1
|
Rial R, González-Durruthy M, Ruso JM. Elucidating the physicochemical interactions between fibrinogen and surfactant mixtures: Implications for pharmaceutical sciences. Int J Biol Macromol 2025; 299:140265. [PMID: 39855519 DOI: 10.1016/j.ijbiomac.2025.140265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
This study investigates the physicochemical interactions between fibrinogen (Fib), a key glycoprotein in blood clotting, and a mixture of two biologically active compounds: dicloxacillin (Diclox), an antibiotic; and cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Understanding these interactions is crucial for enhancing drug delivery systems and optimizing pharmaceutical formulations. Molecular docking simulations and various spectroscopic techniques, including UV-Vis, fluorescence, and circular dichroism, were employed to explore how this mixture affects the structural and functional properties of fibrinogen. The docking results revealed that the binding affinity of the dicloxacillin-CTAB mixture with fibrinogen was stronger than either compound individually, suggesting a synergistic interaction. Spectroscopic analysis confirmed structural modifications in the fibrinogen molecule, notably in α-helix content and aromatic residues, indicating loosening or unfolding in protein conformation upon ligand binding. Thermodynamic analyses further supported that the binding process was driven by hydrophobic interactions and electrostatic forces, contributing to stable complex formation. This study advances the current understanding of protein-ligand interactions by exploring the synergistic effects of a dual-ligand system, a novel approach that has not been comprehensively explored in previous literature. These findings provide new insights into the design of drug delivery systems, offering potential applications for improving the efficacy and safety of pharmaceutical formulations targeting fibrinogen-related conditions.
Collapse
Affiliation(s)
- Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Michael González-Durruthy
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Friedrich LM, Hartke B, Lindhorst TK. Advancing Optoglycomics: Two Orthogonal Azobenzene Glycoside Antennas in One Glycocluster-Synthesis, Switching Cycles, Kinetics and Molecular Dynamics. Chemistry 2024; 30:e202402125. [PMID: 39037782 DOI: 10.1002/chem.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Carbohydrate recognition is essential for numerous biological processes and is governed by various factors within the supramolecular environment of the cell. Photoswitchable glycoconjugates have proven as valuable tools for the investigation and modulation of carbohydrate recognition as they allow to control the relative orientation of sugar ligands by light. In order to advance the possibilities of such an "optoglycomics" approach for the glycosciences, we have synthesized a biantennary glycocluster in which two glycoazobenzene antennas are conjugated to the 3- and 6-position of a scaffold glycoside. Orthogonal isomerization of the photoswitchable units was made possible by the different conjugation of the azobenzene moieties via an oxygen and a sulfur atom, respectively, and the ortho-fluorination of one of the azobenzene units. This design enabled a switching cycle comprising the EE, EZ and the ZZ isomer. This is the first example of an orthogonally photoswitchable glycocluster. The full analysis of its photochromic properties included the investigation of the isolated glycoazobenzene antennas allowing the comparison of the intra- versus the intermolecular orthogonal photoswitching. The kinetics of the thermal relaxation were analyzed in detail. A molecular dynamics study shows that indeed, the relative orientation of the glycoantennas and the distances between the terminal sugar ligands significantly vary depending on the isomeric state, as intended.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christiana Albertina University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| |
Collapse
|
3
|
Murphy PV, Dhara A, Fitzgerald LS, Hever E, Konda S, Mandal K. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chem Soc Rev 2024; 53:9428-9445. [PMID: 39162695 DOI: 10.1039/d4cs00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Glycan recognition by lectins mediates important biological events. This Tutorial Review aims to introduce lectin-ligand interactions and show how these molecular recognition events inspire innovations such as: (i) glycomimetic ligands; (ii) multivalent ligand agonists/antagonists; (iii) ligands for precision delivery of therapies to cells, where therapies include vaccines, siRNA and LYTACs (iv) development of diagnostics. A small number of case studies are selected to demonstrate principles for development of new ligands for applications inspired by knowledge of natural glycan ligand structure and function.
Collapse
Affiliation(s)
- Paul V Murphy
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Ashis Dhara
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
| | - Liam S Fitzgerald
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eoin Hever
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Saidulu Konda
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Kishan Mandal
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| |
Collapse
|
4
|
Abdullayev S, Kadav P, Bandyopadhyay P, Medrano FJ, Rabinovich GA, Dam TK, Romero A, Roy R. Selectively Modified Lactose and N-Acetyllactosamine Analogs at Three Key Positions to Afford Effective Galectin-3 Ligands. Int J Mol Sci 2023; 24:ijms24043718. [PMID: 36835132 PMCID: PMC9962200 DOI: 10.3390/ijms24043718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Galectins constitute a family of galactose-binding lectins overly expressed in the tumor microenvironment as well as in innate and adaptive immune cells, in inflammatory diseases. Lactose ((β-D-galactopyranosyl)-(1→4)-β-D-glucopyranose, Lac) and N-Acetyllactosamine (2-acetamido-2-deoxy-4-O-β-D-galactopyranosyl-D-glucopyranose, LacNAc) have been widely exploited as ligands for a wide range of galectins, sometimes with modest selectivity. Even though several chemical modifications at single positions of the sugar rings have been applied to these ligands, very few examples combined the simultaneous modifications at key positions known to increase both affinity and selectivity. We report herein combined modifications at the anomeric position, C-2, and O-3' of each of the two sugars, resulting in a 3'-O-sulfated LacNAc analog having a Kd of 14.7 µM against human Gal-3 as measured by isothermal titration calorimetry (ITC). This represents a six-fold increase in affinity when compared to methyl β-D-lactoside having a Kd of 91 µM. The three best compounds contained sulfate groups at the O-3' position of the galactoside moieties, which were perfectly in line with the observed highly cationic character of the human Gal-3 binding site shown by the co-crystal of one of the best candidates of the LacNAc series.
Collapse
Affiliation(s)
- Shuay Abdullayev
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada
| | - Priyanka Kadav
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Purnima Bandyopadhyay
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428 Ciudad de Buenos Aires, Argentina
| | - Tarun K. Dam
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Antonio Romero
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, E-28040 Madrid, Spain
- Correspondence: (A.R.); (R.R.)
| | - René Roy
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada
- Correspondence: (A.R.); (R.R.)
| |
Collapse
|
5
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
6
|
Laderach DJ, Compagno D. Inhibition of galectins in cancer: Biological challenges for their clinical application. Front Immunol 2023; 13:1104625. [PMID: 36703969 PMCID: PMC9872792 DOI: 10.3389/fimmu.2022.1104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results. This review summarizes the galectin inhibitors currently being evaluated and discusses some of the biological challenges that need to be addressed to improve these strategies for the benefit of cancer patients.
Collapse
Affiliation(s)
- Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina,*Correspondence: Diego José Laderach,
| | - Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Paramithiotis S. Molecular Targets for Foodborne Pathogenic Bacteria Detection. Pathogens 2023; 12:pathogens12010104. [PMID: 36678453 PMCID: PMC9865778 DOI: 10.3390/pathogens12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The detection of foodborne pathogenic bacteria currently relies on their ability to grow on chemically defined liquid and solid media, which is the essence of the classical microbiological approach. Such procedures are time-consuming and the quality of the result is affected by the selectivity of the media employed. Several alternative strategies based on the detection of molecular markers have been proposed. These markers may be cell constituents, may reside on the cell envelope or may be specific metabolites. Each marker provides specific advantages and, at the same time, suffers from specific limitations. The food matrix and chemical composition, as well as the accompanying microbiota, may also severely compromise detection. The aim of the present review article is to present and critically discuss all available information regarding the molecular targets that have been employed as markers for the detection of foodborne pathogens. Their strengths and limitations, as well as the proposed alleviation strategies, are presented, with particular emphasis on their applicability in real food systems and the challenges that are yet to be effectively addressed.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
8
|
Daher W, Leclercq LD, Johansen MD, Hamela C, Karam J, Trivelli X, Nigou J, Guérardel Y, Kremer L. Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chem Biol 2022; 29:910-924.e7. [PMID: 35358417 DOI: 10.1016/j.chembiol.2022.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Mycobacterium abscessus is an emerging and difficult-to-manage mycobacterial species that exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in transition from S to R and severe lung disease. A structure-activity relationship study was undertaken to decipher the role of GPL glycosylation in morphotype transition and pathogenesis. Deletion of gtf3 uncovered the prominent role of the extra rhamnose in enhancing mannose receptor-mediated internalization of M. abscessus by macrophages. In contrast, the absence of the 6-deoxy-talose and the first rhamnose in mutants lacking gtf1 and gtf2, respectively, affected M abscessus phagocytosis but also resulted in the S-to-R transition. Strikingly, gtf1 and gtf2 mutants displayed a strong propensity to form cords and abscesses in zebrafish, leading to robust and lethal infection. Together, these results underscore the importance and differential contribution of GPL monosaccharides in promoting virulence and infection outcomes.
Collapse
Affiliation(s)
- Wassim Daher
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Matt D Johansen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Claire Hamela
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Jona Karam
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
9
|
Lee ZY, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Targeting cancer via Golgi α-mannosidase II inhibition: How far have we come in developing effective inhibitors? Carbohydr Res 2021; 508:108395. [PMID: 34280804 DOI: 10.1016/j.carres.2021.108395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Dysregulation of glycosylation pathways has been well documented in several types of cancer, where it often participates in cancer development and progression, especially cancer metastasis. Hence, inhibition of glycosidases such as mannosidases can disrupt the biosynthesis of glycans on cell surface glycoproteins and modify their role in carcinogenesis and metastasis. Several reviews have delineated the role of N-glycosylation in cancer, but the data regarding effective inhibitors remains sparse. Golgi α-mannosidase has been an attractive therapeutic target for preventing the formation of ß1,6-branched complex type N-glycans. However, due to its high structural similarity to the broadly specific lysosomal α-mannosidase, undesired co-inhibition occurs and this leads to serious side effects that complicates its potential role as a therapeutic agent. Even though extensive efforts have been geared towards the discovery of effective inhibitors, no breakthrough has been achieved thus far which could allow for their use in clinical settings. Improving the specificity of current inhibitors towards Golgi α-mannosidase is requisite in progressing this class of compounds in cancer chemotherapy. In this review, we highlight a few potent and selective inhibitors discovered up to the present to guide researchers for rational design of further effective inhibitors to overcome the issue of specificity.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
10
|
Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021; 507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Carbohydrate-protein and carbohydrate-carbohydrate interactions are very important for various biological processes. Although the magnitude of these interactions is low compared to that of protein-protein interaction, the magnitude can be boosted by multivalent approach known as glycocluster effect. Nanoparticle platform is one of the best ways to present diverse glycoforms in multivalent manner and thus, the field of glyconanotechnology has emerged as an important field of research considering their potential applications in diagnostics and therapeutics. Considerable advances in the field have been achieved through development of novel techniques, use of diverse metallic and non-metallic cores for better efficacy and application of ever-increasing number of carbohydrate ligands for site-specific interaction. The present review encompasses the recent developments in the area of glyconanotechnology and their future promise as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
11
|
Carneiro DC, Fernandez LG, Monteiro-Cunha JP, Benevides RG, Cunha Lima ST. A patent review of the antimicrobial applications of lectins: Perspectives on therapy of infectious diseases. J Appl Microbiol 2021; 132:841-854. [PMID: 34416098 DOI: 10.1111/jam.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Patents of lectins with antiviral, antibacterial and antifungal applications were searched and reviewed. Lectins are proteins that reversibly bind to specific carbohydrates and have the potential for therapy of infectious diseases as biopharmaceuticals, biomedical tools or in drug design. Given the rising concerns over drug resistance and epidemics, our patent review aims to add information, open horizons and indicate our view of the future perspectives about the antimicrobial applications of lectins. Patents with publications until December 2020 were retrieved from Espacenet using defined search terms and Boolean operators. The documents were used to identify the geographical and temporal distribution of the patents, characterize their lectins, and classify and summarize their antiviral, antibiotic and antifungal applications. Lectins are promising antiviral agents against viruses with epidemics and drug resistance concerns. Mannose-binding lectins were the most suggested antiviral agents since glycans with mannose residues are commonly involved in viral entry mechanisms. They were also immobilized onto surfaces to trap viral particles and inhibit their spread and replication. Many patents described the extraction, isolation, amino acid and nucleotide sequences, and expression vectors of lectins with antibiotic and/or antifungal activities in terms of MIC and IC50 for in vitro assays. The inventions also included lectins as biological tools in nanosensors for antibiotics susceptibility tests, drug-delivery systems for the treatment of resistant bacteria, diagnostics of viral diseases and as a vaccine adjuvant. Although research and development of new medicines is highly expensive, antimicrobial lectins may be worth investments given the emergence of epidemics and drug resistance. For this purpose, less invasive routes should be developed as alternatives to the parenteral administration of biologics. While anti-glycan neutralizing antibodies are difficult to develop due to the low immunogenicity of carbohydrates, lectins can be produced more easily and have a broad-spectrum activity. Protein engineering technologies may make the antimicrobial applications of lectins more successful.
Collapse
Affiliation(s)
- Diego C Carneiro
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luzimar G Fernandez
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Joana P Monteiro-Cunha
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Raquel G Benevides
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Brazil
| | | |
Collapse
|
12
|
Mousavifar L, Abdullayev S, Roy R. Recent Development in the Design of Neoglycoliposomes Bearing Arborescent Architectures. Molecules 2021; 26:molecules26144281. [PMID: 34299556 PMCID: PMC8303545 DOI: 10.3390/molecules26144281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
This brief review highlights systematic progress in the design of synthetic glycolipid (neoglycolipids) analogs evolving from the conventional architectures of natural glycosphingolipids and gangliosides. Given that naturally occurring glycolipids are composed of only one hydrophilic sugar head-group and two hydrophobic lipid tails embedded in the lipid bilayers of the cell membranes, they usually require extraneous lipids (phosphatidylcholine, cholesterol) to confer their stability. In order to obviate the necessity for these additional stabilizing ingredients, recent investigations have merged dendrimer chemistry with that of neoglycolipid syntheses. This singular approach has provided novel glycoarchitectures allowing reconsidering the necessity for the traditional one to two hydrophilic/hydrophobic ratio. An emphasis has been provided in the recent design of modular arborescent neoglycolipid syntheses coined glycodendrimersomes.
Collapse
Affiliation(s)
| | | | - René Roy
- Correspondence: ; Tel.: +1-514-987-3000 (ext. 2546)
| |
Collapse
|
13
|
Redman RL, Krauss IJ. Directed Evolution of 2'-Fluoro-Modified, RNA-Supported Carbohydrate Clusters That Bind Tightly to HIV Antibody 2G12. J Am Chem Soc 2021; 143:8565-8571. [PMID: 34096703 DOI: 10.1021/jacs.1c03194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrate binding proteins (CBPs) are attractive targets in medicine and biology. Multivalency, with several glycans binding to several binding pockets in the CBP, is important for high-affinity interactions. Herein, we describe a novel platform for design of multivalent carbohydrate cluster ligands by directed evolution, in which serum-stable 2'-fluoro modified RNA (F-RNA) backbones evolve to present the glycan in optimal clusters. We have validated this method by the selection of oligomannose (Man9) glycan clusters from a sequence pool of ∼1013 that bind to broadly neutralizing HIV antibody 2G12 with 13 to 36 nM affinities.
Collapse
Affiliation(s)
- Richard L Redman
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham, Massachusetts 02454, United States
| |
Collapse
|
14
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
15
|
Mousavifar L, Roy R. Design, Synthetic Strategies, and Therapeutic Applications of Heterofunctional Glycodendrimers. Molecules 2021; 26:2428. [PMID: 33921945 PMCID: PMC8122629 DOI: 10.3390/molecules26092428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Glycodendrimers have attracted considerable interest in the field of dendrimer sciences owing to their plethora of implications in biomedical applications. This is primarily due to the fact that cell surfaces expose a wide range of highly diversified glycan architectures varying by the nature of the sugars, their number, and their natural multiantennary structures. This particular situation has led to cancer cell metastasis, pathogen recognition and adhesion, and immune cell communications that are implicated in vaccine development. The diverse nature and complexity of multivalent carbohydrate-protein interactions have been the impetus toward the syntheses of glycodendrimers. Since their inception in 1993, chemical strategies toward glycodendrimers have constantly evolved into highly sophisticated methodologies. This review constitutes the first part of a series of papers dedicated to the design, synthesis, and biological applications of heterofunctional glycodendrimers. Herein, we highlight the most common synthetic approaches toward these complex molecular architectures and present modern applications in nanomolecular therapeutics and synthetic vaccines.
Collapse
Affiliation(s)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada;
| |
Collapse
|
16
|
Belkhadem K, Cao Y, Roy R. Synthesis of Galectin Inhibitors by Regioselective 3'- O-Sulfation of Vanillin Lactosides Obtained under Phase Transfer Catalysis. Molecules 2020; 26:E115. [PMID: 33383774 PMCID: PMC7795656 DOI: 10.3390/molecules26010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 12/27/2022] Open
Abstract
Vanillin-based lactoside derivatives were synthetized using phase-transfer catalyzed reactions from per-O-acetylated lactosyl bromide. The aldehyde group of the vanillin moiety was then modified to generate a series of related analogs having variable functionalities in the para- position of the aromatic residue. The corresponding unprotected lactosides, obtained by Zemplén transesterification, were regioselectively 3'-O-sulfated using tin chemistry activation followed by treatment with sulfur trioxide-trimethylamine complex (Men3N-SO3). Additional derivatives were also prepared from the vanillin's aldehyde using a Knoevenagel reaction to provide extended α, β-unsaturated carboxylic acid which was next reduced to the saturated counterpart.
Collapse
Affiliation(s)
- Karima Belkhadem
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
| | - Yihong Cao
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
| | - René Roy
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
17
|
Kim SJ, Bae PK, Choi M, Keem JO, Chung W, Shin YB. Fabrication and Application of Levan-PVA Hydrogel for Effective Influenza Virus Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29103-29109. [PMID: 32543174 DOI: 10.1021/acsami.0c08333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To prevent the transmission of pathogenic microorganisms such as the influenza virus, efficient pathogen-capturing materials are required. Here, we report a new pathogen-capturing and recovery material using levan polysaccharide. We fabricated hydrogels by blending levan and poly(vinyl alcohol) (PVA) and by using glutaraldehyde as a cross-linking agent. Fabricated levan-PVA hydrogels have a high water solubility and water adsorption ability. SEM observations showed that levan-PVA hydrogels have a 3D porous structure. We confirmed by RT-PCR analysis that the influenza virus capture efficiency of levan-PVA hydrogels is higher than that of commercial cotton swabs. Moreover, we confirmed that levan-PVA hydrogels on gauze as a filter material effectively captured bioaerosol samples. Therefore, levan-PVA hydrogels are expected to serve as simple and efficient pathogen capture and recovery materials.
Collapse
Affiliation(s)
- Sun-Jung Kim
- BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
| | - Mijin Choi
- BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
| | - Joo Oak Keem
- BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
| | - Wonseok Chung
- BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
| | - Yong-Beom Shin
- BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
(2S,3R,6R)-2-[(R)-1-Hydroxyallyl]-4,4-dimethoxy-6-methyltetrahydro-2H-pyran-3-ol. MOLBANK 2020. [DOI: 10.3390/m1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
(2S,3R,6R)-2-[(R)-1-Hydroxyallyl]-4,4-dimethoxy-6-methyltetrahydro-2H-pyran-3-ol was isolated in 18% after treating the glucose derived (5R,6S,7R)-5,6,7-tris[(triethylsilyl)oxy]nona-1,8-dien-4-one with (1S)-(+)-10-camphorsulfonic acid (CSA). The one-pot formation of the title compound involved triethylsilyl (TES) removal, alkene isomerization, intramolecular conjugate addition and ketal formation. The compound was characterized by 1H and 13C NMR spectroscopy, ESI mass spectrometry and IR spectroscopy. NMR spectroscopy was used to establish the product structure, including the conformation of its tetrahydropyran ring.
Collapse
|
19
|
Pietrzyk-Brzezinska AJ, Bujacz A. H-type lectins - Structural characteristics and their applications in diagnostics, analytics and drug delivery. Int J Biol Macromol 2020; 152:735-747. [PMID: 32119947 DOI: 10.1016/j.ijbiomac.2020.02.320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Lectins are ubiquitous carbohydrate-binding proteins that interact with sugar moieties in a highly specific manner. H-type lectins represent a new group of lectins that were identified in invertebrates. These lectins share structural homology and bind mainly to N-acetylgalactosamine (GalNAc). Recent structural studies on the H-type lectins provided a detailed description of the GalNAc-lectin interaction that is already exploited in a number of biomedical applications. Two members of the H-type lectin family, Helix pomatia agglutinin (HPA) and Helix aspersa agglutinin (HAA), have already been extensively used in many diagnostic tests due their ability to specifically recognize GalNAc. This ability is especially important because aberrant glycosylation patterns of proteins expressed by cancer cells contain GalNAc. In addition, H-type lectins were utilized in diagnostics of other non-cancer diseases and represent great potential as components of drug delivery systems. Here, we present an overview of the H-type lectins and their applications in diagnostics, analytics and drug delivery.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland.
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland
| |
Collapse
|
20
|
Ribeiro JPM, Mendonça PV, Coelho JFJ, Matyjaszewski K, Serra AC. Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. Polymers (Basel) 2020; 12:E1268. [PMID: 32492977 PMCID: PMC7362234 DOI: 10.3390/polym12061268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular surface contains specific proteins, also known as lectins, that are carbohydrates receptors involved in different biological events, such as cell-cell adhesion, cell recognition and cell differentiation. The synthesis of well-defined polymers containing carbohydrate units, known as glycopolymers, by reversible deactivation radical polymerization (RDRP) methods allows the development of tailor-made materials with high affinity for lectins because of their multivalent interaction. These polymers are promising candidates for the biomedical field, namely as novel diagnostic disease markers, biosensors, or carriers for tumor-targeted therapy. Although linear glycopolymers are extensively studied for lectin recognition, branched glycopolymeric structures, such as polymer brushes can establish stronger interactions with lectins. This specific glycopolymer topology can be synthesized in a bottlebrush form or grafted to/from surfaces by using RDRP methods, allowing a precise control over molecular weight, grafting density, and brush thickness. Here, the preparation and application of glycopolymer brushes is critically discussed and future research directions on this topic are suggested.
Collapse
Affiliation(s)
- Jessica P. M. Ribeiro
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Patrícia V. Mendonça
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Jorge F. J. Coelho
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Krzysztof Matyjaszewski
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA;
| | - Arménio C. Serra
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| |
Collapse
|
21
|
Leese C, Bresnahan R, Doran C, Simsek D, Fellows AD, Restani L, Caleo M, Schiavo G, Mavlyutov T, Henke T, Binz T, Davletov B. Duplication of clostridial binding domains for enhanced macromolecular delivery into neurons. Toxicon X 2020; 5:100019. [PMID: 32140681 PMCID: PMC7043326 DOI: 10.1016/j.toxcx.2019.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/03/2022] Open
Abstract
Neurological diseases constitute a quarter of global disease burden and are expected to rise worldwide with the ageing of human populations. There is an increasing need to develop new molecular systems which can deliver drugs specifically into neurons, non-dividing cells meant to last a human lifetime. Neuronal drug delivery must rely on agents which can recognise neurons with high specificity and affinity. Here we used a recently introduced ‘stapling’ system to prepare macromolecules carrying duplicated binding domains from the clostridial family of neurotoxins. We engineered individual parts of clostridial neurotoxins separately and combined them using a strong alpha-helical bundle. We show that combining two identical binding domains of tetanus and botulinum type D neurotoxins, in a sterically defined way by protein stapling, allows enhanced intracellular delivery of molecules into neurons. We also engineered a botulinum neurotoxin type C variant with a duplicated binding domain which increased enzymatic delivery compared to the native type C toxin. We conclude that duplication of the binding parts of tetanus or botulinum neurotoxins will allow production of high avidity agents which could deliver imaging reagents and large therapeutic enzymes into neurons with superior efficiency. Macromolecules carrying duplicated clostridial binding domains (Hc) were produced. Double tetanus Hc increased protein delivery into cultured rodent neurones. Double tetanus Hc increased enzyme delivery into rodent spinal cord and brain area. Double BoNT/D Hc increased enzyme delivery into rat and human neurones in culture. Recombinant double-Hc BoNT/C was engineered, increasing delivery in cell cultures.
Collapse
Affiliation(s)
- Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca Bresnahan
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ciara Doran
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Deniz Simsek
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alexander D Fellows
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Laura Restani
- CNR Neuroscience Institute, Pisa, 1-56124 Pisa, Italy
| | - Matteo Caleo
- CNR Neuroscience Institute, Pisa, 1-56124 Pisa, Italy
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Timur Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tina Henke
- Institute of Cellular Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Thomas Binz
- Institute of Cellular Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
22
|
Pawar SV, Upadhyay PK, Burade S, Kumbhar N, Patil R, Dhavale DD. Synthesis and anti-leishmanial activity of TRIS-glycine-β-alanine dipeptidic triazole dendron coated with nonameric mannoside glycocluster. Carbohydr Res 2019; 485:107815. [DOI: 10.1016/j.carres.2019.107815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
|
23
|
Cramer J, Sager CP, Ernst B. Hydroxyl Groups in Synthetic and Natural-Product-Derived Therapeutics: A Perspective on a Common Functional Group. J Med Chem 2019; 62:8915-8930. [DOI: 10.1021/acs.jmedchem.9b00179] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jonathan Cramer
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christoph P. Sager
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
24
|
Szabó T, Bényei A, Szilágyi L. Bivalent glycoconjugates based on 1,5-diazabicyclo[3.3.0]octa-3,6-diene-2,8-dione ("bimane") as a central scaffold. Carbohydr Res 2019; 473:88-98. [PMID: 30654289 DOI: 10.1016/j.carres.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/07/2018] [Accepted: 01/05/2019] [Indexed: 11/16/2022]
Abstract
The heteroaromatic fused diazabicyclic "bimane" ring system, discovered four decades ago, is endowed with remarkable chemical and photophysical properties. No carbohydrate derivatives of bimanes have, however, been described thus far. Here we report on the syntheses of a range of bimanes decorated with various glycosyl residues. Mono- and disaccharide residues were attached to syn- or anti-bimane central cores via thio-, disulfido- or selenoglycosidic linkages to obtain novel fluorescent or nonfluorescent glycoconjugates. Cu(I)-catalyzed cycloaddition of glycosyl azides to a bimane diethynyl derivative furnished further bivalent glycoconjugates with sugar residues linked to the central bimane core via 1,2,3-triazole rings. We have determined the crystal and molecular structures of several glycosylated and non-glycosylated bimanes and report fluorescence data for the new compounds.
Collapse
Affiliation(s)
- Tamás Szabó
- Gedeon Richter Plc, H-1103 Budapest, Gyömrői út 19-21, Hungary
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
| |
Collapse
|
25
|
Ruvinsky AM, Aloni I, Cappel D, Higgs C, Marshall K, Rotkiewicz P, Repasky M, Feher VA, Feyfant E, Hessler G, Matter H. The Role of Bridging Water and Hydrogen Bonding as Key Determinants of Noncovalent Protein-Carbohydrate Recognition. ChemMedChem 2018; 13:2684-2693. [DOI: 10.1002/cmdc.201800437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ishita Aloni
- Schrödinger, Inc.; 120 West 45th Street New York NY 10036 USA
| | | | - Chris Higgs
- Schrödinger, Inc.; 10201 Wateridge Circle, Suite 220 San Diego CA 92121 USA
| | - Kyle Marshall
- Schrödinger, Inc.; 101 SW Main Street Portland OR 97204 USA
| | - Piotr Rotkiewicz
- Schrödinger, Inc.; 222 Third Street, Suite 2230 Cambridge MA 02142 USA
| | - Matt Repasky
- Schrödinger, Inc.; 101 SW Main Street Portland OR 97204 USA
| | - Victoria A. Feher
- Schrödinger, Inc.; 10201 Wateridge Circle, Suite 220 San Diego CA 92121 USA
| | - Eric Feyfant
- Schrödinger, Inc.; 222 Third Street, Suite 2230 Cambridge MA 02142 USA
| | - Gerhard Hessler
- Sanofi-Aventis (Deutschland) GmbH; Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838; Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Hans Matter
- Sanofi-Aventis (Deutschland) GmbH; Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838; Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|
26
|
Inhibition of adherence of the yeast Candida albicans to buccal epithelial cells by synthetic aromatic glycoconjugates. Eur J Med Chem 2018; 160:82-93. [PMID: 30321803 DOI: 10.1016/j.ejmech.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
The yeast Candida albicans is an opportunistic fungal pathogen which induces superficial and systemic infections in immunocompromised patients. Adherence to host tissue is critical to its ability to colonise and infect the host. The work presented here describes the synthesis of a small library of aromatic glycoconjugates (AGCs) and their evaluation as inhibitors of C. albicans adherence to exfoliated buccal epithelial cells (BECs). We identified a divalent galactoside, ligand 2a, capable of displacing over 50% of yeast cells already attached to the BECs. Fluorescence imaging indicates that 2a may bind to structural components of the fungal cell wall.
Collapse
|
27
|
St-Pierre Y, Doucet N, Chatenet D. A New Approach to Inhibit Prototypic Galectins. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1730.1se] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yves St-Pierre
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| | - Nicolas Doucet
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| | - David Chatenet
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| |
Collapse
|
28
|
Kaltner H, García Caballero G, Ludwig AK, Manning JC, Gabius HJ. From glycophenotyping by (plant) lectin histochemistry to defining functionality of glycans by pairing with endogenous lectins. Histochem Cell Biol 2018; 149:547-568. [DOI: 10.1007/s00418-018-1676-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
|
29
|
Ledeen RW, Kopitz J, Abad-Rodríguez J, Gabius HJ. Glycan Chains of Gangliosides: Functional Ligands for Tissue Lectins (Siglecs/Galectins). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:289-324. [PMID: 29747818 DOI: 10.1016/bs.pmbts.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular signals on the cell surface are responsible for adhesion and communication. Of relevance in this respect, their chemical properties endow carbohydrates with the capacity to store a maximum of information in a minimum of space. One way to present glycans on the cell surface is their covalent conjugation to a ceramide anchor. Among the resulting glycosphingolipids, gangliosides are special due to the presence of at least one sialic acid in the glycan chains. Their spatial accessibility and the dynamic regulation of their profile are factors that argue in favor of a role of glycans of gangliosides as ligands (counterreceptors) for carbohydrate-binding proteins (lectins). Indeed, as discovered first for a bacterial toxin, tissue lectins bind gangliosides and mediate contact formation (trans) and signaling (cis). While siglecs have a preference for higher sialylated glycans, certain galectins also target the monosialylated pentasaccharide of ganglioside GM1. Enzymatic interconversion of ganglioside glycans by sialidase action, relevant for neuroblastoma cell differentiation and growth control in vitro, for axonogenesis and axon regeneration, as well as for proper communication between effector and regulatory T cells, changes lectin-binding affinity profoundly. The GD1a-to-GM1 "editing" is recognized by such lectins, for example, myelin-associated glycoprotein (siglec-4) losing affinity and galectin-1 gaining reactivity, and then translated into postbinding signaling. Orchestrations of loss/gain of affinity, of ganglioside/lectin expression, and of lectin presence in a network offer ample opportunities for fine-tuning. Thus glycans of gangliosides such as GD1a and GM1 are functional counterreceptors by a pairing with tissue lectins, an emerging aspect of ganglioside and lectin functionality.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Jürgen Kopitz
- Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius HJ. Three-step monitoring of glycan and galectin profiles in the anterior segment of the adult chicken eye. Ann Anat 2018; 217:66-81. [PMID: 29501632 DOI: 10.1016/j.aanat.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023]
Abstract
A histochemical three-step approach is applied for processing a panel of sections that covers the different regions of fixed anterior segment of the adult chicken eye. This analysis gains insight into the presence of binding partners for functional pairing by galectin/lectin recognition in situ. Glycophenotyping with 11 fungal and plant lectins (step 1) revealed a complex pattern of reactivity with regional as well as glycan- and cell-type-dependent differences. When characterizing expression of the complete set of the seven adhesion/growth-regulatory chicken galectins immunohistochemically (step 2), the same holds true, clearly demonstrating profiles with individual properties, even for the CG-1A/B paralogue pair. Testing this set of labeled tissue lectins as probes (step 3) detected binding sites in a galectin-type-dependent manner. The results of steps 2 and 3 reflect the divergence of sequences and argue against functional redundancy among the galectins. These data shape the concept of an in situ network of galectins. As consequence, experimental in vitro studies will need to be performed from the level of testing a single protein to work with mixtures that mimic the (patho)physiological situation, a key message of this report.
Collapse
Affiliation(s)
- Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Clemens Knospe
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
31
|
Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc Natl Acad Sci U S A 2018; 115:E2509-E2518. [PMID: 29382751 PMCID: PMC5856548 DOI: 10.1073/pnas.1720055115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells are decorated with charged and uncharged carbohydrate ligands known as glycans, which are responsible for several key functions, including their interactions with proteins known as lectins. Here, a platform consisting of synthetic nanoscale vesicles, known as glycodendrimersomes, which can be programmed with cell surface-like structural and topological complexity, is employed to dissect design aspects of glycan presentation, with specificity for lectin-mediated bridging. Aggregation assays reveal the extent of cross-linking of these biomimetic nanoscale vesicles—presenting both anionic and neutral ligands in a bioactive manner—with disease-related human and other galectins, thus offering the possibility of unraveling the nature of these fundamental interactions. Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.
Collapse
|
32
|
Latxague L, Gaubert A, Barthélémy P. Recent Advances in the Chemistry of Glycoconjugate Amphiphiles. Molecules 2018; 23:E89. [PMID: 29301326 PMCID: PMC6017060 DOI: 10.3390/molecules23010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
Glyconanoparticles essentially result from the (covalent or noncovalent) association of nanometer-scale objects with carbohydrates. Such glyconanoparticles can take many different forms and this mini review will focus only on soft materials (colloids, liposomes, gels etc.) with a special emphasis on glycolipid-derived nanomaterials and the chemistry involved for their synthesis. Also this contribution presents Low Molecular Weight Gels (LMWGs) stabilized by glycoconjugate amphiphiles. Such soft materials are likely to be of interest for different biomedical applications.
Collapse
Affiliation(s)
- Laurent Latxague
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Alexandra Gaubert
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Philippe Barthélémy
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
33
|
Kaltner H, Manning JC, García Caballero G, Di Salvo C, Gabba A, Romero-Hernández LL, Knospe C, Wu D, Daly HC, O'Shea DF, Gabius HJ, Murphy PV. Revealing biomedically relevant cell and lectin type-dependent structure–activity profiles for glycoclusters by using tissue sections as an assay platform. RSC Adv 2018; 8:28716-28735. [PMID: 35542469 PMCID: PMC9084366 DOI: 10.1039/c8ra05382k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022] Open
Abstract
The increasing realization of the involvement of lectin-glycan recognition in (patho)physiological processes inspires envisioning therapeutic intervention by high-avidity/specificity blocking reagents. Synthetic glycoclusters are proving to have potential for becoming such inhibitors but the commonly used assays have their drawbacks to predict in vivo efficacy. They do not represent the natural complexity of (i) cell types and (ii) spatial and structural complexity of glycoconjugate representation. Moreover, testing lectins in mixtures, as present in situ, remains a major challenge, giving direction to this work. Using a toolbox with four lectins and six bi- to tetravalent glycoclusters bearing the cognate sugar in a model study, we here document the efficient and versatile application of tissue sections (from murine jejunum as the model) as a platform for routine and systematic glycocluster testing without commonly encountered limitations. The nature of glycocluster structure, especially core and valency, and of protein features, i.e. architecture, fine-specificity and valency, are shown to have an influence, as cell types can differ in response profiles. Proceeding from light microscopy to monitoring by fluorescence microscopy enables grading of glycocluster activity on individual lectins tested in mixtures. This work provides a robust tool for testing glycoclusters prior to considering in vivo experiments. Introducing tissue sections for testing glycocluster activity as inhibitors of lectin binding close to in vivo conditions.![]()
Collapse
|
34
|
Lin TH, Lin CH, Liu YJ, Huang CY, Lin YC, Wang SK. Controlling Ligand Spacing on Surface: Polyproline-Based Fluorous Microarray as a Tool in Spatial Specificity Analysis and Inhibitor Development for Carbohydrate-Protein Interactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41691-41699. [PMID: 29148699 DOI: 10.1021/acsami.7b13200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multivalent carbohydrate-protein interactions are essential for many biological processes. Convenient characterization for multivalent binding property of proteins will aid the development of molecules to manipulate these processes. We exploited the polyproline helix II (PPII) structure as molecular scaffolds to adjust the distances between glycan ligand attachment sites at 9, 18, and 27 Å on a peptide scaffold. Optimized fluorous groups were also introduced to the peptide scaffold for immobilization to the microarray surface through fluorous interaction to control the orientation of the helical scaffolds. Using lectin LecA and antibody 2G12 as model proteins, the binding preference to the 27 Å glycopeptide scaffold, matched the distance of 26 Å between its two galactose binding sites on LecA and 31 Å spacing between oligomannose binding sites on 2G12, respectively. We further demonstrate this microarray system can aid the development of inhibitors by transforming the selected surface-bound scaffold into multivalent ligands in solution. This strategy can be extended to analyze proteins that lacking structural information to speed up the design of potent and selective multivalent ligands.
Collapse
Affiliation(s)
- Tse-Hsueh Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Cin-Hao Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Ying-Jie Liu
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Chun Yi Huang
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Yen-Cheng Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan R.O.C
| |
Collapse
|
35
|
Bashmakov YK, Petyaev IM. Dendrimers, Carotenoids, and Monoclonal Antibodies. Monoclon Antib Immunodiagn Immunother 2017; 36:208-213. [PMID: 28994638 DOI: 10.1089/mab.2017.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dendrimers are unimolecular architectural nano- or microparticle entities that can accommodate various nutraceuticals and pharmaceuticals between their branches (dendrons) and provide targeted delivery of biomimetics into different tissues upon addition of functionalized groups to the dendrimer's surface. Covalent binding, hydrogen bonds, and electrostatic interactions between dendrimer-composing molecules are known to form and stabilize dendrimer structure. Carotenoids have recently been shown to form dendrimer-like structures and promote targeted delivery of "cargo" molecules into organs characterized by high-carotenoid uptake (adrenal glands, prostate, liver, and brain). The use of carotenoid dendrimers, in particular lycosome particles loaded with various xenobiotics (resveratrol, cocoa flavanols, and HMG-CoA reductase inhibitors), reportedly has a beneficial effect in diabetic foot syndrome, prehypertension, and cardiovascular disease. New applications for carotenoid dendrimers may arise from the use of complexes formed by carotenoid dendrimers and monoclonal antibodies (mAbs). The internalization of carotenoid dendrimer-mAb complexes through receptor-mediated mechanisms may prevent interactions of dendrimer-incorporated xenobiotics with membrane-associated P-glycoprotein, a major factor of drug resistance in tumor cells. The incorporation of mAb fragments with higher binding capacity to the membrane receptors and higher affinity to the target molecule may further increase the bioavailability of "cargo" molecules transported by the carotenoid dendrimer-mAb complexes and open new doors in nanodelivery technologies.
Collapse
|
36
|
Kopitz J, Xiao Q, Ludwig A, Romero A, Michalak M, Sherman SE, Zhou X, Dazen C, Vértesy S, Kaltner H, Klein ML, Gabius H, Percec V. Reaction of a Programmable Glycan Presentation of Glycodendrimersomes and Cells with Engineered Human Lectins To Show the Sugar Functionality of the Cell Surface. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jürgen Kopitz
- Institute of Pathology, Department of Applied Tumor Biology Faculty of Medicine Ruprecht-Karls-University Heidelberg Im Neuenheimer Feld 224 69120 Heidelberg Germany
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| | - Anna‐Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine Ludwig-Maximilians-University Munich Veterinaerstr. 13 80539 Munich Germany
| | - Antonio Romero
- Centro de Investigaciones Biológicas CSIC Ramiro de Maeztu, 9 28040 Madrid Spain
| | - Malwina Michalak
- Institute of Pathology, Department of Applied Tumor Biology Faculty of Medicine Ruprecht-Karls-University Heidelberg Im Neuenheimer Feld 224 69120 Heidelberg Germany
| | - Samuel E. Sherman
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| | - Xuhao Zhou
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| | - Cody Dazen
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| | - Sabine Vértesy
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine Ludwig-Maximilians-University Munich Veterinaerstr. 13 80539 Munich Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine Ludwig-Maximilians-University Munich Veterinaerstr. 13 80539 Munich Germany
| | - Michael L. Klein
- Institute for Computational Molecular Science Temple University Philadelphia Pennsylvania 19122 USA
| | - Hans‐Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine Ludwig-Maximilians-University Munich Veterinaerstr. 13 80539 Munich Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
37
|
Kopitz J, Xiao Q, Ludwig A, Romero A, Michalak M, Sherman SE, Zhou X, Dazen C, Vértesy S, Kaltner H, Klein ML, Gabius H, Percec V. Reaction of a Programmable Glycan Presentation of Glycodendrimersomes and Cells with Engineered Human Lectins To Show the Sugar Functionality of the Cell Surface. Angew Chem Int Ed Engl 2017; 56:14677-14681. [DOI: 10.1002/anie.201708237] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Jürgen Kopitz
- Institute of Pathology, Department of Applied Tumor Biology Faculty of Medicine Ruprecht-Karls-University Heidelberg Im Neuenheimer Feld 224 69120 Heidelberg Germany
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| | - Anna‐Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine Ludwig-Maximilians-University Munich Veterinaerstr. 13 80539 Munich Germany
| | - Antonio Romero
- Centro de Investigaciones Biológicas CSIC Ramiro de Maeztu, 9 28040 Madrid Spain
| | - Malwina Michalak
- Institute of Pathology, Department of Applied Tumor Biology Faculty of Medicine Ruprecht-Karls-University Heidelberg Im Neuenheimer Feld 224 69120 Heidelberg Germany
| | - Samuel E. Sherman
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| | - Xuhao Zhou
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| | - Cody Dazen
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| | - Sabine Vértesy
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine Ludwig-Maximilians-University Munich Veterinaerstr. 13 80539 Munich Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine Ludwig-Maximilians-University Munich Veterinaerstr. 13 80539 Munich Germany
| | - Michael L. Klein
- Institute for Computational Molecular Science Temple University Philadelphia Pennsylvania 19122 USA
| | - Hans‐Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine Ludwig-Maximilians-University Munich Veterinaerstr. 13 80539 Munich Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
38
|
Studying the Structural Significance of Galectin Design by Playing a Modular Puzzle: Homodimer Generation from Human Tandem-Repeat-Type (Heterodimeric) Galectin-8 by Domain Shuffling. Molecules 2017; 22:molecules22091572. [PMID: 28925965 PMCID: PMC6151538 DOI: 10.3390/molecules22091572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/17/2017] [Indexed: 01/10/2023] Open
Abstract
Tissue lectins are emerging (patho)physiological effectors with broad significance. The capacity of adhesion/growth-regulatory galectins to form functional complexes with distinct cellular glycoconjugates is based on molecular selection of matching partners. Engineering of variants by changing the topological display of carbohydrate recognition domains (CRDs) provides tools to understand the inherent specificity of the functional pairing. We here illustrate its practical implementation in the case of human tandem-repeat-type galectin-8 (Gal-8). It is termed Gal-8 (NC) due to presence of two different CRDs at the N- and C-terminal positions. Gal-8N exhibits exceptionally high affinity for 3'-sialylated/sulfated β-galactosides. This protein is turned into a new homodimer, i.e., Gal-8 (NN), by engineering. The product maintained activity for lactose-inhibitable binding of glycans and glycoproteins. Preferential association with 3'-sialylated/sulfated (and 6-sulfated) β-galactosides was seen by glycan-array analysis when compared to the wild-type protein, which also strongly bound to ABH-type epitopes. Agglutination of erythrocytes documented functional bivalency. This result substantiates the potential for comparative functional studies between the variant and natural Gal-8 (NC)/Gal-8N.
Collapse
|
39
|
Hu Y, Beshr G, Garvey CJ, Tabor RF, Titz A, Wilkinson BL. Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2017; 159:605-612. [PMID: 28858663 DOI: 10.1016/j.colsurfb.2017.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The first example of the self-assembly and lectin binding properties of photoswitchable glycodendrimer micelles is reported. Light-addressable micelles were assembled from a library of 12 amphiphilic Janus glycodendrimers composed of variable carbohydrate head groups and hydrophobic tail groups linked to an azobenzene core. Spontaneous association in water gave cylindrical micelles with uniform size distribution as determined by dynamic light scattering (DLS) and small angle neutron scattering (SANS). Trans-cis photoisomerization of the azobenzene dendrimer core was used to probe the self-assembly behaviour and lectin binding properties of cylindrical micelles, revealing moderate-to-potent inhibition of lectins LecA and LecB from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Yingxue Hu
- School of Chemistry, Monash University, Victoria 3800, Australia
| | - Ghamdan Beshr
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung, Standort Hannover, Braunschweig, Germany
| | - Christopher J Garvey
- Australian Centre for Neutron scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Victoria 3800, Australia
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung, Standort Hannover, Braunschweig, Germany
| | - Brendan L Wilkinson
- School of Science and Technology, the University of New England, New South Wales 2351, Australia.
| |
Collapse
|
40
|
Domínguez-Rodríguez P, Reina JJ, Gil-Caballero S, Nieto PM, de Paz JL, Rojo J. Glycodendrimers as Chondroitin Sulfate Mimetics: Synthesis and Binding to Growth Factor Midkine. Chemistry 2017. [DOI: 10.1002/chem.201701890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pedro Domínguez-Rodríguez
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| | - José J. Reina
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
- Current address: Singular Research Centre in Chemical Biology and Molecular Materials (CIQUS); Organic Chemistry Department; University of Santiago de Compostela (USC); Santiago de Compostela Spain
| | - Sergio Gil-Caballero
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| | - Pedro M. Nieto
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| | - José L. de Paz
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ); CSIC- Universidad de Sevilla; Américo Vespucio 49 41092 Seville Spain
| |
Collapse
|
41
|
Gabius HJ. The sugar code: Why glycans are so important. Biosystems 2017; 164:102-111. [PMID: 28709806 DOI: 10.1016/j.biosystems.2017.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
The cell surface is the platform for presentation of biochemical signals that are required for intercellular communication. Their profile necessarily needs to be responsive to internal and external factors in a highly dynamic manner. The structural features of the signals must meet the criterion of high-density information coding in a minimum of space. Thus, only biomolecules that can generate many different oligomers ('words') from few building blocks ('letters') qualify to meet this challenge. Examining the respective properties of common biocompounds that form natural oligo- and polymers comparatively, starting with nucleotides and amino acids (the first and second alphabets of life), comes up with sugars as clear frontrunner. The enzymatic machinery for the biosynthesis of sugar chains can indeed link monosaccharides, the letters of the third alphabet of life, in a manner to reach an unsurpassed number of oligomers (complex carbohydrates or glycans). Fittingly, the resulting glycome of a cell can be likened to a fingerprint. Conjugates of glycans with proteins and sphingolipids (glycoproteins and glycolipids) are ubiquitous in Nature. This implies a broad (patho)physiologic significance. By looking at the signals, at the writers and the erasers of this information as well as its readers and ensuing consequences, this review intends to introduce a broad readership to the principles of the concept of the sugar code.
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstraße 13, 80539 Munich, Germany.
| |
Collapse
|
42
|
Pavlikova L, Seres M, Hano M, Bohacova V, Sevcikova I, Kyca T, Breier A, Sulova Z. L1210 Cells Overexpressing ABCB1 Drug Transporters Are Resistant to Inhibitors of the N- and O-glycosylation of Proteins. Molecules 2017; 22:E1104. [PMID: 28671633 PMCID: PMC6152248 DOI: 10.3390/molecules22071104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022] Open
Abstract
Overexpression of P-glycoprotein (P-gp, drug transporter) in neoplastic cells is the most frequently observed molecular cause of multidrug resistance. Here, we show that the overexpression of P-gp in L1210 cells leads to resistance to tunicamycin and benzyl 2-acetamido-2-deoxy-α-d-galactopyranoside (GalNAc-α-O-benzyl). Tunicamycin induces both glycosylation depression and ubiquitination improvement of P-gp. However, the latter is not associated with large increases in molecular mass as evidence for polyubiquitination. Therefore, P-gp continues in maturation to an active membrane efflux pump rather than proteasomal degradation. P-gp-positive L1210 cells contain a higher quantity of ubiquitin associated with cell surface proteins than their P-gp-negative counterparts. Thus, P-gp-positive cells use ubiquitin signaling for correct protein folding to a higher extent than P-gp-negative cells. Elevation of protein ubiquitination after tunicamycin treatment in these cells leads to protein folding rather than protein degradation, resulting at least in the partial lack of cell sensitivity to tunicamycin in L1210 cells after P-gp expression. In contrast to tunicamycin, to understand why P-gp-positive cells are resistant to GalNAc-α-O-benzyl, further research is needed.
Collapse
Affiliation(s)
- Lucia Pavlikova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravska cesta 9, 84005 Bratislava, Slovakia.
| | - Mario Seres
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravska cesta 9, 84005 Bratislava, Slovakia.
| | - Milan Hano
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravska cesta 9, 84005 Bratislava, Slovakia.
| | - Viera Bohacova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravska cesta 9, 84005 Bratislava, Slovakia.
| | - Ivana Sevcikova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravska cesta 9, 84005 Bratislava, Slovakia.
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Tomas Kyca
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravska cesta 9, 84005 Bratislava, Slovakia.
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravska cesta 9, 84005 Bratislava, Slovakia.
| |
Collapse
|
43
|
Bivalent O -glycoside mimetics with S /disulfide/ Se substitutions and aromatic core: Synthesis, molecular modeling and inhibitory activity on biomedically relevant lectins in assays of increasing physiological relevance. Bioorg Med Chem 2017; 25:3158-3170. [DOI: 10.1016/j.bmc.2017.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
|
44
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
45
|
Gabius HJ. How to Crack the Sugar Code. Folia Biol (Praha) 2017; 63:121-131. [PMID: 29256854 DOI: 10.14712/fb2017063040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The known ubiquitous presence of glycans fulfils an essential prerequisite for fundamental roles in cell sociology. Since carbohydrates are chemically predestined to form biochemical messages of a maximum of structural diversity in a minimum of space, coding of biological information by sugars is the reason for the broad occurrence of cellular glycoconjugates. Their glycans originate from sophisticated enzymatic assembly and dynamically adaptable remodelling. These signals are read and translated into effects by receptors (lectins). The functional pairing between lectins and their counterreceptor(s) is highly specific, often orchestrated by intimate co-regulation of the receptor, the cognate glycan and the bioactive scaffold (e.g., an integrin). Bottom-up approaches, teaming up synthetic and supramolecular chemistry to prepare fully programmable nanoparticles as binding partners with systematic network analysis of lectins and rational design of variants, enable us to delineate the rules of the sugar code.
Collapse
Affiliation(s)
- H-J Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
46
|
Cano ME, Di Chenna PH, Lesur D, Wolosiuk A, Kovensky J, Uhrig ML. Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl-l-tartaric acid scaffold. NEW J CHEM 2017. [DOI: 10.1039/c7nj02941a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The supramolecular self-assembly mode of two diacyl-glycoamphiphiles depends on the length of the flexible achiral ethoxylated linker.
Collapse
Affiliation(s)
- María Emilia Cano
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- Pabellón 2
- Ciudad Universitaria
| | - Pablo Héctor Di Chenna
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- Pabellón 2
- Ciudad Universitaria
| | - David Lesur
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A)-CNRS UMR 7378
- Université de Picardie Jules Verne
- 33 rue Saint Leu
- 80039 Amiens Cedex
| | - Alejandro Wolosiuk
- Gerencia Química – Centro Atómico Constituyentes – Comisión Nacional de Energía Atómica – CONICET. Av. Gral. Paz 1499
- Buenos Aires
- Argentina
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales
- Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2
| | - José Kovensky
- Laboratoire de Glycochimie
- des Antimicrobiens et des Agroressources (LG2A)-CNRS UMR 7378
- Université de Picardie Jules Verne
- 33 rue Saint Leu
- 80039 Amiens Cedex
| | - María Laura Uhrig
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- Pabellón 2
- Ciudad Universitaria
| |
Collapse
|
47
|
Bayón C, He N, Deir-Kaspar M, Blasco P, André S, Gabius HJ, Rumbero Á, Jiménez-Barbero J, Fessner WD, Hernáiz MJ. Direct Enzymatic Branch-End Extension of Glycocluster-Presented Glycans: An Effective Strategy for Programming Glycan Bioactivity. Chemistry 2016; 23:1623-1633. [DOI: 10.1002/chem.201604550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Bayón
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| | - Ning He
- Department of Organic Chemistry and Biochemistry; Technische Universität Darmstadt, A; larich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Mario Deir-Kaspar
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| | - Pilar Blasco
- Departamento de Ciencia de Proteínas; CIB-CSIC; C/Ramiro denMaeztu 9 28040 Madrid Spain
| | - Sabine André
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Veterinärstrasse 13 80539 München Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie; Tierärztliche Fakultät; Ludwig-Maximilians-Universität München; Veterinärstrasse 13 80539 München Germany
| | - Ángel Rumbero
- Department of Organic Chemistry; Faculty of Science; Autonoma University of Madrid; Spain
| | - Jesús Jiménez-Barbero
- Departamento de Ciencia de Proteínas; CIB-CSIC; C/Ramiro denMaeztu 9 28040 Madrid Spain
- Ikerbasque; Basque Foundation for Science; Maria Diaz de Haro 13 48009 Bilbao Spain
- Department of Organic Chemistry II, Faculty of Science & Technology; University of the Basque Country; 48940 Leioa Bizkaia Spain
| | - Wolf-Dieter Fessner
- Department of Organic Chemistry and Biochemistry; Technische Universität Darmstadt, A; larich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - María J. Hernáiz
- Department of Organic and Pharmaceutical Chemistry; Faculty of Pharmacy; Complutense University; Plaza Ramón y CajaL s/n 28040 Madrid Spain
| |
Collapse
|
48
|
Kaltner H, Toegel S, Caballero GG, Manning JC, Ledeen RW, Gabius HJ. Galectins: their network and roles in immunity/tumor growth control. Histochem Cell Biol 2016; 147:239-256. [DOI: 10.1007/s00418-016-1522-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/23/2022]
|
49
|
Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem Cell Biol 2016; 147:285-301. [PMID: 28013366 DOI: 10.1007/s00418-016-1525-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
A hallmark of endogenous lectins is their ability to select a few distinct glycoconjugates as counterreceptors for functional pairing from the natural abundance of cellular glycoproteins and glycolipids. As a consequence, assays to assess inhibition of lectin binding should necessarily come as close as possible to the physiological situation, to characterize an impact of a synthetic compound on biorelevant binding with pharmaceutical perspective. We here introduce in a proof-of-principle manner work with sections of paraffin-embedded tissue (jejunum, epididymis) and labeled adhesion/growth-regulatory galectins, harboring one (galectin-1 and galectin-3) or two (galectin-8) types of lectin domain. Six pairs of synthetic lactosides from tailoring of the headgroup (3'-O-sulfation) and the aglycone (β-methyl to aromatic S- and O-linked extensions) as well as three bi- to tetravalent glycoclusters were used as test compounds. Varying extents of reduction in staining intensity by synthetic compounds relative to unsubstituted/free lactose proved the applicability and sensitivity of the method. Flanking cytofluorimetric assays on lectin binding to native cells gave similar grading, excluding a major impact of tissue fixation. The experiments revealed cell/tissue binding of galectin-8 preferentially via one domain, depending on the cell type so that the effect of an inhibitor in a certain context cannot be extrapolated to other cells/tissues. Moreover, the work with the other galectins attests that this assay enables comprehensive analysis of the galectin network in serial tissue sections to determine overlaps and regional differences in inhibitory profiles.
Collapse
|
50
|
Abstract
An experimental observation on selecting binding partners underlies the introduction of the term 'lectin'. Agglutination of erythrocytes depending on their blood-group status revealed the presence of activities in plant extracts that act in an epitope-specific manner like antibodies. As it turned out, their binding partners on the cell surface are carbohydrates of glycoconjugates. By definition, lectins are glycan-specific (mono- or oligosaccharides presented by glycoconjugates or polysaccharides) receptors, distinguished from antibodies, from enzymes using carbohydrates as substrates and from transporters of free saccharides. They are ubiquitous in Nature and structurally widely diversified. More than a dozen types of folding pattern have evolved for proteins that bind glycans. Used as tool, this capacity facilitates versatile mapping of glycan presence so that plant/fungal and also animal/human lectins have found a broad spectrum of biomedical applications. The functional pairing with physiological counterreceptors is involved in a wide range of cellular activities from cell adhesion, glycoconjugate trafficking to growth regulation and lets lectins act as sensors/effectors in host defense.
Collapse
|