1
|
Abushattal MAK, Sale S, Subramaniam S, Mohamad Taib MNA, Rajamanikam A, Termizi FHM, Hassan NH, Mad' Atari MF. The effects of LED Spectra on synthesis of antiparasitic bioactive compound in Eurycoma longifolia hairy root culture against Blastocystis Sp. Sci Rep 2025; 15:14662. [PMID: 40287563 PMCID: PMC12033243 DOI: 10.1038/s41598-025-99906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
Eurycoma longifolia (also known as Tongkat Ali) is one of the valuable medicinal plants frequently used as traditional medicine in Malaysia. Its alkaloids and quassinoids reportedly confers antiparasitic activities. The effect of different Light Emitting Diode (LED) spectra treatments on E. longifolia hairy root cultures (ELHRCs) on alkaloid synthesis remains unexplored and its consequent antiparasitic effect on Blastocystis sp., a common intestinal protozoan parasite, is still unknown. In this study, the ELHRCs were irradiated to white, blue, red, blue plus red (1:1) and mint green LED illumination in vitro. The variation of alkaloids was assessed by using High-Performance Liquid Chromatography (HPLC) and employed to quantify 9-hydroxycanthin-6-one and 9-methoxycanthin-6-one. Subsequently, antiparasitic effect on Blastocystis sp. was assessed in in vitro parasite culture and the minimum inhibitory concentration (MIC90) was measured. Results showed the yields of high-value 9-hydroxycanthin-6-one in hairy roots increased by 1.17-fold, 2.74-fold, and 1.91-fold after 8, 10, and 12 weeks of culture under white, mint green, and blue lights relative to dark (control), respectively. In addition, 9-methoxycanthin-6-one yield in hairy roots increase by 1.07-fold and 1.34-fold after 8 and 12 weeks of culture under white light than in dark. Moreover, the ELHRCs crude extraction exhibited the highest anti-protozoal activity at 0.1 mg/ml against Blastocystis sp, ST3 compared to Metronidazole (MTZ). These results indicate that LED treatments alters alkaloid composition and are promising for obtaining higher yields of antiparasitic agents from the ELHRCs and thus can be considered a potential complementary and alternative antimicrobial agent.
Collapse
Affiliation(s)
| | - Sani Sale
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, 11800, Penang, Malaysia
- Department of Botany, Gombe State University, Gombe P.M.B 127, Gombe, Nigeria
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, 11800, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas, 11900, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya, 60115, Indonesia
| | | | - Arutchelvan Rajamanikam
- Department of Parasitology, Faculty of Medicine, Universiti of Malaya, Kuala Lumpur, 50603, Malaysia.
| | | | - Nor Hasnida Hassan
- Forest Biotechnology Division, Forest Research Institute Malaysia (FRIM), Kepong, 52109, Selangor, Malaysia
| | - Mohamad Fadhli Mad' Atari
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Alqahtani S, Alqahtani A, Alqahtani T, Alsayari A, Almrasy AA. Development and Validation of a Simple, Sensitive Fluorescent Method for Eurycomanone Quantification in Tongkat Ali Using Nitrogen-Doped Carbon Quantum Dots and Box-Behnken Design Optimization. LUMINESCENCE 2025; 40:e70176. [PMID: 40263641 DOI: 10.1002/bio.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Eurycoma longifolia Jack, commonly known as Tongkat Ali, is a medicinal herb traditionally valued for its aphrodisiac properties, with eurycomanone being its principal bioactive quassinoid. This study introduces a novel, cost-effective method for the sensitive detection of eurycomanone using nitrogen-doped carbon quantum dots (N-CQDs) as a fluorescent probe. The spectral characteristics of the probe were carefully analyzed using UV-vis and fluorescence spectrophotometric techniques, and the sensing mechanism was investigated through Stern-Volmer and thermodynamic studies, revealing a static quenching interaction. A Box-Behnken design of experiment was applied to optimize the sensing conditions including pH, incubation time, and probe concentration, ensuring high sensitivity and robustness. A reduced quadratic model was found significant (p value > 0.0001) with pH and N-CQDs concentration being the most influential factors. The method was rigorously validated following ICH guidelines displaying excellent linearity in the range of 0.25-6.0 μg/mL, high sensitivity (LOD 0.067 μg/mL), and high accuracy and precision (RSD < 1.5%). The proposed technique was successfully applied to the analysis of real Tongkat Ali samples, demonstrating its practical utility in herbal analysis. The results showed good agreement with reported chromatographic methods, positioning the technique as a promising alternative to conventional analytical methods.
Collapse
Affiliation(s)
- Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Ingegneri M, Smeriglio E, Zebbiche Y, Cornara L, Visalli L, Smeriglio A, Trombetta D. The Dark Side of "Smart Drugs": Cognitive Enhancement vs. Clinical Concerns. TOXICS 2025; 13:247. [PMID: 40278563 PMCID: PMC12031634 DOI: 10.3390/toxics13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
The European Union Drugs Agency has emphasized the increasing difficulty in monitoring the drug market due to the emergence of new psychoactive substances, often marketed as legal highs. The proliferation of fake pharmacies, drugstores, and e-commerce platforms has made access to illicit substances alarmingly rapid and inexpensive. These substances are readily available without medical prescriptions, lacking proper risk assessments or monitoring of potential adverse effects, raising significant public health concerns. Today, the relentless pursuit of validation and success-often, at any cost-has led to an exponential rise in the use of cognitive and mood enhancers. Such substances are frequently consumed to manage demands related to work, diet, sexuality, sleep, achievement, and interpersonal relationships. Consequently, investigating these phenomena is critically important for institutions, as they represent a serious threat to individual development and health. Developing effective preventive and protective systems is essential. This review provides an overview of currently available smart drugs, discussing their desired and adverse neuropharmacological effects, psychological implications, and cognitive decline resulting from their excessive and unregulated use. This review concludes that a multidisciplinary approach combining molecular identification, micro-morphological analysis, and chemical characterization is crucial for the accurate detection, monitoring, and risk mitigation of new psychoactive substances.
Collapse
Affiliation(s)
- Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.I.); (D.T.)
| | - Erika Smeriglio
- Department of Cognitive, Psychological and Pedagogical Sciences, and Cultural Studies (COSPECS), University of Messina, Via Concezione 6/8, 98121 Messina, Italy;
| | - Younes Zebbiche
- Faculty of Pharmacy, University of Algiers, Algiers 16002, Algeria;
- National Center of Toxicology Algiers, Algiers 16062, Algeria
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Letterio Visalli
- Health Service Department, Ministry of Interior, 00185 Rome, Italy;
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.I.); (D.T.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.I.); (D.T.)
| |
Collapse
|
4
|
Sukardiman, Mutiah R, Handayani R. Potential and mechanisms of indigenous Indonesian medicinal plants in treating sexual dysfunction: A systematic review and pharmacological network overview. Heliyon 2025; 11:e42501. [PMID: 40007786 PMCID: PMC11850192 DOI: 10.1016/j.heliyon.2025.e42501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The epidemiology of Erectile Dysfunction (ED) continues to exhibit an increasing trend annually. The use of synthetic drugs in treating ED often leads to undesirable side effects and has limited efficacy. In Indonesia, several indigenous plants have been empirically utilized for ED remediation. This study aims to identify the latest scientific evidence on the potential of native Indonesian medicinal plants for ED treatment and elucidate the underlying molecular mechanisms using a systematic review and Pharmacological Network approach. There are 12 potential plants most commonly used by ethnic groups in Indonesia to treat erectile dysfunction (ED) as reviewed in this study. A systematic review search was conducted across three databases (PubMed, Scopus, and Springer) without limiting the publication years. Article screening was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart. Determination of compound target genes was carried out using GeneCards, while disease target genes were analyzed using DisGeNET. Network topology was explored with Cytoscape 3.10, and the construction of Protein-Protein Interaction Networks was realized using STRING version 12.0. GO and KEGG analyses were subsequently conducted with SRplot. The systematic review findings indicated that 12 articles met the predefined inclusion criteria. The pharmacology network analysis demonstrated that the compounds present in Eurycoma longifolia, specifically stigmasterol, eurycomanone, and eurycomalactone, target 13 genes associated with erectile dysfunction (ED), which include BCL2, AKT1, SOAT1, PCSK9, ACHE, BDNF-AS, TMX2-CTNND1, GSK3B, LINCO1672, TP53, H19, HIF1A, and IL1B. These target genes are connected to the biological mechanisms underlying steroid hormone biosynthesis, which is essential for the formation of testosterone. Therefore, Eurycoma longifolia demonstrates significant potential for development as a promising phytopharmaceutical candidate in the treatment of sexual dysfunction.
Collapse
Affiliation(s)
- Sukardiman
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Roihatul Mutiah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang 65144, Indonesia
| | - Rosita Handayani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
5
|
Sitthisak C, Jomrit J, Chunglok W, Putalun W, Kanchanapoom T, Juengwatanatrakul T, Yusakul G. Effect of honey, as a natural deep eutectic solvent, on the phytochemical stability and anti-inflammatory activity of Eurycoma longifolia Jack. RSC Adv 2025; 15:5252-5263. [PMID: 39967879 PMCID: PMC11833601 DOI: 10.1039/d4ra05005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
The use of Eurycoma longifolia Jack (EL) in combination with honey is widely recognized in conventional medicine because of its aphrodisiac and pyretic properties. However, the effects of honey, a natural deep eutectic solvent (NADES), on the phytochemical stability and anti-inflammatory activity of EL remain unknown. This study aimed to investigate the effect of honey on phytochemical and anti-inflammatory effects of EL. The stabilities of bioactive compounds, including eurycomanone (EU), 9-hydroxycanthine-6-one (9HCO), and 9-methoxycanthine-6-one (9MCO), were evaluated after treating EL with honey. The anti-inflammatory activity was assessed by measuring the inhibition of NO production in lipopolysaccharide-induced RAW264.7 macrophages. The EL formulations treated with honey exhibited significantly higher yields of EU and 9HCO; however, a decrease in 9MCO was observed. After a 90 day infusion, the anti-inflammatory activities of honey-treated EL (9.19-68.73% NO inhibition) and simulated honey-NADES-treated EL (5.37-66.68% NO inhibition) were slightly lower than that of the non-treated EL extract (10.34-77.93% NO inhibition). Nonsugar honey constituents also exhibited anti-inflammatory effects. The combination of EL extract and honey resulted in a slightly lower anti-inflammatory activity (11.66-68.55% NO inhibition) compared with the EL extract. Honey and NADES enhanced the extraction and stabilization of bioactive compounds from EL. The anti-inflammatory properties of EL were preserved after honey treatment, indicating that honey-treated EL is a potential natural treatment for inflammatory conditions.
Collapse
Affiliation(s)
- Chanakan Sitthisak
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand +66-75-67-2814 +66-75-67-2839
| | - Juntratip Jomrit
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand +66-75-67-2814 +66-75-67-2839
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University Nakhon Si Thammarat Thailand
- Food Technology and Innovation Research Center of Excellence, Walailak University Nakhon Si Thammarat Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University Khon Kaen Thailand
| | | | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand +66-75-67-2814 +66-75-67-2839
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Nakhon Si Thammarat Thailand
- Hub of Knowledge in Microwave Heating and Applications, Walailak University Nakhon Si Thammarat Thailand
| |
Collapse
|
6
|
Eissa MA, Farag MA, Saleh DO, Shabana ME, Abou El-Ezz RF, El-Kersh DM. Metabolome classification of Tongkat Ali (Eurycoma longifolia jack) and its commercial products via UHPLC-QTOF-MS-MS and its protective effect against 5-flurouracil-Induced testicular toxicity in male rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118904. [PMID: 39369924 DOI: 10.1016/j.jep.2024.118904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongkat Ali (Eurycoma longifolia Jack) is a chief herbal medicine that is well recognized for its aphrodisiac properties, available in various commercial products worldwide. AIM OF THE STUDY The aim of this work is to identify the different classes of secondary metabolites present in Tongkat Ali commercial products versus authenticated root, and to assess its root extract mitigative effect against 5-flurouracil (5FU)-induced testicular toxicity. MATERIALS AND METHODS High-resolution UHPLC-QTOF-MS/MS metabolites analysis was utilized on the ethanolic Tongkat Ali extract (TAE) parallel to three Mlayasian commercial products, followed by a multivariate data analysis to understand the variability among UHPLC-MS metabolites datasets. Adult male rats were treated with 5-Fluorouracil (5FU) ± Tongkat Ali extract. Semen parameters, serum testosterone, LH, and FSH, and testicular oxidative stress biomarkers like malondialdehyde (MDA) levels, Nuclear factor kappa B (NF-κB) and erythroid 2-related factor 2 (Nrf2) were analyzed. RESULTS The main categories of secondary metabolites identified through UHPLC-MS/MS profiling were quassinoids, alkaloids, fatty acids, lignans and coumarins. Long Jack Plus® ELP-2 clustered alongside authentic roots ELR on the negative side, while Naturelle® ELP-1 and Nu-Prep-LEAKI® ELP-3 were positioned on the opposite side. The OPLS-DA model was used to identify markers for preparations from authentic roots, with commercial products enriching in ailanthone epoxide. In vivo results showed that 5FU reduced sperm parameters by 42%, while TAE improved sperm quality by 35-43% and 58-74% at dose of 400 and 800 mg/kg, respectively. Testosterone, reduced by 74% with 5FU, increased 2.3- to 3.2-fold with TAE. TAE also reduced MDA by 31-62%, NF-κB by 32-55% and increased Nrf2 by 1-2 folds. CONCLUSION The manuscript presents a comparative metabolomics study and in vivo investigation into the potential of Tongkat Ali root to improve testicular function in male rats intoxicated with 5FU, an area not previously explored. Further research is required to understand the mechanisms.
Collapse
Affiliation(s)
- Manar A Eissa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Merit University, New Sohag, 82755, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt
| | - Marwa E Shabana
- Pathology Department, National Research Centre, Giza, 12622, Egypt
| | - Rania F Abou El-Ezz
- Pharmacognosy Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo 11837, Egypt
| |
Collapse
|
7
|
Xu W, Wang Z, Liu T, Ma X, Jiao M, Zhao W, Yu L, Hua Y, Cai Z, Li J, Zhang T. Eurycomanone inhibits osteosarcoma growth and metastasis by suppressing GRP78 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118709. [PMID: 39163893 DOI: 10.1016/j.jep.2024.118709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteosarcoma (OS) is characterized by rapid growth and frequent pulmonary metastasis. Eurycoma longifolia Jack, a flowering plant primarily found in Southeast Asian countries, is commonly used in traditional herbal medicine. Its root extract is mainly used for against cancer, malaria, parasites and other conditions. The active compound in its root extract, eurycomanone (EUR), has been proven to inhibit lung and liver cancer proliferation. AIM OF THE STUDY Our research aimed to investigate the inhibitory effect and underlying molecular mechanism of EUR on OS growth and metastasis. MATERIALS AND METHODS In vitro experiments: western blotting (WB) screened 41 compounds that inhibited GRP78 expression and evaluated the protein levels of GRP78, PARP, cleaved-PARP, MMP2, and MMP9. Cell proliferation was evaluated using CCK-8, EdU, colony formation assay, and cell apoptosis was assessed by flow cytometry. Transwell, wound healing, and tube formation assays were performed to determine the effect of EUR on tumor invasion, migration, and angiogenesis, respectively. Quantitative real-time polymerase chain (qRT-PCR) and dual-luciferase activity assays detected GRP78 mRNA stability and transcription levels post-EUR and thapsigargin treatment. RNA-Seq identified signaling pathways inhibited by EUR. In vivo experiments: effects of EUR in mice were evaluated by H&E staining to detect lung metastasis and potential toxic effects in tissues. Immunohistochemical (IHC) staining detected the expression of Ki-67, CD31, and cleaved caspase-3 in tumors. RESULTS GRP78 is highly expressed in OS and correlated with poor prognosis. In vitro, eurycomanone (EUR) significantly downregulated GRP78 expression, inhibited cell proliferation, migration, invasion, tube formation, and induced apoptosis. Moreover, it enhanced trichostatin A (TSA) sensitivity and exhibited inhibitory effects on other cancer types. Mechanistically, EUR decreased GRP78 mRNA stability and transcription. In vivo, EUR inhibited proliferation and invasion in tibial and PDX models. CONCLUSIONS Our study demonstrated that EUR inhibits the growth and metastasis of OS by reducing GRP78 mRNA stability and inhibiting its transcription, which offers a novel approach for clinical treatment of OS.
Collapse
Affiliation(s)
- Wenyuan Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Tongtong Liu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xinglong Ma
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ming Jiao
- Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lingfeng Yu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Jingjie Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
8
|
Amtaghri S, Slaoui M, Eddouks M. Phytomedical compounds as promising therapeutic agents for COVID-19 targeting angiotensin-converting enzyme 2: a review. J Pharm Pharmacol 2024; 76:1239-1268. [PMID: 39018169 DOI: 10.1093/jpp/rgae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
AIMS The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
| |
Collapse
|
9
|
Yan P, Liu J, Huang Y, Yi T, Zhang H, Dai G, Wang X, Gao Z, He B, Guo W, Su Y, Guo L. Baicalin enhances antioxidant, inflammatory defense, and microbial diversity of yellow catfish ( Pelteobagrus fulvidraco) infected with Aeromonas hydrophila. Front Microbiol 2024; 15:1465346. [PMID: 39372274 PMCID: PMC11449889 DOI: 10.3389/fmicb.2024.1465346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction The aim of this research was to clarify the mechanism through which baicalin exerts its inhibitory effects on Aeromonas hydrophila infection. Methods The antibacterial efficacy of baicalin was assessed by determining its minimum inhibitory concentration (MIC) against A. hydrophila. Various parameters, including the growth curve, cell wall integrity, biofilm formation, AKP content, and morphological alterations of A. hydrophila, were analyzed. In vivo experiments involved the administration of A. hydrophila 4 h postintraperitoneal injection of varying doses of baicalin to induce infection, with subsequent monitoring of mortality rates. After a 3 d period, liver, spleen, and intestinal tissues were harvested to evaluate organ indices, antioxidant and immune parameters, as well as intestinal microbial composition. Results The findings indicated that baicalin treatment resulted in the disruption of the cell wall of A. hydrophila, leading to the loss of its normal structural integrity. Furthermore, baicalin significantly inhibited biofilm formation and facilitated the release of intracellular proteins (P < 0.05). In vivo, baicalin enhanced the survival rates of yellow catfish infected with A. hydrophila. Compared to the control group, the liver index of yellow catfish was elevated, while the spleen and intestinal indices were reduced in the baicalin-treated group (P < 0.05). Additionally, baicalin at an appropriate dosage was found to increase levels of SOD, GSH, CAT, ACP, and AKP in yellow catfish (P < 0.05), while simultaneously decreasing MDA accumulation and the mRNA expression of inflammatory markers such as Keap1, IL1, IFN-γ, and TNF-α, (P < 0.05). Moreover, baicalin significantly enhanced the operational taxonomic unit (OTU) count in A. hydrophila-infected yellow catfish (P < 0.05), restoring the abundance of Barnesiellaceae, Enterobacteriaceae, Plesiomonas, and UBA1819 (P < 0.05). Discussion In summary, baicalin demonstrates the potential to improve the survival rate of yellow catfish subjected to A. hydrophila infection, augment antioxidant and immune responses, mitigate inflammation, and enhance intestinal microbial diversity.
Collapse
Affiliation(s)
- Pupu Yan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Jiali Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yongxi Huang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Tilin Yi
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Heng Zhang
- Jingzhou Taihugang Aquatic Technology Co., LTD, Hubei, China
| | - Gang Dai
- Jingzhou Mingde Technology Co., LTD, Hubei, China
| | - Xiong Wang
- Jingzhou Mingde Technology Co., LTD, Hubei, China
| | - Zhenzhen Gao
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Bin He
- Wuhan city Academy of Agricultural Sciences Institute of Animal Husbandry and Veterinary, Wuhan, China
| | - Weili Guo
- NO. 6 Mildle School of Shahe, Xingtai, Hebei, China
| | - Yingbing Su
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Liwei Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
10
|
Koedkanmark T, Ratchamak R, Authaida S, Boonkum W, Semaming Y, Chankitisakul V. Supplementation of sperm cooling medium with Eurycoma longifolia extract enhances native Thai chicken sperm quality and fertility potential. Front Vet Sci 2024; 11:1474386. [PMID: 39296581 PMCID: PMC11408327 DOI: 10.3389/fvets.2024.1474386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Cooled semen storage methods result in oxidative stress generated by an imbalance between oxidation rates, specifically reactive oxygen species production, and sperm cell antioxidants, leading to degradation of semen quality. We aimed to investigate the impact of adding Eurycoma longifolia (EL) extract as an antioxidant supplement in semen storage medium (IGGKPh semen extender) on semen quality and fertility potential. EL extract at concentrations of 5, 10, 15, and 20 mg/mL was assessed for its antioxidant capacity in IGGKPh semen extender. Our findings revealed that the total phenolic content in the EL extract did not vary significantly across the various concentrations and temperatures tested. However, incubation at 5°C was found to be the most effective temperature for increasing the EL extract antioxidant capacity as assessed via the 2,2-diphenyl-1-picrylhydrazyl inhibition assay in a dose-dependent manner. Supplementation of the IGGKPh semen extender with 15 mg/mL EL extract was found to enhance semen quality during cold storage for up to 48 h (p < 0.05), as evidenced by decreased malondialdehyde levels in cooled semen (p < 0.05). However, antioxidant enzyme activities showed no significant differences among the various experimental groups (p > 0.05). The fertility test showed that the 15 mg/mL EL extract group stored for 24 h had a higher percentage than the control group (p < 0.05). However, there was no significant difference in percentage between the two groups at 48 h of storage (p > 0.05). The hatchability showed no significant difference in both 24 and 48-h storage periods (p > 0.05). Our results indicated that supplementing the IGGKPh semen extender with 15 mg/mL EL extract may positively influence semen quality during storage, suggesting potential applications for enhancing semen quality.
Collapse
Affiliation(s)
- Thirawat Koedkanmark
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, Thailand
| | - Ruthaiporn Ratchamak
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, Thailand
- Major of Animal Science, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Supakorn Authaida
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, Thailand
| | - Yoswaris Semaming
- Program in Veterinary Technology, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Ang JJ, Shivashekaregowda NKH, Yow HY, Rizwan F, Wong PF, Jantan I, Omar MH, Misnan NM, Low BS. Stimulatory effect of eurycomanone from Eurycoma longifolia Jack roots on dopamine secretion in human neuroblastoma SH-SY5Y cell line. Nat Prod Res 2024:1-5. [PMID: 39066784 DOI: 10.1080/14786419.2024.2383272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Eurycomanone has been identified as the major bioactive compound contributing to Eurycoma longifolia (EL) aphrodisiac activity, however, its mechanism of action remains obscured. Presently, eurycomanone was isolated from EL root extract and its molecular structure was identified. The human neuroblastoma SH-SY5Y cell line was differentiated into human dopaminergic neuron-like cells. Exogenous dopamine levels from the differentiated SH-SY5Y cells were quantified following the treatment of 5, 10, 15 μM of eurycomanone and 10 μM clorgyline as positive control. Dopamine secretion was significantly increased in a dose-dependent manner, compared to the vehicle control (p < .01) in differentiated SH-SY5Y cells. Dopamine concentration stimulated by 15 μM eurycomanone was significantly higher than clorgyline (p < .05), an inhibitor of monoamine oxidase A that suppresses dopamine catabolism. In conclusion, eurycomanone stimulated dopamine release of human SH-SY5Y neuron-like cells, which could be one of the mechanisms that underpin the aphrodisiac properties of the plant.
Collapse
Affiliation(s)
- Jing-Jie Ang
- Faculty of Health and Medical Sciences, School of Medicine, Taylor's University, Selangor, Malaysia
| | | | - Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Farzana Rizwan
- Faculty of Health and Medical Sciences, School of Medicine, Taylor's University, Selangor, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institut Biologi Sistem, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Maizatul Hasyima Omar
- Photochemistry Unit, Herbal Medicine Research Centre, Institute of Medical Research, National Institutes of Health, Selangor, Malaysia
| | - Norazlan Mohmad Misnan
- Photochemistry Unit, Herbal Medicine Research Centre, Institute of Medical Research, National Institutes of Health, Selangor, Malaysia
| | - Bin-Seng Low
- Faculty of Health and Medical Sciences, School of Medicine, Taylor's University, Selangor, Malaysia
| |
Collapse
|
12
|
Sakai N, Komi K, Nishino N, Kuroki Y, Nishino S. Eurycoma longifolia (Tongkat Ali) supplementation enhances sleep and wake consolidation in wild-type, but not in narcoleptic mice. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae047. [PMID: 39055967 PMCID: PMC11272086 DOI: 10.1093/sleepadvances/zpae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Indexed: 07/28/2024]
Abstract
Tongkat Ali (TA), also known as Eurycoma longifolia, has been used as a traditional herbal medicine for anti-aging, evidenced by clinical trials presenting the beneficial effects on energy, fatigue, and mood disturbance. We have recently shown that TA supplementation dose-dependently enhances the rest-activity pattern in C57BL/6 mice. Since destabilization of wakefulness and sleep is one of the typical symptoms of not only the elderly but also narcolepsy, we performed sleep analysis with and without dietary TA extract supplementation in middle-aged (10-12 months old) wild-type (WT) and narcoleptic DTA mice. We found that TA supplementation enhanced diurnal rhythms of locomotion and temperature in a time-of-day-dependent manner in WT mice but attenuated in DTA mice. In WT mice, TA supplementation consolidated wakefulness with a long bout duration and led to less entries into the sleep state during the active period, while it consolidated NREM sleep with long bout duration during the resting period. Neither disturbed sleep and wake cycles nor cataplexy was sufficiently improved in DTA mice. EEG spectral analysis revealed that TA supplementation enhanced slow wave activity (SWA) at both delta and low delta frequencies (0.5-4.0 and 0.5-2.0 Hz) during the light period, suggesting TA extract may induce vigilance during the active period, which then elicits a rebound effect during the resting period. Interestingly, DTA mice also slightly, but significantly, increased SWA at low frequencies during the light period. Taken together, our results suggest that TA supplementation enhances the Yin-Yang balance of sleep, temperature, and locomotion in WT mice, while its efficacy is limited in narcoleptic mice.
Collapse
Affiliation(s)
- Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kazuhiro Komi
- Center for Doctors’ Career Development, Kawasaki Medical School Hospital, Kurashiki, Japan
| | - Naoya Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yutaka Kuroki
- D-LAB, Japan Tobacco Inc, Tokyo, Japan
- Delightex Pte. Ltd., Bugis Junction Towers, Singapore
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
13
|
Zhang H, Zhou Y, Pan Z, Wang B, Yang L, Zhang N, Chen B, Wang X, Jian Z, Wang L, Ling H, Qin X, Zhang Z, Liu T, Zheng A, Tan Y, Bi Y, Yang R. Toxicity assessment of Cucurbita pepo cv Dayangua and its effects on gut microbiota in mice. BMC Complement Med Ther 2024; 24:243. [PMID: 38909225 PMCID: PMC11193904 DOI: 10.1186/s12906-024-04551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Cucurbita pepo cv Dayangua (CPD) is an edible plant with diverse pharmacological properties. The current research on CPD has primarily focused on initial investigations of its chemical composition and pharmacological effects, and no comprehensive toxicity assessment has been conducted to date. METHODS In the present study, the toxicity of CPD was evaluated through both acute and sub-chronic oral toxicity tests in mice. 16S rDNA sequencing was used to analyze the composition of the gut microbiota of mice at different time points to observe the effect of CPD on these microbial communities. RESULTS In the acute toxicity test, CPD exhibited low toxicity, with a median lethal dose (LD50) > 2000 mg/kg. The sub-chronic toxicity test indicated that CPD administration at doses of 200, 400, and 600 mg/kg did not cause mortality or significant organ damage in mice. Furthermore, analysis of the gut microbiota after gavage administration of CPD at 400 and 600 mg/kg revealed an improved abundance of some beneficial gut bacteria. CONCLUSIONS In summary, no acute or sub-chronic toxic effects were observed in mice following the oral administration of CPD. CPD did not affect the structure and diversity of the gut microbiota and may contribute to an increase in the number of beneficial gut bacteria.
Collapse
Affiliation(s)
- Huan Zhang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Bikun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lei Yang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Nan Zhang
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Baiyi Chen
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Xiaona Wang
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Zhiguang Jian
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hui Ling
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiaoming Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhelin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Teng Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Ruifu Yang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
14
|
Sakai Y, Yamada M, Watanabe T, Yamazaki A, Furukawa M, Izumo N, Matsuzaki H. Eurycomanone from Eurycoma longifolia Jack upregulates neurotrophin-3 gene expression in retinal Müller cells in vitro. J Clin Biochem Nutr 2024; 74:199-206. [PMID: 38799139 PMCID: PMC11111470 DOI: 10.3164/jcbn.23-73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 05/29/2024] Open
Abstract
Photoreceptor degeneration decreases light sensitivity and leads to vision loss and various retinal diseases. Neurotrophin-3, originating from Müller glial cells in the retina, plays a key role in protecting photoreceptors from damage induced by light or hypoxia. This neuroprotective approach is important because there are no established methods to regenerate lost photoreceptors. Dietary supplements are one of the useful methods for improving eye health. Eurycoma longifolia (E. longifolia) Jack, which is native to the tropical forest of Malaysia and other Southeast Asian countries, exhibits several medicinal properties. In the present study, we demonstrated that the water extract of E. longifolia roots enhanced neurotrophin-3 gene expression in primary rat Müller cells. Using a stepwise bioassay-guided fractionation and purification of E. longifolia root extracts, we isolated the active compound underlying neurotrophin-3 gene-enhancing activities. Mass spectrometry and nuclear magnetic resonance spectral data identified the compound as eurycomanone. This study provides evidence for the efficacy of E. longifolia and eurycomanone in enhancing neurotrophin-3 expression in Müller cells in vitro. Although the biological significance of this effect and its underlying mechanism remain to be elucidated, this study suggests that E. longifolia may be promising for improving eye health and must be further investigated.
Collapse
Affiliation(s)
- Yumi Sakai
- General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Center for Child Mental Development, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Masayoshi Yamada
- Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan
| | - Tomomichi Watanabe
- General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Arisa Yamazaki
- Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan
| | - Megumi Furukawa
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Center for Child Mental Development, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
- Pharmaceutical Education Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Hideo Matsuzaki
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Center for Child Mental Development, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
15
|
Tatano Y, Shimizu T, Sano C, Tomioka H. Roles of autophagy in killing of mycobacterial pathogens by host macrophages - Effects of some medicinal plants. Eur J Microbiol Immunol (Bp) 2024; 14:26-36. [PMID: 38349363 PMCID: PMC10895364 DOI: 10.1556/1886.2023.00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Autophagy is a cellular stress-induced intracellular process, through which damaged cellular components are decomposed via lysosomal degradation. This process plays important roles in host innate immunity, particularly the elimination of intracellular pathogens inside host macrophages. A more detailed understanding of the roles of autophagic events in the effective manifestation of macrophagic antimycobacterial activity is needed. Furthermore, the effects of medicinal plants on macrophagic autophagy response to mycobacterial infection need to be clarified. We herein examined the significance of autophagic events in the manifestation of host immunity during mycobacterial infection, by performing a literature search using PubMed. Recent studies demonstrated that autophagy up-regulated macrophage functions related to the intracellular killing of mycobacteria, even when pathogens were residing within the cytoplasm of macrophages. The majority of medicinal plants potentiated macrophagic autophagy, thereby enhancing their antimycobacterial functions. In contrast, most medicinal plants down-regulate the development and activation of the Th17 cell population, which reduces macrophage antimycobacterial activity. These opposing effects of medicinal plants on macrophage autophagy (enhancement) and Th17 cell functions (inhibition) may provide a plausible explanation for the clinical observation of their modest efficacy in the treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Yutaka Tatano
- 1Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Toshiaki Shimizu
- 2Department of Nutrition Administration, Yasuda Women's University, Hiroshima, Japan
| | - Chiaki Sano
- 3Department of Community Medicine Management, Faculty of Medicine, Shimane University, Izumo Japan
| | | |
Collapse
|
16
|
Wang YC, Yang X, Xiao J, Wei SM, Su Y, Chen XQ, Huang T, Shan QW. Determination of the median lethal dose of zinc gluconate in mice and safety evaluation. BMC Pharmacol Toxicol 2024; 25:15. [PMID: 38317260 PMCID: PMC10840281 DOI: 10.1186/s40360-024-00736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Zinc Gluconate (ZG) is a safe and effective supplement for zinc. However, there is limited research on the optimal dosage for intravenous injection and the safety evaluation of animal models for ZG. This study aims to determine the safe dose range of ZG for intravenous injection in C57BL/6J mice. METHODS A Dose titration experiment was conducted to determine the LD50 and 95% confidence interval (95%CI) of ZG in mice. Based on the LD50, four sub-lethal doses (SLD) of ZG were evaluated. Following three injections of each SLD and monitoring for seven days, serum zinc levels were measured, and pathological changes in the liver, kidney, and spleen tissues of mice were determined by histological staining. RESULTS The dose titration experiment determined the LD50 of ZG in mice to be 39.6 mg/kg, with a 95%CI of 31.8-49.3 mg/kg. There was a statistically significant difference in the overall serum zinc levels (H = 36.912, P < 0.001) following SLD administration. Pairwise comparisons showed that the serum zinc levels of the 1/2 LD50 and 3/4 LD50 groups were significantly higher than those of the control group (P < 0.001); the serum zinc level of the 3/4 LD50 group was significantly higher than those of the 1/8 LD50 and 1/4 LD50 groups (P < 0.05). There was a positive correlation between the different SLDs of ZG and the serum zinc levels in mice (rs = 0.973, P < 0.001). H&E staining showed no significant histological abnormalities or lesions in the liver, kidney, and spleen tissues of mice in all experimental groups. CONCLUSION The appropriate dose range of ZG for intravenous injection in C57BL/6J mice was clarified, providing a reference for future experimental research.
Collapse
Affiliation(s)
- Yong-Cai Wang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Juan Xiao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Su-Mei Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ying Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiu-Qi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, 530021, Nanning, China
| | - Qing-Wen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
17
|
Sale S, Subramaniam S, Mad’ Atari MF. Trends in the Tissue Culture Techniques and the Synthesis of Bioactive Compounds in Eurycoma longifolia Jack-Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 13:107. [PMID: 38202415 PMCID: PMC10780575 DOI: 10.3390/plants13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Over the last two decades, there has been a concerted effort by researchers to mass propagate Eurycoma longifolia and improve the yield of its very important and sought-after anti-cancer and aphrodisiac bioactive compounds. To achieve this, various techniques have been used to mass propagate and improve the yield of these bioactive compounds in tissue cultures. These techniques include the optimization of media conditions and application of various types and combinations of plant growth regulators (PGRs). In addition, some elicitation techniques have been used to improve the synthesis of these bioactive compounds. However, in comparison with other herbal species with similar economic importance, many techniques have not been applied to E. longifolia. Adopting the most recent methodologies would ensure efficiency and sustainability in the in vitro production of bioactive compounds in E. longifolia. Therefore, in this review, we present an up-to-date record on the success stories in the tissue culture techniques and synthesis of bioactive compounds. In addition, we attempted to identify some of the missing links on the road to the effective and sustainable biotechnological utilization of this super important biological resource.
Collapse
Affiliation(s)
- Sani Sale
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Department of Botany, Gombe State University, P.M.B 127, Gombe 760214, Nigeria
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas 11900, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya 60115, Indonesia
| | | |
Collapse
|
18
|
Nguyen Hoai B, Hoang L, Nguyen Cao T, Pham Minh Q, A Jannini E. Testosterone and aging male, a perspective from a developing country. Aging Male 2023; 26:2223712. [PMID: 37335039 DOI: 10.1080/13685538.2023.2223712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE Hypogonadism is associated with a wide range of physical and psychological symptoms that can affect the overall health of men. However, in a developing country, there are several imposing challenges in the diagnosis and treatment of hypogonadism, including a lack of awareness and understanding of the condition among healthcare providers and patients, limited resources and the high cost of treatment. This review aimed to examine the potential benefits and risks of testosterone replacement therapy (TRT) and provides a perspective of a developing country on the topic. MATERIALS AND METHODS A comprehensive literature review was conducted to gather relevant information on the impact of testosterone deficiency on ageing males and the effectiveness of TRT for treating hypogonadism. Published peer-reviewed articles were analyzed to evaluate the benefits and risks of TRT. Additionally, the unique challenges faced in the diagnosis and treatment of hypogonadism in a developing country were considered. RESULTS Testosterone replacement therapy has been shown to be an effective treatment for hypogonadism, particularly in symptomatic men with low testosterone levels. It offers potential benefits such as improvements in symptoms and overall quality of life. However, there are associated risks and side effects that need to be considered. In a developing country, challenges such as limited awareness and understanding of hypogonadism, resource constraints, and high treatment costs pose additional barriers to accessing TRT and comprehensive care. CONCLUSION In conclusion, TRT holds promise as a treatment for hypogonadism, but its implementation and accessibility face significant challenges in a developing country. Addressing these challenges, including raising awareness, allocating resources, and finding cost-effective solutions, is crucial for ensuring that men with hypogonadism in such settings receive appropriate diagnosis and treatment. Further research and efforts are needed to improve the management of hypogonadism in developing countries and optimize the potential benefits of TRT for affected individuals.
Collapse
Affiliation(s)
- Bac Nguyen Hoai
- Department of Andrology and Sexual Medicine, Hanoi Medical University's Hospital, Hanoi, Vietnam
| | - Long Hoang
- Department of Urology, Hanoi Medical University's Hospital, Hanoi, Vietnam
| | - Thang Nguyen Cao
- Department of Andrology and Sexual Medicine, Hanoi Medical University's Hospital, Hanoi, Vietnam
| | - Quan Pham Minh
- Department of Andrology and Sexual Medicine, Hanoi Medical University's Hospital, Hanoi, Vietnam
| | - Emmanuele A Jannini
- Chair of Endocrinology and Sexual Medicine (ENDOSEX), University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
19
|
Muniandy S, Yahya HM, Shahar S, Kamisan Atan I, Mahdy ZA, Rajab NF, George A, Chinnappan SM. Effects of Eurycoma longifolia Jack standardised water extract (Physta) on well-being of perimenopausal and postmenopausal women: protocol for a randomised, double-blinded, placebo-controlled, parallel group study. BMJ Open 2023; 13:e073323. [PMID: 37914304 PMCID: PMC10626840 DOI: 10.1136/bmjopen-2023-073323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION Eurycoma longifolia Jack (EL), profoundly recognised as 'Tongkat Ali', is a medicinal herb originating from Southeast Asia. It is commonly used in traditional 'antiageing' treatments to address decreased energy, mood, libido and hormonal imbalances. While the benefits of EL have been extensively studied among the male population, less attention has been given to its effects on women. Menopause can impact the overall well-being of middle-aged women and incorporation of herbal supplements can aid them in managing the menopausal symptoms. METHODS AND ANALYSIS This 12-week randomised double-blind, placebo-controlled, parallel-group study aims to evaluate the efficacy of the standardised water extract of EL known as Physta in increasing the quality of life of perimenopausal and postmenopausal women. The study involves 150 women aged 40-55 years who score more than 61 on the Menopause-Specific Quality of Life (MENQOL) assessment. These participants will be randomised into three groups, receiving Physta at either 50 mg or 100 mg or a placebo. The outcomes measures include mood state, quality of life, fatigue, sleep quality, sexual function and pain score assessed using Profile of Mood State, MENQOL, Chalder Fatigue Scale, Pittsburgh Sleep Quality Index, Female Sexual Function Index and the Brief Pain Inventory questionnaires, respectively. The secondary outcome of the study includes full blood analysis, urine analysis, female reproductive hormone profiling, inflammatory and oxidative stress biomarkers analysis. ETHICS AND DISSEMINATION The research protocol of the study was reviewed and approved by the Research Ethics Committee of Universiti Kebangsaan Malaysia (UKM/PPI/111/8/JEP-2021-898). The findings will be disseminated to participants, healthcare professionals and researchers via conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER ACTRN12622001341718.
Collapse
Affiliation(s)
- Subashini Muniandy
- Biomedical Sciences Program, Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Malaysia
| | - Hanis Mastura Yahya
- Nutritional Sciences Program, Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Malaysia
| | - Suzana Shahar
- Dietetics Program, Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Malaysia
| | - Ixora Kamisan Atan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Zaleha Abdullah Mahdy
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Sciences Program, Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Malaysia
| | - Annie George
- Department of Science and Product Development, Biotropics Malaysia Berhad, Shah Alam, Malaysia
| | - Sasikala M Chinnappan
- Department of Science and Product Development, Biotropics Malaysia Berhad, Shah Alam, Malaysia
| |
Collapse
|
20
|
Wang D, Liu L, Li K, Cao H, Liu M, Chen Q, Wu Y, Zhang Y, Wang T. Eurycoma longifolia alkaloid components ameliorate hyperuricemic nephropathy via regulating serum uric acid level and relieving inflammatory reaction. J Nat Med 2023; 77:867-879. [PMID: 37433989 DOI: 10.1007/s11418-023-01729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Hyperuricemia is an independent risk factor for chronic kidney disease. We have previously showed the uric-acid-lowering effect of Eurycoma longifolia Jack, yet the renal protective effect and mechanism of E. longifolia remain obscure. The mouse model of hyperuricemic nephropathy was induced by adenine combined with potassium oxonate in male C57BL/6 J mice. E. Longifolia alkaloid components could reduce the level of serum uric acid by regulating the expression of hepatic phosphoribosyl pyrophosphate synthase (PRPS), hypoxanthine-guanine phosphoribosyl transferase (HPRT), and renal urate transporter organic anion transporter 1 (OAT1) and ATP-binding box subfamily G member 2 (ABCG2) in HN mice. Additionally, E. Longifolia alkaloid components alleviated renal injury and function caused by hyperuricemia, which was characterized by improving renal histopathology, reducing urea nitrogen and creatinine levels. E. Longifolia alkaloid components treatment could reduce the secretion of pro-inflammatory factors by inhibiting the activation of NF-κB and NLRP3 inflammatory signaling pathways, including tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-1 β (IL-1β), and regulated activated normal T cell expression and secretion proteins (RANTES). Meanwhile, E. longifolia alkaloid components improved renal fibrosis, inhibited the transformation of calcium-dependent cell adhesion molecule E (E-cadherin) to α-smooth muscle actin (α-SMA) transformation, and decreased collagen 1 expression in HN mice.
Collapse
Affiliation(s)
- Dan Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Lin Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Kaiwen Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Huiya Cao
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Qian Chen
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Yuzheng Wu
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Yi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China.
| | - Tao Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
21
|
Yunos NM, Wahab HA, Al-Thiabat MG, Sallehudin NJ, Jauri MH. In Vitro and In Silico Analysis of the Anticancer Effects of Eurycomanone and Eurycomalactone from Eurycoma longifolia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2827. [PMID: 37570981 PMCID: PMC10421158 DOI: 10.3390/plants12152827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 08/13/2023]
Abstract
Eurycomanone and eurycomalactone are known quassinoids present in the roots and stems of Eurycoma longifolia. These compounds had been reported to have cytotoxic effects, however, their mechanism of action in a few cancer cell lines have yet to be elucidated. This study was aimed at investigating the anticancer effects and mechanisms of action of eurycomanone and eurycomalactone in cervical (HeLa), colorectal (HT29) and ovarian (A2780) cancer cell lines via Sulforhodamine B assay. Their mechanism of cell death was evaluated based on Hoechst 33342 assay and in silico molecular docking toward DHFR and TNF-α as putative protein targets. Eurycomanone and eurycomalactone exhibited in vitro anticancer effects manifesting IC50 values of 4.58 ± 0.090 µM and 1.60 ± 0.12 µM (HeLa), 1.22 ± 0.11 µM and 2.21 ± 0.049 µM (HT-29), and 1.37 ± 0.13 µM and 2.46 ± 0.081 µM (A2780), respectively. They induced apoptotic cancer cell death in dose- and time-dependent manners. Both eurycomanone and eurycomalactone were also predicted to have good inhibitory potential as demonstrated by the docking into TNF-α with binding affinity of -8.83 and -7.51 kcal/mol, respectively, as well as into DHFR with binding affinity results of -8.05 and -8.87 kcal/mol, respectively. These results support the evidence of eurycomanone and eurycomalactone as anticancer agents via apoptotic cell death mechanism that could be associated with TNF-α and DHFR inhibition as among possible protein targets.
Collapse
Affiliation(s)
- Nurhanan Murni Yunos
- Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (N.J.S.); (M.H.J.)
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Mohammad G. Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
| | - Nor Jannah Sallehudin
- Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (N.J.S.); (M.H.J.)
| | - Muhamad Haffiz Jauri
- Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia; (N.J.S.); (M.H.J.)
| |
Collapse
|
22
|
Zhang J, Wu S, Wen Y, Lai D, Kuang S, Zhang R, Xu X, Jin F, Xu H, Yu XQ, Shao X. Eurycomanone (EN) Activates Transcription Factor FoxO by Inhibiting the Insulin Signaling Pathway to Suppress the Development of Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384556 DOI: 10.1021/acs.jafc.3c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The insulin-like signaling (IIS) pathway is essential for insect growth and development. In this study, we showed that eurycomanone (EN) is an active compound with growth inhibitory activity against Spodoptera frugiperda larvae. Experiments in cells and RNA-seq analysis in the midgut showed that EN targeted the IIS pathway in S. frugiperda to activate the transcription factor SfFoxO (S. frugiperda forkhead boxO) to regulate mRNA levels associated with nutrient catabolism. Additionally, mass spectrometry imaging revealed that EN was distributed in the larval gut and enriched in the inner membrane of the gut. Immunofluorescence, western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results showed that EN induced program cell death (PCD) in the larvae midgut. Thus, EN targeted the insulin receptor to inhibit the IIS signaling pathway, exerting inhibitory activity on the growth and development of S. frugiperda larvae. Our results suggest that EN has great potential as a botanical pesticide, and the IIS signaling pathway may be an effective target for botanical pesticides.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Siyu Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Yingjie Wen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Duo Lai
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Shizi Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xuehua Shao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| |
Collapse
|
23
|
Subhawa S, Arpornchayanon W, Jaijoy K, Chansakaow S, Soonthornchareonnon N, Sireeratawong S. Anti-Inflammatory, Antinociceptive, Antipyretic, and Gastroprotective Effects of Eurycoma longifolia Jack Ethanolic Extract. Life (Basel) 2023; 13:1465. [PMID: 37511840 PMCID: PMC10381342 DOI: 10.3390/life13071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Tongkat ali (Eurycoma longifolia Jack) (ELJ) is a plant in the Simaroubaceae family. Its roots are used in traditional Thai medicine to treat inflammation, pain, and fever; however, the antiulcer abilities of its ethanolic extract have not been studied. This study examined the anti-inflammatory, antinociceptive, antipyretic, and gastroprotective effects of ethanolic ELJ extract in animal models and found that ELJ effectively reduced EPP-induced ear edema in a dose-dependent manner and that a high dose of ELJ inhibited carrageenan-induced hind paw edema formation. In cotton-pellet-induced granuloma formation, a high dose of ELJ suppressed the increases in wet granuloma weight but not dry or transudative weight. In the formalin-induced nociception study, ELJ had a significant dose-dependent inhibitory impact. Additionally, the study found that yeast-induced hyperthermia could be significantly reduced by antipyretic action at the highest dose of ELJ. In all the gastric ulcer models induced by chemical substances or physical activity, ELJ extracts at 150, 300, and 600 mg/kg also effectively prevented gastric ulcer formation. In the pyloric ligation model, however, the effects of ELJ extract on gastric volume, gastric pH, and total acidity were statistically insignificant. These findings support the current widespread use of Eurycoma longifolia Jack in traditional medicine, suggest the plant's medicinal potential for development of phytomedicines with anti-inflammatory, antinociceptive, and antipyretic properties, and support its use in the treatment of gastric ulcers due to its gastroprotective properties.
Collapse
Affiliation(s)
- Subhawat Subhawa
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Kanjana Jaijoy
- McCormick Faculty of Nursing, Payap University, Chiang Mai 50000, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Seewaboon Sireeratawong
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Preclinical Science, Division of Pharmacology, Faculty of Medicine, Rungsit Campus, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
24
|
Jothi S, Parumasivam T, Mohtar N. <em>Eurycoma longifolia</em>: an overview on the pharmacological properties for the treatment of common cancer. J Public Health Afr 2023. [PMID: 37492537 PMCID: PMC10365645 DOI: 10.4081/jphia.2023.2495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Eurycoma longifolia plant, the so called Tongkat Ali in Malaysia, is a well grown prominent tree in all Southeast Asia. It is well known among traditional medicine practitioners as a curative plant for many diseases and health conditions. The major quassinoid from the plant is eurycomanone, which exhibits many prominent effects on various cancer cell lines. Numerous studies have shown that eurycomanone inhibits cancerous cell growth and encourages cell death both in vitro and in vivo test. Even though analyses of safety and toxicity have been conducted, there is still a substantial knowledge barrier when it comes to providing a scientific foundation for the molecular mechanism as well as intervention strategy in the living people cancer cell. In a way to offer adequate baseline data for future investigations based on molecular mechanism and intervention, the present work seeks to review the researches conducted to date on this herbal plant.
Collapse
|
25
|
Sakdamas A, Makliang F, Putalun W, Juengwatanatrakul T, Kanchanapoom T, Sakamoto S, Yusakul G. Analysis of canthin-6-one alkaloids derived from Eurycoma spp. by micellar liquid chromatography and conventional high-performance liquid chromatography: a comparative evaluation. RSC Adv 2023; 13:6317-6326. [PMID: 36825292 PMCID: PMC9942697 DOI: 10.1039/d2ra07034k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Extracts of Eurycoma longifolia Jack (EL) and Eurycoma harmandiana Pierre (EH) contain numerous bioactive compounds and varying matrices that are challenging to separate using chromatographic techniques. Herein, micellar liquid chromatography (MLC) was used to analyze canthin-6-one alkaloids contained in these extracts, and the achieved performance was compared with that of a conventional high-performance liquid chromatography (HPLC) method. The optimal mobile phase of MLC corresponded to 15 : 85 (v/v) acetonitrile : water (pH 3) containing 110 mM sodium dodecyl sulfate and 10 mM NaH2PO4. The retention times of canthin-6-one-9-O-β-d-glucopyranoside, 9-hydroxycanthin-6-one, canthin-6-one, and 9-methoxycanthin-6-one were 4.78/15.42, 17.64/24.11, 32.84/38.27, and 39.04/39.86 min, respectively, in the cases of isocratic MLC and conventional HPLC. In both cases, the analyte resolution exceeded 1.5. The MLC elution behavior of the examined analytes was largely determined by their hydrophobicity and ionization. The sensitivity, precision, accuracy, and per-run acetonitrile consumption of the MLC method were comparable to those of the conventional HPLC method. However, the latter method exhibited higher performance for application to EL and EH samples, particularly those with low analyte concentrations and varying sample matrices. Overall, the analysis of canthin-6-one alkaloids using MLC was limited to trace analytes due to interference by the matrix.
Collapse
Affiliation(s)
- Attapon Sakdamas
- School of Pharmacy, Walailak University Nakhon Si Thammarat Thailand +66-75-67-2839
| | - Fonthip Makliang
- School of Languages and General Education, Walailak University Nakhon Si Thammarat Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University Khon Kaen Thailand
| | | | | | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University Higashi-ku Fukuoka Japan
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University Nakhon Si Thammarat Thailand +66-75-67-2839
- Biomass and Oil Palm Center of Excellence, Walailak University Nakhon Si Thammarat Thailand
| |
Collapse
|
26
|
Serag A, Zayed A, Mediani A, Farag MA. Integrated comparative metabolite profiling via NMR and GC-MS analyses for tongkat ali (Eurycoma longifolia) fingerprinting and quality control analysis. Sci Rep 2023; 13:2533. [PMID: 36781893 PMCID: PMC9925447 DOI: 10.1038/s41598-023-28551-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Tongkat ali commonly known as Malaysian Ginseng (Eurycoma longifolia) is a herbal root worldwide available in nutraceuticals, either as a crude powder or capsules blended with other herbal products. Herein, a multiplexed metabolomics approach based on nuclear magnetic resonance (NMR) and solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS) was applied for authentic tongkat ali extract vs some commercial products quality control analysis. NMR metabolite fingerprinting identified 15 major metabolites mostly ascribed to sugars, organic and fatty acids in addition to quassinoids and cinnamates. Following that, multivariate analysis as the non-supervised principal component analysis (PCA) and supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied revealing that differences were related to fatty acids and 13,21-dihydroeurycomanone being more enriched in authentic root. SPME-GC-MS aroma profiling led to the identification of 59 volatiles belonging mainly to alcohols, aldehydes/furans and sesquiterpene hydrocarbons. Results revealed that aroma of commercial products showed relatively different profiles being rich in vanillin, maltol, and methyl octanoate. Whereas E-cinnamaldehyde, endo-borneol, terpinen-4-ol, and benzaldehyde were more associated to the authentic product. The present study shed the light for the potential of metabolomics in authentication and standardization of tongkat ali and identification of its true flavor composition.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, P.B. 11562, Kasr el Aini St., Cairo, Egypt.
| |
Collapse
|
27
|
He X, Zheng Y, Tian C, Wen T, Yang T, Yu J, Fang X, Fan C, Liu J, Yu L. Quassinoids from Eurycoma longifolia with antiviral activities by inhibiting dengue virus replication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154650. [PMID: 36649670 DOI: 10.1016/j.phymed.2023.154650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Dengue caused by dengue virus (DENV) spreads rapidly around the world. However, there are no worldwide licensed vaccines or specific antivirals to combat DENV infection. Quassinoids are the most characteristic components of Eurycoma longifolia, which have been reported to display a variety of biological activities. However, whether quassinoids exert anti-DENV activities remains unknown. PURPOSE To test the quassinoids of E. longifolia for their activity against DENV and to clarify the potential mechanisms. METHODS The quassinoids from E. longifolia were isolated by chromatography techniques, and their chemical structures were elucidated by spectroscopic analysis. The anti-DENV activities of quassinoids on baby hamster kidney cells BHK-21 were determined by lactate dehydrogenase (LDH) assay. The synthesis of progeny virus was measured by plaque assay. The expression levels of envelope protein (E) and non-structural protein 1 (NS1) were evaluated by qRT-PCR, Western blot and immunofluorescence assays. Molecular docking was used to screen the potential targets of the most active quassinoid against DENV-2, and surface plasmon resonance analysis was employed to confirm the direct binding between the most active quassinoid and potential target. RESULTS Twenty-four quassinoids, including three new quassinoids (1 - 3), were isolated from the ethanol extract of E. longifolia. Quassinoids 4, 5, 9, 11, 12, 15, 16, 17, 19 and 20 significantly reduced the LDH release at the stages of viral binding and entry or intracellular replication. Among them, 19 (6α-hydroxyeurycomalactone, 6α-HEL) exhibited the best anti-DENV-2 activities with an EC50 value of 0.39 ± 0.02 μM. Further experiments suggested that 6α-HEL remarkably inhibited progeny virus synthesis and mRNA and protein expression levels of E and NS1 of DENV-2. Time-of-drug-addition assay suggested that 6α-HEL inhibited intracellular replication of DENV-2 at an early stage. Moreover, 6α-HEL was shown to interact with NS5-RdRp domain at a binding affinity of -8.15 kcal/mol. SPR assay further verified 6α-HEL bound to RdRp protein with an equilibrium dissociation constant of 1.49 × 10-7 M. CONCLUSION Ten quassinoids from E. longifolia showed anti-DENV activities at processes of virus binding and entry or intracellular replication. The most active quassinoid 6α-HEL exerts the anti-DENV-2 activities at intracellular replication stage by directly targeting the NS5-RdRp protein. These results suggest that 6α-HEL could be a promising candidate for the treatment of DENV-2 infection.
Collapse
Affiliation(s)
- Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China
| | - Yuanru Zheng
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China
| | - Chunyang Tian
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China
| | - Ting Wen
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tangjia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China
| | - Xiaochuan Fang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China
| | - Chunlin Fan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China.
| |
Collapse
|
28
|
Farag MA, Ajayi AO, Taleb M, Wang K, Ayoub IM. A Multifaceted Review of Eurycoma longifolia Nutraceutical Bioactives: Production, Extraction, and Analysis in Drugs and Biofluids. ACS OMEGA 2023; 8:1838-1850. [PMID: 36687023 PMCID: PMC9850716 DOI: 10.1021/acsomega.2c06340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Eurycoma longifolia Jack (known as Tongkat Ali) is a popular traditional herbal medicine, native to southeast Asia, that is well-known for its aphrodisiac as well as several other effects. Mostly, the root extract of E. longifolia is used as a folk medicine for sexual dysfunction, aging, anxiety, exercise recovery, fever, increased energy, and osteoporosis. These health effects led to the inclusion of E. longifolia in dietary supplements, particularly for bodybuilding purposes. These effects are mediated by a myriad of bioactive compounds belonging to quassinoids, canthin-6-one alkaloids, tirucallane triterpenes, squalene derivatives, and bioactive steroids. Among these phytoconstituents, quassinoids account for a large portion of E. longifolia root phytochemicals. Of these ingredients, eurycomanone, the major quassinoid in E. longifolia extract, accounts to a large extent for its health effects. This review capitalizes on the novel trends toward the production of E. longifolia bioactives using biotechnology and extraction optimization for best yields and recovery. Alongside, novel extraction methods, i.e., green techniques, of E. longifolia bioactives are described. Further, an overview of the different analytical approaches for the quality control assessment of E. longifolia plant material and nutraceuticals is presented alongside studies in body fluids to determine its pharmacokinetics and efficacy level. Such a compilation of analytical methods will help ensure safety and efficacy of that major drug.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Abiodun O. Ajayi
- Chemistry
Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohammed Taleb
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University-Gaza, P.O. Box 1277, Gaza 79702, Palestine
| | - Kai Wang
- Institute
of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China, 100093
| | - Iriny M. Ayoub
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, Abbassia Cairo 11566, Egypt
| |
Collapse
|
29
|
Chaingam J, Choonong R, Juengwatanatrakul T, Kanchanapoom T, Putalun W, Yusakul G. Evaluation of anti-inflammatory properties of Eurycoma longifolia Jack and Eurycoma harmandiana Pierre in vitro cultures and their constituents. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jiranan Chaingam
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
30
|
Potential use of Tinospora cordifolia as a herbal supplement in dairy animals: a review. Trop Anim Health Prod 2022; 55:4. [PMID: 36502455 DOI: 10.1007/s11250-022-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Supplementation is an integral part of modern dairy-feeding practices which mainly emphasise on higher production. Different supplements have been utilized by the farmers according to the need and action of supplements. Tinospora cordifolia (TC) is one such herbal supplement which can be utilized to feed dairy animals either alone or in combination with other supplements. TC is a herb found in tropical countries and having number of medicinal properties. Beneficial health effects of TC include immunostimulation, protection against inflammation and bacterial action, hepatoprotection, antioxidant and antineoplastic effects. Available studies on TC supplementation in dairy animals have shown a positive effect on health, body parameters and production performance. Supplementing TC is economically feasible, and it can be adopted by farmers as it helps in improving their net income. However, more research is needed in the field of dairy animals to explore the full potential of this herb. This review is written with the objective of highlighting the possibilities of using TC in dairy animal rations and promoting research in the concerned field to fill the gaps in knowledge. Thorough knowledge about TC and its effect in dairy animals can add a new concept to the supplementation process and developments of dairy rations.
Collapse
|
31
|
Lee EL, Barnes J. Tongkat Ali/Long Jack. J Prim Health Care 2022; 14:380-382. [PMID: 36592777 DOI: 10.1071/hc22143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- E Lyn Lee
- School of Pharmacy, University of Auckland, New Zealand
| | - Joanne Barnes
- School of Pharmacy, University of Auckland, New Zealand
| |
Collapse
|
32
|
Miyazaki K, Itoh N, Saiki P, Kuroki Y. Supplementation with Eurycoma longifolia Extract Modulates Diurnal Body Temperature Fluctuation and Sleep Rhythm in Mice. J Nutr Sci Vitaminol (Tokyo) 2022; 68:342-347. [PMID: 36047106 DOI: 10.3177/jnsv.68.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Eurycoma longifolia (Tongkat Ali; TA) is a traditional medicinal herb, commonly known as Malaysian ginseng. The root tea has been traditionally applied to treat fevers, aches, sexual dysfunction and other ailments. We evaluated the effects of TA extract supplementation on diurnal core body temperature (BT) and sleep architecture in model mice. Dietary supplementation with TA extract for 4 wk resulted in significantly and moderately reduced BT during the rest and active phases, respectively. A high dose delayed the onset of BT elevation at the start of the active phase, indicating that the effect was dose-dependent. Electroencephalography findings revealed that dietary supplementation with TA extract changed sleep rhythms and delta power during the inactive phase of NREM sleep, indicating improved sleep quality. Our findings suggested that dietary TA extract could be a promising natural aid that alleviates sleep problems via thermoregulation.
Collapse
Affiliation(s)
- Koyomi Miyazaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Nanako Itoh
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Papawee Saiki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
| | | |
Collapse
|
33
|
Pham TV, Ngo HPT, Thi Thanh Dang N, Khoa Nguyen H, Thi Nhu Hoang H, Pham T. Volatile Constituents and Anti-Osteoporotic Activity of the n-Hexane Extract From Homalomena gigantea Rhizome. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221125433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study analyzed the chemical composition and anti-osteoporosis activity of the n-hexane extract of Homalomena gigantea rhizome. Sixty compounds, representing 92.0% of the extract, were identified by gas chromatography-mass spectrometry. Linalool (15.3%), oplopanone (9.8%), ( Ε)-α-atlantone (5.6%), khusinol acetate (5.4%), bullatantriol (4.3%), and β-sitosterol (3.8%) were the main constituents. The anti-osteoporotic activity of the n-hexane extract was determined by measuring alkaline phosphatase (ALP) activity, collagen content, and the mineralization of MC3T3-E1 cells. At concentrations of 4.0 and 20.0 µg/mL, the n-hexane extract increased ALP activity by 8.2% and 23.7%, and increased collagen secretion by MC3T3-E1 cells by 114.9% and 112.4%, respectively. At 4 µg/mL, the extract significantly promoted the mineralization of MC3T3-E1 cells by as much as 133.2% compared to the negative control. These results suggested that H. gigantea rhizome contains a natural anti-osteoporotic compound.
Collapse
Affiliation(s)
- Ty Viet Pham
- University of Education, Hue University, Hue, Vietnam
| | | | | | - Hien Khoa Nguyen
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Hue City, Vietnam
| | - Hanh Thi Nhu Hoang
- University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Thanh Pham
- University of Education, Hue University, Hue, Vietnam
| |
Collapse
|
34
|
Al Zarzour RH, Kamarulzaman EE, Saqallah FG, Zakaria F, Asif M, Abdul Razak KN. Medicinal plants' proposed nanocomposites for the management of endocrine disorders. Heliyon 2022; 8:e10665. [PMID: 36185142 PMCID: PMC9520215 DOI: 10.1016/j.heliyon.2022.e10665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/07/2022] [Accepted: 09/09/2022] [Indexed: 01/14/2023] Open
Abstract
Extensive attention has been focused on herbal medicine for the treatment of different endocrine disorders. In fact, compelling scientific evidence indicates that natural compounds might act as endocrine modulators by mimicking, stimulating, or inhibiting the actions of different hormones, such as thyroid, sex, steroidal, and glucose regulating hormones. These potentials might be effectively employed for therapeutic purposes related to the endocrine system as novel complementary choices. Nevertheless, despite the remarkable therapeutic effects, inadequate targeting efficiency and low aqueous solubility of the bioactive components are still essential challenges in their clinical accreditation. On the other hand, nanotechnology has pushed the wheels of combining inorganic nanoparticles with biological structures of medicinal bioactive compounds as one of the utmost exciting fields of research. Nanoparticle conjugations create an inclusive array of applications that provide greater compliance, higher bioavailability, and lower dosage. This can safeguard the global availability of these wealthy natural sources, regardless of their biological occurrence. This review inspects future challenges of medicinal plants in various endocrine disorders for safe and alternative treatments with examples of their nanoparticle formulations.
Collapse
Affiliation(s)
- Raghdaa Hamdan Al Zarzour
- Discipline of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Arab International University, Daraa Highway, Ghabagheb Syria
| | - Ezatul Ezleen Kamarulzaman
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fadi G. Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fauziahanim Zakaria
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Khairul Niza Abdul Razak
- Discipline of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
35
|
Leisegang K, Finelli R, Sikka SC, Panner Selvam MK. Eurycoma longifolia (Jack) Improves Serum Total Testosterone in Men: A Systematic Review and Meta-Analysis of Clinical Trials. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1047. [PMID: 36013514 PMCID: PMC9415500 DOI: 10.3390/medicina58081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Background and Objectives: Male hypogonadism is a clinical disorder characterized by reduced serum testosterone in men. Although treatment using herbal medicines, including Eurycoma longifolia, has been investigated, the benefits remain unclear. This study aims to investigate the efficacy of E. longifolia as a sole intervention to increase testosterone levels in males. Materials and Methods: We conducted a systematic review and meta-analysis of randomized clinical trials (RCTs) according to the PRISMA guidelines. Relevant articles were retrieved from the databases PubMed, Scopus, Web of Science, Cochrane, Ovid/Embase, and Google Scholar. Results: After literature screening, a total of nine studies was included in the systematic review. Five RCTs were included in the meta-analysis. A significant improvement in total testosterone levels after E. longifolia treatment was mostly reported in both healthy volunteers and hypogonadal men. The random model effect revealed a significant increase (SMD = 1.352, 95% CI 0.565 to 2.138, p = 0.001) in the total testosterone levels in men receiving E. longifolia supplementation, which was confirmed in the hypogonadism subgroup. Conclusions: This systematic review and meta-analysis of the literature supports the possible use of E. longifolia supplementation for enhancing testosterone production. Although more research is required before its use in clinical practice, this may represent a safe and promising therapeutic option, particularly in hypogonadal men.
Collapse
Affiliation(s)
- Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, Bellville, Cape Town 7535, South Africa;
| | | | - Suresh C. Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | | |
Collapse
|
36
|
A Quassinoid Diterpenoid Eurycomanone from Eurycoma longifolia Jack Exerts Anti-Cancer Effect through Autophagy Inhibition. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144398. [PMID: 35889271 PMCID: PMC9324291 DOI: 10.3390/molecules27144398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
Eurycomanone (EN) is one of the representative quassinoid diterpenoids from roots of Eurycoma longifolia Jack, a natural medicine that is widely distributed in Southeast Asia. Previous studies showed that EN induces cancer cell apoptosis and exhibits anti-cancer activity, but the molecular mechanism of EN against cancer has still not been elucidated. In this study, we examined the regulatory effect of EN on autophagy to reveal the mechanism of EN-mediated colon cancer growth inhibition. First, we found that EN is able to inhibit colon cancer cell proliferation and colony formation. The angiogenesis level in cancer cells was inhibited as well. Next, the treatment of EN led to the suppression of autophagy, which was characterized by the downregulation of the LC3-II level and the formation of GFP-LC3 puncta under EN treatment in colon cancer. Moreover, we revealed that the mTOR signaling pathway was activated by EN in a time- and concentration-dependent manner. Finally, autophagy induction protected colon cancer cells from EN treatment, suggesting that autophagy improves cell survival. Taken together, our findings revealed the mechanism of EN against colon cancer through inhibiting autophagy and angiogenesis in colon cancer, supporting that the autophagy inhibitor EN could be developed to be a novel anti-cancer agent.
Collapse
|
37
|
A Novel Herbal Extract Blend Product Prevents Particulate Matters-Induced Inflammation by Improving Gut Microbiota and Maintaining the Integrity of the Intestinal Barrier. Nutrients 2022; 14:nu14102010. [PMID: 35631153 PMCID: PMC9145798 DOI: 10.3390/nu14102010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 02/05/2023] Open
Abstract
Air pollutants of PM2.5 can alter the composition of gut microbiota and lead to inflammation in the lung and gastrointestinal tract. The aim of this study was to evaluate the protective effect of a novel herbal extract blend, FC, composed of Lonicera japonica extract, Momordica grosvenori extract, and broccoli seed extract, on PM2.5-induced inflammation in the respiratory and intestinal tract. A549 cells and THP-1 cells, as well as C57BL/6 mice, were stimulated with PM2.5 to establish in vitro and in vivo exposure models. The models were treated with or without FC. The expression of inflammatory cytokines and tight junction proteins were studied. Proteomic analysis was performed to elucidate mechanisms. Mouse feces were collected for gut microbiota analysis. FC was shown to modulate the upregulation of pro-inflammatory cytokines mRNA expression in A549 and THP-1 cells and downregulated tight junction proteins mRNA expression in A549 cells due to PM2.5 stimulation. In animal models, the decreased expression of the anti-inflammatory factor il-10, tight junction protein ZO-1, and the elevated expression of COX-2 induced by PM2.5 were improved by FC intervention, which may be associated with zo-1 and cox-2 signaling pathways. In addition, FC was shown to improve the gut microbiota by increasing the abundance of beneficial bacteria.
Collapse
|
38
|
WANG XS, HU MX, GUAN QX, MEN LH, LIU ZY. Metabolomics analysis reveals the renal protective effect of Panax ginseng C. A. Mey in type 1 diabetic rats. Chin J Nat Med 2022; 20:378-386. [DOI: 10.1016/s1875-5364(22)60175-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 12/22/2022]
|
39
|
Al-Bayati MRY, Hussein YF, Faisal GG, Fuaat AA, Affandi KA, Abidin MAZ. The Effect of Eurycoma longifolia Jack Tongkat Ali Hydrogel on Wound Contraction and Re-Epithelialization in In Vivo Excisional Wound Model. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Wound management is one of the significant health problems throughout the world. Medicinal plants have been used widely in wound management. Eurycoma longifolia Jack which is known as Tongkat Ali (TA) is a tropical medicinal plant in South East Asian countries.
AIM: The aim of the study was to investigate the effect of (TA) hydrogel on wound contraction and re-epithelialization in excisional wound model in rats.
METHODS: Twenty male Sprague Dawley rats were divided into four groups each group contained five rats (n = 5). Animal treatment groups are formed as: Untreated (−ve) control, Hydrocyn® aqua gel (+ve), vehicle hydrogel, and (TA) hydrogel. A full-thickness circular excisional wound was created on the dorsal back of each rat. The wounded area was measured and photographed on days 3, 6, 9, 12, 15, and 18 post wounding to determine the percentage of wound contraction and re-epithelialization.
RESULTS: (TA) hydrogel showed significant increase in the percentage of wound contraction by 43.38% compared with the other groups (p = 0.032, p < 0.050) during the first interval (inflammatory phase). Although in the later healing stages (proliferative and remodeling) and re-epithelialization, our test group (TA) hydrogel did not show statistically difference with the other groups yet it was comparable to medically certified wound healing agent.
CONCLUSION: (TA) hydrogel significantly accelerated the wound healing process during the early stage, the inflammatory stage. Whereas during the later healing stages and re-epithelialization, it showed almost the same effect of Hydrocyn® aqua gel.
Collapse
|
40
|
Yunos NM, Amin NDM, Jauri MH, Ling SK, Hassan NH, Sallehudin NJ. The In Vitro Anti-Cancer Activities and Mechanisms of Action of 9-Methoxycanthin-6-one from Eurycoma longifolia in Selected Cancer Cell Lines. Molecules 2022; 27:molecules27030585. [PMID: 35163852 PMCID: PMC8838174 DOI: 10.3390/molecules27030585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
An alkaloid compound from the hairy root culture of Eurycoma longifolia has been isolated and characterised as 9-methoxycanthin-6-one. The aims of these studies were to investigate the in vitro anti-cancer activities of 9-methoxycanthin-6-one against ovarian cancer (A2780, SKOV-3), breast cancer (MCF-7), colorectal cancer (HT29), skin cancer (A375) and cervical cancer (HeLa) cell lines by using a Sulphorhodamine B assay, and to evaluate the mechanisms of action of 9-methoxycanthin-6-one via the Hoechst 33342 assay and proteomics approach. The results had shown that 9-methoxycanthin-6-one gave IC50 values of 4.04 ± 0.36 µM, 5.80 ± 0.40 µM, 15.09 ± 0.99 µM, 3.79 ± 0.069 µM, 5.71 ± 0.20 µM and 4.30 ± 0.27 µM when tested in A2780, SKOV-3, MCF-7, HT-29, A375 and HeLa cell lines, respectively. It was found that 9-methoxycanthin-6-one induced apoptosis in a concentration dependent manner when analysed via the Hoechst 33342 assay. 9-methoxycanthine-6-one were found to affect the expressions of apoptotic-related proteins, that were proteins pyruvate kinase (PKM), annexin A2 (ANXA2), galectin 3 (LGAL3), heterogeneous nuclear ribonucleoprotein A1 (HNRNP1A1), peroxiredoxin 3 (PRDX3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the differential analysis of 2-DE profiles between treated and non-treated 9-methoxycanthine-6-one. Proteins such as acetyl-CoA acyltransferase 2 (ACAA2), aldehyde dehydrogenase 1 (ALDH1A1), capping protein (CAPG), eukaryotic translation elongation factor 1 (EEF1A1), malate dehydrogenase 2 (MDH2), purine nucleoside phosphorylase (PNP), and triosephosphate isomerase 1 (TPI1) were also identified to be associated with A2780 cell death induced by 9-methoxycanthine-6-one. These findings may provide a new insight on the mechanisms of action of 9-methoxycanthin-6-one in exerting its anti-cancer effects in vitro.
Collapse
Affiliation(s)
- Nurhanan Murni Yunos
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
- Correspondence: ; Tel.: +60-3627-97659
| | - Nor Datiakma Mat Amin
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
| | - Muhammad Haffiz Jauri
- Phytochemistry Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (M.H.J.); (S.K.L.)
| | - Sui Kiong Ling
- Phytochemistry Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (M.H.J.); (S.K.L.)
| | - Nor Hasnida Hassan
- Biotechnology Programme, Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia;
| | - Nor Jannah Sallehudin
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
| |
Collapse
|
41
|
Chua SN, Berg KC. Regulating food labels in East Asia: A tale of two systems: Commentary on Negowetti et al. (2021). Int J Eat Disord 2022; 55:55-58. [PMID: 34562037 DOI: 10.1002/eat.23618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
The traditional role of food in promoting health and preventing illness is integral to many Asian cultures. This commentary provides a brief overview of health-related food products regulation in Asia. We cover regulations initiated to promote health and prevent chronic diseases and regulations of traditional medicine food products. We focus on specific regulations in Japan and Singapore that encourage the consumption of certain foods to promote population health and prevent chronic diseases. We also examine the complexity and difficulty of regulating traditional medicine food products in Malaysia and Singapore, where these products are important not just for health but also in promoting cultural traditions.
Collapse
Affiliation(s)
- Sook Ning Chua
- School of Biological Sciences, Nanyang Technological University, Singapore.,Relate Mental Health Malaysia, Kuala Lumpur, Malaysia
| | | |
Collapse
|
42
|
Eiden C, Laureau M, Richeval C, Arnal T, Ghomrani H, Peyrière H, Gaulier JM, Sebbane M. Acute cardiovascular disorders related to aphrodisiac honey ("Jaguar power") consumption: Warning of unintentional exposure to sildenafil. Rev Med Interne 2021; 43:68-69. [PMID: 34895766 DOI: 10.1016/j.revmed.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022]
Affiliation(s)
- C Eiden
- Service de Pharmacologie Médicale et Toxicologie, Hôpital Lapeyronie, 371, avenue du Doyen Gaston-Giraud, 34295 Montpellier cedex 5, France.
| | - M Laureau
- Département des Urgences adultes, Centre Hospitalier Universitaire, Montpellier, France
| | - C Richeval
- CHU Lille, Unité Fonctionnelle de Toxicologie, 59000 Lille, France
| | - T Arnal
- Département des Urgences adultes, Centre Hospitalier Universitaire, Montpellier, France
| | - H Ghomrani
- Département des Urgences adultes, Centre Hospitalier Universitaire, Montpellier, France
| | - H Peyrière
- Service de Pharmacologie Médicale et Toxicologie, Hôpital Lapeyronie, 371, avenue du Doyen Gaston-Giraud, 34295 Montpellier cedex 5, France
| | - J-M Gaulier
- CHU Lille, Unité Fonctionnelle de Toxicologie, 59000 Lille, France
| | - M Sebbane
- Département des Urgences adultes, Centre Hospitalier Universitaire, Montpellier, France
| |
Collapse
|
43
|
Fatima S, Kumari A, Dwivedi VP. Advances in adjunct therapy against tuberculosis: Deciphering the emerging role of phytochemicals. MedComm (Beijing) 2021; 2:494-513. [PMID: 34977867 PMCID: PMC8706769 DOI: 10.1002/mco2.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Eastern countries are a major source of medicinal plants, which set up a rich source of ethnopharmacologically known medicines used in the treatment of various diseases. These traditional medicines have been known as complementary, alternative, or nonconventional therapy across globe for ages. Tuberculosis (TB) poses a huge global burden and leads to maximum number of deaths due to an infectious agent. Treatment of TB using Directly Observed Treatment Short-course (DOTS) therapy comprises multiple antibiotics is quite lengthy and causes serious side-effects in different organs. The length of the TB treatment leads to withdrawal from the patients, which paves the way for the emergence of drug resistance in the bacterial population. These concerns related to therapy need serious and immediate interventions. Traditional medicines using phytochemicals has shown to provide tremendous potential in TB treatment, mainly in the eradication of Mycobacterium tuberculosis (M.tb), increasing natural immunity, and managing the side effects of anti-TB drugs. This review describes the antituberculosis potential of selected ethnopharmacologically important phytochemicals as potential immune-modulator and as an adjunct-therapy in TB. This review will be a useful reference for researchers working on ethnopharmacology and will open the door for the discovery of novel agents as an adjunct-therapy to tuberculosis.
Collapse
Affiliation(s)
- Samreen Fatima
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Anjna Kumari
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ved Prakash Dwivedi
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
44
|
Demeke CA, Woldeyohanins AE, Kifle ZD. Herbal medicine use for the management of COVID-19: A review article. Metabol Open 2021; 12:100141. [PMID: 34693242 PMCID: PMC8519661 DOI: 10.1016/j.metop.2021.100141] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause pandemic of coronavirus disease 2019 (COVID-19). For many thousands of years, herbal products and dietary plants have been prescribed for various diseases by traditional healers. Thus, the aim of this review is to present main herbal products, their source, characteristics, and potential antiviral actions concerning COVID-19. Publications on herbal products related to antiviral effects were searched from different databases, such as Web of Science, Google Scholar, Medline, Scopus, and PubMed, until August 2021, using English key terms. According to different studies, there are so many important medicinal plants with antiviral activity, which can be used for viral infections or can be prescribed as supportive treatment. lack of information on the safety profile and amount of dose for different diseases is some of the limitations of medicinal plants. herbal medicine can interfere with COVID-19 pathogenesis by inhibiting SARS-CoV-2 replication and entry to host cells. Some of the antiviral medicinal plant species are citrus Spp., orange (C. Sinensis), Allium sativum, Allium cepa, Mentha piperita, and nigella sativa are the most desirable herbal drink or fruit that can introduce effective adjuvant components in COVID-19 management.
Collapse
Affiliation(s)
- Chilot Abiyu Demeke
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Alem Endashaw Woldeyohanins
- Department of Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
45
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Maradona MP, Marchelli R, Neuhäeuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Matijević L, Knutsen HK. Safety of Eurycoma longifolia (Tongkat Ali) root extract as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2021; 19:e06937. [PMID: 34987621 PMCID: PMC8693240 DOI: 10.2903/j.efsa.2021.6937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on Eurycoma longifolia (Tongkat Ali) root extract as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is standardised water extract prepared from the dried ground root chips of Tongkat Ali (Eurycoma longifolia Jack) and proposed by the applicant to be used as food supplement in amounts up to 200 mg/day. The target population is the adult population, except pregnant and lactating women. The characteristic components of the NF are glycosaponins (40-65%) and eurycomanone (0.8-1.5%). It can also contain canthin-6-one alkaloids and isoscopoletin (coumarin). The NF has been present in various international markets since 2009. The Panel notes positive results from the submitted in vitro chromosome aberration test, which indicates clastogenic properties of the NF. In the requested follow-up in vivo mammalian alkaline comet assay, the NF induced positive results at the highest dose tested (2,000 mg/kg body weight (bw)) at the tissues of the first site of contact (stomach and duodenum). Histopathological evaluation of the tested tissues indicated that the positive results of the comet assay were rather due to genotoxicity than cytotoxicity. Taken together, the Panel concludes that the NF has the potential to induce DNA damage, which is of concern, particularly locally for tissues that represent first sites of contact. The Panel concludes that the safety of NF has not been established under any condition of use.
Collapse
|
46
|
Gichuki DK, Li Q, Hou Y, Liu Y, Ma M, Zhou H, Xu C, Zhu Z, Wang L, Musila FM, Wang Q, Xin H. Characterization of Flavonoids and Transcripts Involved in Their Biosynthesis in Different Organs of Cissus rotundifolia Lam. Metabolites 2021; 11:metabo11110741. [PMID: 34822399 PMCID: PMC8621200 DOI: 10.3390/metabo11110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Cissus rotundifolia Lam. is used as a medicinal herb and vegetable. Flavonoids are the major components for the therapeutic effects. However, flavonoids constituents and expression profiles of related genes in C. rotundifolia organs are unknown. Colorimetric assay showed the highest flavonoid concentration in roots compared to the stem and leaf. Widely target-based metabolome analysis allowed tentative identification of 199 compounds in three organs. Flavonols and flavones were the dominant flavonoids subclasses. Among the metabolites, 171 were common in the three organs. Unique accumulation profile was observed in the root while the stem and leaf exhibited relatively similar patterns. In the root, six unique compounds (jaceosidin, licoagrochalcone D, 8-prenylkaempferol, hesperetin 7-O-(6″malonyl) glucoside, aureusidin, apigenin-4′-O-rhamnoside) that are used for medicinal purposes were detected. In total, 18,427 expressed genes were identified from transcriptome of the three organs covering about 60% of annotated genes in C. rotundifolia genome. Fourteen gene families, including 52 members involved in the main pathway of flavonoids biosynthesis, were identified. Their expression could be found in at least one organ. Most of the genes were highly expressed in roots compared to other organs, coinciding with the metabolites profile. The findings provide fundamental data for exploration of metabolites biosynthesis in C. rotundifolia and diversification of parts used for medicinal purposes.
Collapse
Affiliation(s)
- Duncan Kiragu Gichuki
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyun Li
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujun Hou
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanshuang Liu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxue Ma
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Huimin Zhou
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Xu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhenfei Zhu
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Fredrick Mutie Musila
- School of Biological and Life Sciences, Technical University of Kenya, Nairobi 52428-00200, Kenya;
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Haiping Xin
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.K.G.); (Q.L.); (Y.H.); (Y.L.); (M.M.); (H.Z.); (C.X.); (Z.Z.); (L.W.); (Q.W.)
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: ; Tel.: +86-27-87700880
| |
Collapse
|
47
|
Yang WQ, Tang W, Huang XJ, Song JG, Li YY, Xiong Y, Fan CL, Wu ZL, Wang Y, Ye WC. Quassinoids from the Roots of Eurycoma longifolia and Their Anti-Proliferation Activities. Molecules 2021; 26:molecules26195939. [PMID: 34641483 PMCID: PMC8512324 DOI: 10.3390/molecules26195939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
A phytochemical investigation on the roots of medicinal plant Eurycoma longifolia resulted in the isolation of 10 new highly oxygenated C20 quassinoids longifolactones G‒P (1–10), along with four known ones (11–14). Their chemical structures and absolute configurations were unambiguously elucidated on the basis of comprehensive spectroscopic analysis and X-ray crystallographic data. Notably, compound 1 is a rare pentacyclic C20 quassinoid featuring a densely functionalized 2,5-dioxatricyclo[5.2.2.04,8]undecane core. Compound 4 represents the first example of quassinoids containing a 14,15-epoxy functionality, and 7 features an unusual α-oriented hydroxyl group at C-14. All isolated compounds were evaluated for their anti-proliferation activities on human leukemia cells. Among the isolates, compounds 5, 12, 13, and 14 potently inhibited the in vitro proliferation of K562 and HL-60 cells with IC50 values ranging from 2.90 to 8.20 μM.
Collapse
Affiliation(s)
- Wei-Qun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jian-Guo Song
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yue-Yue Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yu Xiong
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chun-Lin Fan
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhen-Long Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Correspondence: (Z.-L.W.); (Y.W.); Tel.: +86-20-8522-1559 (Y.W.)
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Correspondence: (Z.-L.W.); (Y.W.); Tel.: +86-20-8522-1559 (Y.W.)
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.T.); (X.-J.H.); (J.-G.S.); (Y.-Y.L.); (Y.X.); (C.-L.F.); (W.-C.Y.)
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
48
|
Lee J, Gong YX, Xie DP, Jeong H, Seo H, Kim J, Park YH, Sun HN, Kwon T. Anticancer Effect of ERM210 on Liver Cancer Cells Through ROS/Mitochondria-dependent Apoptosis Signaling Pathways. In Vivo 2021; 35:2599-2608. [PMID: 34410947 DOI: 10.21873/invivo.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIM Asian Traditional medicines are renowned for their antitumor properties and are efficacious in the clinical treatment of various cancer types. ERM210 is a Korean traditional medicine comprising nine types of medicinal plants. In the present study, we examined the pro-apoptotic effect and molecular mechanisms of the effects of ERM210 on HepG2 liver cancer cells. MATERIALS AND METHODS The cytotoxicity of ERM210 on HepG2 cells was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and wound-healing assays, and apoptosis and signaling pathways by fluorescence microscopy flow cytometry and western blotting. RESULTS ERM210 significantly impaired HepG2 cell viability and enhanced mitochondria-dependent cellular apoptosis in a time- and dose-dependent manner by up-regulating the expression of caspases 3, 7 and 9, and of BCL2 apoptosis regulator (BCL2)-associated X, apoptosis regulator (BAX) proteins, whilst down-regulating that of BCL2 protein. Furthermore, ERM210 treatment increased accumulation of cellular and mitochondrial reactive oxygen species (ROS) and significantly inhibited cell migration. Additionally, all these phenomena were reversed by treating with the ROS scavenger N-acetylcysteine. The analysis of signaling proteins revealed that ERM210 significantly up-regulated the phosphorylation of ROS-dependent mitogen-activated protein kinases (p38, extracellular-regulated kinase, and c-Jun N-terminal kinase in HepG2 liver cancer cells. CONCLUSION ERM210 exerts anticancer effects in HepG2 liver cancer cells by up-regulating ROS/mitochondria-dependent apoptosis signaling, providing new insight into the possibility of employing this traditional medicine for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Jaihyung Lee
- Epigenetics Drug Discovery Center, Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Yi-Xi Gong
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Dan-Ping Xie
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Hyunjeong Jeong
- Epigenetics Drug Discovery Center, Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Hoyoung Seo
- Epigenetics Drug Discovery Center, Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Jihwan Kim
- Korean Convergence Medicine Center, 100 years Oriental Medical Clinic, Seoul, Republic of Korea
| | - Yang Ho Park
- Evidence-based Medicine Center, Park Yang Ho BRM Institute, Seoul, Republic of Korea
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China;
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| |
Collapse
|
49
|
Chinnappan SM, George A, Pandey P, Narke G, Choudhary YK. Effect of Eurycoma longifolia standardised aqueous root extract-Physta ® on testosterone levels and quality of life in ageing male subjects: a randomised, double-blind, placebo-controlled multicentre study. Food Nutr Res 2021; 65:5647. [PMID: 34262417 PMCID: PMC8254464 DOI: 10.29219/fnr.v65.5647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Background Low testosterone levels cause physiological changes that compromise the quality of life in ageing men. A standardised water extract from the root of Eurycoma longifolia (EL), known as Physta®, is known to increase testosterone levels. Objective To evaluate the safety and efficacy of Physta® in improving the testosterone levels and quality of life in ageing male subjects. Design This randomised, double-blind, placebo-controlled study enrolled 105 male subjects aged 50-70 years with a testosterone level <300 ng/dL, BMI ≥ 18 and ≤30.0 kg/m2. The subjects were given either Physta® 100 mg, 200 mg or placebo daily for 12 weeks. The primary endpoints were changes in serum total and free testosterone levels. The secondary endpoints included changes in the level of sex hormone-binding globulin (SHBG), dihydroepiandrosterone (DHEA), glycated haemoglobin (HbA1c), insulin-like growth factor-1 (IGF-1), thyroid function tests (T3, T4, TSH and Free T3) and cortisol. Changes in Ageing Male Symptoms (AMS) score, Fatigue Severity Scale (FSS) score and muscle strength are other secondary endpoints. The safety of the intervention products was measured by complete blood count, lipid profile, liver and renal function tests. Results There was a significant increase in the total testosterone levels at week 12 (P < 0.05) in the Physta® 100 mg group and at weeks 4 (P < 0.05), 8 (P < 0.01) and 12 (P < 0.001) in the Physta® 200 mg group compared to placebo. No significant between-group differences in free testosterone levels were observed but a significant within-group increase occurred at weeks 4 (P < 0.01), 8 (P < 0.001) and 12 (P < 0.001) in the Physta®100 mg group and at weeks 2 (P < 0.01), 4 (P < 0.01), 8 (P < 0.001) and 12 (P < 0.001) in the Physta® 200 mg group. The AMS and FSS showed significant reduction (P < 0.001) in total scores at all time-points within- and between-group in both Physta® groups. DHEA levels significantly increased (P < 0.05) within-group in both Physta® groups from week 2 onwards. Cortisol levels significantly (P < 0.01) decreased in the Physta® 200 mg group, while muscle strength significantly (P < 0.001) increased in both Physta® groups at week 12 in the within-group comparison. There were no significant changes in SHBG. No safety related clinically relevant changes were observed. Conclusion Supplementation of Physta® at 200 mg was able to increase the serum total testosterone, reduce fatigue and improve the quality of life in ageing men within 2 weeks' time. Trial registration This clinical study has been registered in ctri.nic.in (CTRI/2019/03/017959).
Collapse
Affiliation(s)
| | - Annie George
- Biotropics Malaysia Berhad, Shah Alam, Selangor, Malaysia
| | - Pragya Pandey
- Oriana Hospital, Ravindrapuri, Varanasi, Uttar Pradesh, India
| | - Govinda Narke
- Lokmanya Multi-Specialty Hospital, Pradhikaran, Nigdi, Pune, Maharashtra, India
| | | |
Collapse
|
50
|
Zhang D, Zheng W, Li X, Liang G, Ye N, Liu Y, Li A, Liu X, Zhang R, Cheng J, Yang H, Gong M. Investigation of Obesity-Alleviation Effect of Eurycoma longifolia on Mice Fed with a High-Fat Diet through Metabolomics Revealed Enhanced Decomposition and Inhibition of Accumulation of Lipids. J Proteome Res 2021; 20:2714-2724. [PMID: 33856806 DOI: 10.1021/acs.jproteome.1c00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The metabolic and bioactivity effects of Eurycoma longifolia (Eucalyptus longifolia) in obesity treatment were studied in mice fed with a high-fat diet using a metabolomics approach. Aqueous extracts of E. longifolia were obtained via grinding, dissolving, and freeze-drying. The hepatic steatosis effect of E. longifolia was characterized by hematoxylin and eosin histological staining. External performance of the obesity-alleviation effect was monitored by measuring body and food weight. In addition, the metabolomics analysis of the E. longifolia-mice interaction system was performed using the established platform combining liquid chromatography-tandem mass spectrometry with statistical analysis. The presence and spatial distribution patterns of differential molecules were further evaluated through desorption electrospray ionization-mass spectrometry imaging. The results showed that E. longifolia played a vital role in downregulating lipid accumulation (especially triacylglycerols) and fatty acids biosynthesis together with enhanced lipid decomposition and healing in Bagg albino mice. During such a process, E. longifolia mainly induced metabolomic alterations of amino acids, organic acids, phospholipids, and glycerolipids. Moreover, under the experimental concentrations, E. longifolia induced more fluctuations of aqueous-soluble metabolites in the plasma and lipids in the liver than in the kidneys. This study provides an advanced alternative to traditional E. longifolia-based studies for evaluating the metabolic effects and bioactivity of E. longifolia through metabolomics technology, revealing potential technological improvement and clinical application.
Collapse
Affiliation(s)
- Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Ge Liang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Nan Ye
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Ang Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Rui Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Hao Yang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| |
Collapse
|