bizerte , University of Carthage , Bizerte , Tunisia
| | - Besma Ettoumi
- c Department of Food Environmental and Nutritional Sciences (DeFENS) , University of Milan , Milan , Italy
| | - Mohamed Neifar
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| | - Ameur Cherif
- a Univ. Manouba , ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 , Ariana , Tunisia
| |
Collapse
|
10
|
Pu S, Ma H, Deng D, Xue S, Zhu R, Zhou Y, Xiong X. Isolation, identification, and characterization of an Aspergillus niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application. PLoS One 2018; 13:e0190236. [PMID: 29304048 PMCID: PMC5755778 DOI: 10.1371/journal.pone.0190236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022] Open
Abstract
A bioflocculant (MBFA18) was produced by Aspergillus niger (A18) using potato starch wastewater (PSW) as nutrients. The cultivation processes and flocculating treatment for PSW purification were systematically studied. The flocculating rate of the MBFA 18 achieved 90.06% (kaolin clay) under the optimal cultivation condition (PSW with 5950 mg/L COD, 20 g/L glucose, 0.2 g/L urea and without phosphorus source addition and pH adjustment). Furthermore, effects of flocculant dosage, initial pH, coagulant aid (CaCl2) addition and sedimentation time on the PSW treatment were discussed and studied in detail. The optimum flocculation treatment conditions were determined according to the treatment efficiency, cost and flocculation conditions. During the PSW treatment, 2 mL/L bioflocculant (1.89 g/L) dosage and 0.5 mol/L coagulant aid addition were applied without pH adjustment and 91.15% COD and 60.22% turbidity removal rate could be achieved within 20 min. The comparative study between the bioflocculant and conventional chemical flocculants showed excellent flocculating efficiency of MBFA 18 with lower cost (4.7 yuan/t), which indicated that the bioflocculant MBFA 18 produced in PSW substrate has a great potential to be an alternative flocculant in PSW treatment.
Collapse
Affiliation(s)
- Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
- Department of Civil and Environment Engineering, The Hong Kong Polytechnic University, Hong Kong, P.R. China
- * E-mail:
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
- Department of Civil and Environment Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Daili Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| | - Shengyang Xue
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| | - Rongxin Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| | - Yan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| | - Xingying Xiong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan, P.R. China
| |
Collapse
|
11
|
Characterization of a microbial polysaccharide-based bioflocculant and its anti-inflammatory and pro-coagulant activity. Colloids Surf B Biointerfaces 2018; 161:636-644. [DOI: 10.1016/j.colsurfb.2017.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 01/14/2023]
|
12
|
Sun P, Zhang J, Esquivel-Elizondo S, Ma L, Wu Y. Uncovering the flocculating potential of extracellular polymeric substances produced by periphytic biofilms. BIORESOURCE TECHNOLOGY 2018; 248:56-60. [PMID: 28668493 DOI: 10.1016/j.biortech.2017.06.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to study the characteristics and flocculating properties of extracellular polymeric substances (EPS) extracted from periphytic biofilms. The periphytic EPS, with an extracted yield of 491.8mg/g, were mainly composed of hetero-polysaccharides and proteins, and the elements C1s, N1s, and O1s. Polysaccharides represented 53.28% of the periphytic EPS. Proteins constituted 20.26% of the EPS, and contributed to at least 34.65% of the total flocculating activity. The periphytic EPS showed high turbidity removal capacity (86.76±1.52%, 10min) and efficient aniline blue (AB) removal capacity (56.46±1.41%, 30min). The mechanism of AB removal by the periphytic EPS seemed to be a combined technique of "adsorption-flocculation". This study reveals the flocculating capability of periphytic EPS, and suggests that periphytic biofilms are novel sources for bioflocculants preparation.
Collapse
Affiliation(s)
- Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianhong Zhang
- Resources & Environment Business Dept., International Engineering Consulting Corporation, Beijing 100048, China
| | - Sofia Esquivel-Elizondo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
| | - Lan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
13
|
Xia X, Liang Y, Lan S, Li X, Xie Y, Yuan W. Production and flocculating properties of a compound biopolymer flocculant from corn ethanol wastewater. BIORESOURCE TECHNOLOGY 2018; 247:924-929. [PMID: 30060431 DOI: 10.1016/j.biortech.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
A compound biopolymer flocculant (CBF) produced using corn ethanol wastewater as substrate was investigated. After optimization of culture conditions, 3.08 g/L of purified CBF was extracted from the culture broth following 48 h of cultivation. The CBF macromolecule is mainly composed of protein (15.9%) and polysaccharide (81.8%). The polysaccharide component includes neutral sugars (28.92%), amino sugars (4.04%) and uronic acid (11.69%), with the neutral sugars being glucose, mannose, and lactose at a molar ratio of 4.1:1.5:1.9. CBF is pH tolerant from 3.0 to 12.0 and thermal tolerant from 20 to 100 °C, allowing for its application over a wide range of conditions. Furthermore, the Langmuir model better describes CBF adsorption on kaolin clay, as compared to the Freundlich model. Charge neutralization and bridging mechanisms are the primary flocculation mechanisms. In addition, CBF shows a high methylene blue removal efficiency. These results indicate that this compound biopolymer flocculant has great potential in dye wastewater treatment.
Collapse
Affiliation(s)
- Xiang Xia
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yajie Liang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yifei Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China.
| | - Wei Yuan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| |
Collapse
|
14
|
Salehizadeh H, Yan N, Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv 2017; 36:92-119. [PMID: 28993221 DOI: 10.1016/j.biotechadv.2017.10.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023]
Abstract
Natural polysaccharides, derived from biomass feedstocks, marine resources, and microorganisms, have been attracting considerable attention as benign and environmentally friendly substitutes for synthetic polymeric products. Besides many other applications, these biopolymers are rapidly emerging as viable alternatives to harmful synthetic flocculating agents for the removal of contaminants from water and wastewater. In recent years, a great deal of effort has been devoted to improve the production and performance of polysaccharide bio-based flocculants. In this review, current trends in preparation and chemical modification of polysaccharide bio-based flocculants and their flocculation performance are discussed. Aspects including mechanisms of flocculation, biosynthesis, classification, purification and characterization, chemical modification, the effect of physicochemical factors on flocculating activity, and recent applications of polysaccharide bio-based flocculants are summarized and presented.
Collapse
Affiliation(s)
- Hossein Salehizadeh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada.
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada; Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3B3, Canada.
| | - Ramin Farnood
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
15
|
Ntozonke N, Okaiyeto K, Okoli AS, Olaniran AO, Nwodo UU, Okoh AI. A Marine Bacterium, Bacillus sp. Isolated from the Sediment Samples of Algoa Bay in South Africa Produces a Polysaccharide-Bioflocculant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101149. [PMID: 28961180 PMCID: PMC5664650 DOI: 10.3390/ijerph14101149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022]
Abstract
Bioflocculants mediate the removal of suspended particles from solution and the efficiency of flocculation is dependent on the characteristics of the flocculant. Apart from the merits of biodegradability and harmlessness, bioflocculants could be viable as industrially relevant flocculants as they are a renewable resource. Additionally, the shortcomings associated with the conventionally used flocculants such as aluminium salts and acrylamide polymers, which include dementia and cancer, highlight more the need to use bioflocculants as an alternative. Consequently, in this study a marine sediment bacterial isolate was screened for bioflocculant production. Basic local alignment search tools (BLAST) analysis of 16S ribosomal deoxyribonucleic acid (rDNA) sequence of the bacterial isolate showed 98% similarity to Bacillus thuringiensis MR-R1. The bacteria produced bioflocculant optimally with inoculum size (4% v/v) (85%), glucose (85.65%) and mixed nitrogen source (urea, ammonium chloride and yeast extract) (75.9%) and the divalent cation (Ca2+) (62.3%). Under optimal conditions, a maximum flocculating activity of over 85% was attained after 60 h of cultivation. The purified polysaccharide-bioflocculant flocculated optimally at alkaline pH 12 (81%), in the presence of Mn2+ (73%) and Ca2+ (72.8%). The high flocculation activity shown indicates that the bioflocculant may contend favourably as an alternative to the conventionally used flocculants in water treatment.
Collapse
Affiliation(s)
- Ncedo Ntozonke
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Arinze S Okoli
- GenØK-Centre for Biosafety, Forskningsparken i Breivika, Postboks 6418, 9294 Tromsø, Norway.
| | - Ademola O Olaniran
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
16
|
Mannina G, Capodici M, Cosenza A, Cinà P, Di Trapani D, Puglia AM, Ekama GA. Bacterial community structure and removal performances in IFAS-MBRs: A pilot plant case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:122-131. [PMID: 28456028 DOI: 10.1016/j.jenvman.2017.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
The paper reports the results of an experimental campaign carried out on a University of Cape Town (UCT) integrated fixed-film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant. The pilot plant was analysed in terms of chemical oxygen demand (COD) and nutrients removal, kinetic/stoichiometric parameters, membrane fouling and sludge dewaterability. Moreover, the cultivable bacterial community structure was also analysed. The pilot plant showed excellent COD removal efficiency throughout experiments, with average value higher than 98%, despite the slight variations of the influent wastewater. The achieved nitrification efficiency was close to 98% for most of the experiments, suggesting that the biofilm in the aerobic compartment might have sustained the complete nitrification of the influent ammonia, even for concentrations higher than 100 mg L-1. The irreversible resistance due to superficial cake deposition was the mechanism that mostly affected the membrane fouling. Moreover, it was noticed an increase of the resistance due pore blocking likely due to the increase of the EPSBound fraction that could derive by biofilm detachment. The bacterial strains isolated from aerobic tank are wastewater bacteria known for exhibiting efficient heterotrophic nitrification-aerobic denitrification and producing biofilm.
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Marco Capodici
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Alida Cosenza
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy
| | - Paolo Cinà
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90100, Palermo, Italy
| | - Daniele Di Trapani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, Ed. 8, 90100, Palermo, Italy.
| | - Anna Maria Puglia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90100, Palermo, Italy
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch, 7700, Cape, South Africa
| |
Collapse
|
17
|
Li J, Yun YQ, Xing L, Song L. Novel bioflocculant produced by salt-tolerant, alkaliphilic strain Oceanobacillus polygoni HG6 and its application in tannery wastewater treatment. Biosci Biotechnol Biochem 2017; 81:1018-1025. [DOI: 10.1080/09168451.2016.1274635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The optimized production of MBF-HG6, which is a novel salt-tolerant alkaliphilic bioflocculant produced by Oceanobacillus polygoni with its application in tannery wastewater treatment was investigated in this study. It was found the optimal carbon source, nitrogen source, cation, and initial pH of the medium for bioflocculant production were starch, urea, Fe2+, and pH 9.0, respectively. The best stability in the temperature range was from 0 to 80°C and the purified MBF-HG6 contained polysaccharides of 81.53% and proteins of 9.98%. The carboxyl, hydroxyl, and amino groups were determined in bioflocculants, while the optimized bioflocculating activity was observed as 90.25% for the dosages of 6.96mL MBF-HG6, 4.77mL CaCl2 (1%, m/v), and 19.24g/L NaCl using response surface methodology. In addition, SS and turbidity removal rates of the tannery wastewater (4g/L MBF-HG6) could, respectively, reach 46.49% and 91.08%, indicating that the great potential was emerged in enhancement of tannery wastewater treatment by MBF-HG6.
Collapse
Affiliation(s)
- Jing Li
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Yue-qing Yun
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Li Xing
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
18
|
Domingues VS, Monteiro AS, Ferreira GF, Santos VL. Solid Flocculation and Emulsifying Activities of the Lipopolysaccharide Produced by Trichosporon mycotoxinivorans CLA2. Appl Biochem Biotechnol 2016; 182:367-381. [DOI: 10.1007/s12010-016-2332-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
19
|
Assessment of Bacillus pumilus Isolated from Fresh Water Milieu for Bioflocculant Production. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6080211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 2016; 5:177-211. [PMID: 26914994 PMCID: PMC4831466 DOI: 10.1002/mbo3.334] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up‐to‐date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation‐independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Stanley A Okoli
- GenØK - Centre for Biosafety, Science Park, University of Tromsø, Tromsø, 9291, Norway
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
21
|
Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. ENVIRONMENTAL TECHNOLOGY 2016; 37:1829-1842. [PMID: 26797258 DOI: 10.1080/09593330.2015.1133717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Uchechukwu U Nwodo
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Leonard V Mabinya
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Arinze S Okoli
- c GenØK Centre for Biosafety , Forskningsparken i Breivika , Tromsø , Norway
| | - Anthony I Okoh
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| |
Collapse
|