1
|
Hirakawa H, Ono H, Shinozaki J, Koyama K, Koseki S. Formation of Antibacterial Maillard Reaction Products From D-xylose and L-phenylalanine During Stewing Cooking. J Food Prot 2025; 88:100503. [PMID: 40164410 DOI: 10.1016/j.jfp.2025.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Maillard reaction products (MRPs) produced by heating D-xylose and L-phenylalanine at 121 °C for 1 h have been reported to inhibit the growth of Bacillus cereus and Clostridium perfringens. This study investigated whether MRPs with antibacterial effects could be formed during the stewing cooking of foods at ambient pressure and inhibit spore-forming bacteria in dishes. MRPs were successfully produced by heating D-xylose and L-phenylalanine in phosphate buffer at ambient pressure (<100 °C), with antibacterial effects increasing with temperature, heating time, and substrate concentration. During stewing, MRPs formed at 95 °C for 1-3 h delayed the growth of B. cereus and C. perfringens to an infection dose (106 CFU/mL) during 25 °C storage. For B. cereus, delays were 9.8, 20.3, and 28.5 h in soup curry and 7.4, 15.3, and 26.1 h in beef bowl. For C. perfringens, 1-hour heating delayed growth by ∼13.6 h, while 2- and 3-hour heating suppressed growth to insufficient levels to calculate the time to reach the infection dose. Sensory evaluation revealed that while MRP production had minimal impact on food appearance, it negatively affected smell. Despite this limitation, the simple method of heating D-xylose and L-phenylalanine during stewing offers a promising approach to control spore-forming bacteria in cooked dishes.
Collapse
Affiliation(s)
| | | | | | - Kento Koyama
- Graduate School of Agriculture, Hokkaido University, Japan
| | | |
Collapse
|
2
|
Aonishi K, Miyao S, Yokoi L, Kitaoka N, Koyama K, Matsuura H, Koseki S. Isolation and Identification of the Antibacterial Compounds Produced by Maillard Reaction of Xylose with Phenylalanine or Proline. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16010-16017. [PMID: 38965162 DOI: 10.1021/acs.jafc.4c04911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Maillard reaction products (MRPs) of xylose with phenylalanine and xylose with proline exhibit high antibacterial activity. However, the active antibacterial compounds in MRPs have not yet been identified or isolated. This study aimed to isolate the active compounds in the two antibacterial MRPs. The organic layer of the MRP solution was separated and purified using silica gel chromatography and high-performance liquid chromatography. The chemical structures of the isolated compounds were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds inhibited the growth of Bacillus cereus and Salmonella Typhimurium at 25 °C for 7 days at a concentration of 0.25 mM. Furthermore, the isolated compounds inhibited the growth of naturally occurring microflora of lettuce and chicken thighs at 25 °C for 2 days at a concentration of 0.5-1.0 mM. The antibacterial compounds found in MRPs demonstrated a wide range of effectiveness and indicated their potential as alternative preservatives.
Collapse
Affiliation(s)
- Kazuho Aonishi
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Shungo Miyao
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Lisa Yokoi
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Naoki Kitaoka
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Kento Koyama
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Hideyuki Matsuura
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Shigenobu Koseki
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| |
Collapse
|
3
|
Shi M, Song R, Gu L. Different Regulatory Effects of Heated Products and Maillard Reaction Products of Half-Fin Anchovy Hydrolysates on Intestinal Antioxidant Defense in Healthy Animals. Int J Mol Sci 2023; 24:ijms24032355. [PMID: 36768685 PMCID: PMC9917108 DOI: 10.3390/ijms24032355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The oxidative state of intestinal tracts of healthy animals were investigated after short-term intake of half-fin anchovy hydrolysates (HAHp) and their thermal or Maillard reaction products (MRPs). After one month of continuous oral gavage of HAHp, HAHp-heated products (HAHp-H), the MRPs of HAHp with 3% of glucose (HAHp-3%G MRPs), and the MRPs of HAHp with 3% of fructose (HAHp-3%F MRPs) at a dose of 1.0 g/kg of body weight per day into healthy ICR male mice, the concentrations of serum low-density and high-density lipoprotein cholesterol did not significantly change compared to the control group (CK, gavage with saline). Similar results were found for the interleukin-6 concentrations of all groups. By comparison, HAHp-H, HAHp-3%G MRPs, and HAHp-3%F MRPs administration decreased serum tumor necrosis factor-α concentration as compared to the CK group (p < 0.05). No histological damage was observed in the jejunum, ileum, and colonic tissues of all groups. However, HAHp-H treatment induced higher upregulation of Kelch-like ECH-associated protein 1, transcription factors Nrf-2, associated protective phase-II enzymes of NAD(P)H: quinine oxidoreductase-1, and hemoxygenase-1 in colon tissue, as well as higher upregulation of endogenous antioxidant enzymes, including copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, and glutathione peroxidase 2 than other groups (p < 0.05). Additionally, increases in Nε-carboxymethyllysine expression in the colonic tissues of all groups were consistent with their increased oligopeptide transporter 1 expressions. Our results suggest that the thermal products of HAHp might have a broad application prospect in improving antioxidant defense in vivo in healthy animals.
Collapse
Affiliation(s)
| | - Ru Song
- Correspondence: or ; Tel.: +86-0580-2554-781
| | | |
Collapse
|
4
|
Jia X, Li X, Zhao J, Kong B, Wang H, Liu Q, Wang H. Fabrication and characterization of crosslinked pea protein isolated/pullulan/allicin electrospun nanofiber films as potential active packaging material. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Song R, Shi M, Gu L. Digestive properties of half-fin anchovy hydrolysates/glucose Maillard reaction products and modulation effects on intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2584-2597. [PMID: 34689340 DOI: 10.1002/jsfa.11600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/29/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The consumption of dietary Maillard reaction products (MRPs) might lead to positive or negative effects on health. The digestibility of half-fin anchovy hydrolysates/glucose MRPs (HAHp(9.0)-G MRPs) was therefore determined. The intestinal microbiota modulation of HAHp(9.0)-G MRPs in mice was also evaluated after administration for 14 days (1 g kg-1 •bodyweight). RESULTS Different levels of digestibility of MRPs of fructosamine and advanced glycation products of Nε -carboxymethyllysine were detected in HAHp(9.0)-G MRPs during simulated gastrointestinal digestion. An increased relative proportion of soluble fluorescent melanoidins (SFMs) was observed during gastric digestion as compared to that in the original HAHp(9.0)-G MRPs, followed by decreases in SFMs in intestinal digestion. After feeding with HAHp(9.0)-G MRPs for 14 days, increased goblet cells were observed in the ileum regions of female and male mice. High-throughput 16S ribosomal RNA gene sequencing of fecal samples revealed that HAHp(9.0)-G MRPs administration increased the density of the phylum Bacteriodetes and reduced the density of the phylum Firmicutes in male mice. By comparison, a relatively higher density of members of the phylum Saccharibacteria was observed in female mice. A consistent increase in the abundance of Bacteroidales_S24-7_group_norank was found in female and male groups fed with HAHp(9.0)-G MRPs. Female and male mice treated with HAHp(9.0)-G MRPs also showed higher levels of propionic and butyric acids in feces than their corresponding controls. CONCLUSION Half-fin anchovy hydrolysates/glucose MRPs can be partly hydrolyzed in the simulated gastrointestinal digestion system. Treatment with HAHp(9.0)-G MRPs induced sex-related differences in bacterial abundance and diversity in mice; however, the up-regulation of anti-inflammatory activity was predicted in both female and male mice. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Min Shi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Luo Gu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
6
|
Antibacterial Properties of Melanoidins Produced from Various Combinations of Maillard Reaction against Pathogenic Bacteria. Microbiol Spectr 2021; 9:e0114221. [PMID: 34908471 PMCID: PMC8672907 DOI: 10.1128/spectrum.01142-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel melanoidins are produced by the Maillard reaction. Here, melanoidins with high antibacterial activity were tested by examining various combinations of reducing sugars and amino acids as reaction substrates. Twenty-two types of melanoidins were examined by combining two reducing sugars (glucose and xylose) and eleven l-isomers of amino acids (alanine, arginine, glutamine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, and valine) to confirm the effects of these melanoidins on the growth of Listeria monocytogenes at 25°C. The melanoidins produced from the combination of d-xylose with either l-phenylalanine (Xyl-Phe) or l-proline (Xyl-Pro), for which absorbance at 420 nm was 3.5 ± 0.2, completely inhibited the growth of L. monocytogenes at 25°C for 48 h. Both of the melanoidins exhibited growth inhibition of L. monocytogenes which was equivalent to the effect of nisin (350 IU/mL). The antimicrobial spectrum of both melanoidins was also investigated for 10 different species of bacteria, including both Gram-positive and Gram-negative species. While Xyl-Phe-based melanoidin successfully inhibited the growth of Bacillus cereus and Brevibacillus brevis, Xyl-Pro-based melanoidin inhibited the growth of Salmonella enterica Typhimurium. However, no clear trend in the antimicrobial spectrum of the melanoidins against different bacterial species was observed. The findings in the present study suggest that melanoidins generated from xylose with phenylalanine and/or proline could be used as potential novel alternative food preservatives derived from food ingredients to control pathogenic bacteria. IMPORTANCE Although the antimicrobial effect of melanoidins has been reported in some foods, there have been few comprehensive investigations on the antimicrobial activity of combinations of reaction substrates of the Maillard reaction. The present study comprehensively investigated the potential of various combinations of reducing sugars and amino acids. Because the melanoidins examined in this study were produced simply by heating in an autoclave at 121°C for 60 min, the targeted melanoidins can be easily produced. The melanoidins produced from combinations of xylose with either phenylalanine or proline exhibited a wide spectrum of antibiotic effects against various pathogens, including Listeria monocytogenes, Bacillus cereus, and Salmonella enterica Typhimurium. Since the antibacterial effect of the melanoidins on L. monocytogenes was equivalent to that of a nisin solution (350 IU/mL), we might expect a practical application of melanoidins as novel food preservatives.
Collapse
|
7
|
Minj S, Anand S, Martinez-Monteagudo S. Evaluating the effect of conjugation on the bioactivities of whey protein hydrolysates. J Food Sci 2021; 86:5107-5119. [PMID: 34766355 DOI: 10.1111/1750-3841.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
In this study, the ability of a whey protein hydrolysate to exhibit the antimicrobial, antioxidant, and antihypertensive behavior after combining with a reducing carbohydrate was studied. Whey protein hydrolysates with varying degrees of hydrolysis (WPH10, WPH15, and WPH20) were determined for their antimicrobial, antioxidant, and antihypertensive activities. Of these, hydrolysate (WPH10) exhibited the highest antimicrobial activity (with 10-11.2 mm zone of inhibition) against tested microorganisms: Listeria innocua, Staphylococcus aureus, and Bacillus coagulans. Also, the WPH10 exhibited the highest antioxidant (866.56 TEAC µmol/L) and antihypertensive (67.52%) attributes. Hence, based on the highest bioactivity, hydrolysate WPH10 was selected for conjugation with maltodextrin, and the effect of conjugation on the bioactivities was evaluated. The conjugated WPH10 solution demonstrated higher antimicrobial (17.16 mm) and antioxidant activity (1044.37 TEAC µmol/L), whereas a slight decrease in the antihypertensive activity (65.4%) was observed, as compared to WPH10 alone. The conjugated solution was further spray dried and alternatively, freeze-dried. The dried WPH10 conjugate exhibited even higher antimicrobial (18.5 mm) and antioxidant activity (1268.89 TEAC µmol/L) while retaining the antihypertensive activity (65.6%). Overall, the results indicate the ability of the WPH10-maltodextrin to retain the bioactive behavior after combining with a reduced carbohydrate. PRACTICAL APPLICATION: Whey protein hydrolysates upon conjugation with carbohydrates retain the bioactive properties of whey protein, which provides opportunities for application as an ingredient to develop novel health formulations.
Collapse
Affiliation(s)
- Shayanti Minj
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Sergio Martinez-Monteagudo
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
8
|
Shi J, Fu Y, Zhao XH, Lametsch R. Glycation sites and bioactivity of lactose-glycated caseinate hydrolysate in lipopolysaccharide-injured IEC-6 cells. J Dairy Sci 2020; 104:1351-1363. [PMID: 33309364 DOI: 10.3168/jds.2020-19018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/25/2020] [Indexed: 01/13/2023]
Abstract
During the thermal processing of milk, Maillard reactions occur between proteins and lactose to generate glycated proteins. In this study, a lactose-glycated caseinate was hydrolyzed by trypsin. The obtained glycated caseinate (GCN) hydrolysate had a lactose content of 10.8 g/kg of protein. We identified its glycation sites and then assessed it for its protective effect against lipopolysaccharide-induced barrier injury using a rat intestinal epithelial cell line (IEC-6 cells) as a cell model and unglycated caseinate (CN) hydrolysate as a reference. Results from our liquid chromatography-mass spectrometry analysis of the GCN hydrolysate verified that lactose glycation occurred at the Lys residues in 3 casein components (αS1-casein, β-casein, and κ-casein), and this resulted in the formation of 5 peptides with the following amino acid sequences: EMPFPKYPKYPVEPF, HIQKEDVPSE, GSENSEKTTMPL, NQDKTEIPT, and EGIHAQQKEPM. The results from cell experiments showed that the 2 hydrolysates could promote cell growth and decrease lactate dehydrogenase release in the lipopolysaccharide-injured cells; more importantly, they could partially protect the damaged barrier function of the cells by increasing trans-epithelial electrical resistance, decreasing epithelial permeability, and upregulating the expression of the 3 tight junction proteins zonula occludens-1, occludin, and claudin-1. However, compared with CN hydrolysate, GCN hydrolysate showed lower efficacy in protecting against cellular barrier dysfunction. We propose that the different chemical characteristics of the CN hydrolysate and the GCN hydrolysate (i.e., amino acid loss and lactose conjugation) contributed to the lower barrier-protective efficacy of the GCN hydrolysate. During dairy processing, protein glycation of the Maillard type might have a non-negligible, unfavorable effect on dairy proteins, in view of the resulting protein glycation we found and the critical function of proteins for maintaining the integrity of the intestinal barrier.
Collapse
Affiliation(s)
- J Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030 Harbin, China
| | - Y Fu
- College of Food Science, Southwest University, 400715 Chongqing, China
| | - X H Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030 Harbin, China; School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China.
| | - R Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Novel lysozyme–mannooligosaccharide conjugate with improved antimicrobial activity: preparation and characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00499-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Marson GV, Saturno RP, Comunian TA, Consoli L, Machado MTDC, Hubinger MD. Maillard conjugates from spent brewer's yeast by-product as an innovative encapsulating material. Food Res Int 2020; 136:109365. [PMID: 32846542 DOI: 10.1016/j.foodres.2020.109365] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Yeast-based by-products are greatly available, have a rich nutritional composition and functional properties. The spent brewer's yeast (SBY) cells after enzymatic hydrolysis may be a sustainable and low-cost alternative as carrier material for encapsulation processes by spray drying. Our work had as main purpose to characterise the hydrolysed SBY cell debris after the Maillard reaction and to study their potential as a microencapsulation wall material. SBY-based Maillard reaction products (MRPs) were used to encapsulate ascorbic acid (AA) by spray drying. The Maillard Reaction was able to improve the solubility of solids and proteins by 15% and promoted brown color development (230% higher Browning Index). SBY-based MRPs resulted in particles of a high encapsulation yield of AA (101.90 ± 5.5%), a moisture content of about 3.4%, water activity of 0.15, hygroscopicity values ranging from 13.8 to 19.3 gH2O/100 g and a glass transition temperature around 71 °C. The shape and microstructure of the produced particles were confirmed by scanning electron microscopy (MEV), indicating very similar structure for control and AA encapsulated particles. Fourier Transform Infrared Spectroscopy (FT-IR) results confirmed the presence of yeast cell debris in the surface of particles. Ascorbic acid was successfully encapsulated in Maillard conjugates of hydrolyzsd yeast cell debris of Saccharomyces pastorianus and maltodextrin as confirmed by optical microscopy, differential scanning calorimetry, MEV and FT-IR.
Collapse
Affiliation(s)
- Gabriela Vollet Marson
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| | - Rafaela Polessi Saturno
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Talita Aline Comunian
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Larissa Consoli
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | | | - Miriam Dupas Hubinger
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| |
Collapse
|
11
|
Chen K, Zhang H. Fabrication of Oleogels via a Facile Method by Oil Absorption in the Aerogel Templates of Protein-Polysaccharide Conjugates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7795-7804. [PMID: 31961642 DOI: 10.1021/acsami.9b21435] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a novel and facile method was developed to fabricate oleogels. The alginate/soy protein conjugates with excellent emulsifying activity and emulsion stability were prepared via Maillard reaction and freeze-dried to form the aerogel templates, which were then immersed in corn oil within 6 h to induce the oleogels. Compared with the alginate and soy protein solutions, the viscosity and elastic modulus G' of the conjugate solutions increased, indicating the formation of a new macromolecule and strengthened gel network from Maillard reaction. The conjugate aerogels presented the morphology of serious aggregation and conglutination but the higher elastic modulus and better thermal stability, due to the increasing covalent interactions. These aerogel templates showed a good oil absorption of up to 10.89 g/g aerogel and holding capacity of 40%. The resulting oleogels loaded with thymol showed excellent antimicrobial activities against Staphylococcus aureus and Escherichia coli. This work suggests that the fabrication of oleogels is not limited to the choice of existing oleogelators but from a wide variety of protein-polysaccharide conjugates to form the aerogel templates for oil absorption.
Collapse
Affiliation(s)
- Kailun Chen
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- Zhejiang Key Laboratory for Agro-Food Processing , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
12
|
Abdelhedi O, Salem A, Souissi N, Nasri R, Nasri M, Jridi M. Physicochemical, structural and sensory properties of smooth hound autolysates-sugar conjugates formed using a glycosylation reaction. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Fu Y, Zhang Y, Soladoye OP, Aluko RE. Maillard reaction products derived from food protein-derived peptides: insights into flavor and bioactivity. Crit Rev Food Sci Nutr 2019; 60:3429-3442. [PMID: 31738577 DOI: 10.1080/10408398.2019.1691500] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Food protein-derived peptides serve as food ingredients that can influence flavor and bioactivity of foods. The Maillard reaction plays a crucial role in food processing and storage, and generates a wide range of Maillard reaction products (MRPs) that contribute to flavor and bioactivity of foods. Even though the reactions between proteins and carbohydrates have been extensively investigated, the modifications of food protein-derived peptides and the subsequent impacts on flavor and bioactivity of foods have not been fully elucidated. In this review, the flavor and bioactive properties of food-derived peptides are reviewed. The formation mechanisms with respect to MRPs generated from food protein-derived peptides have been discussed. The state-of-the-art studies on impacts of the Maillard reaction on flavor and bioactivity of food protein-derived peptides are also discussed. In addition, some potential negative effects of MRPs are described.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta, Canada
| | - Rotimi E Aluko
- College of Food Science, Southwest University, Chongqing, China.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Chen K, Yang X, Huang Z, Jia S, Zhang Y, Shi J, Hong H, Feng L, Luo Y. Modification of gelatin hydrolysates from grass carp (Ctenopharyngodon idellus) scales by Maillard reaction: Antioxidant activity and volatile compounds. Food Chem 2019; 295:569-578. [DOI: 10.1016/j.foodchem.2019.05.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
|
15
|
Sequential hydrolysis of spent brewer's yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Wang C, Wang H, Sun X, Sun Y, Guo M. Heat-Induced Interactions between Whey Protein and Inulin and Changes in Physicochemical and Antioxidative Properties of the Complexes. Int J Mol Sci 2019; 20:ijms20174089. [PMID: 31438619 PMCID: PMC6747464 DOI: 10.3390/ijms20174089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 01/16/2023] Open
Abstract
Whey protein and inulin at various weight ratios were dry heated at 60 °C for 5 days under relative humidity of 63%. The heated mixtures were found to have significant changes in browning intensity and zeta-potential compared to untreated mixture. Heated samples showed significantly lower surface hydrophobicity than untreated mixtures. Compared with untreated samples, dry-heated samples showed significantly higher 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) scavenging ability with whey protein to inulin mass ratios of 1:2 and 1:3 and significantly higher 2,2′-Azinobis(2-Ethylbenzothiazoline-6-Sulfonate) (ABTS) scavenging abilities and oxygen radical absorbance capacity (ORAC) at all weight ratios. Dry heat-induced interactions between whey protein and inulin was confirmed by changes in Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) protein profile, Fourier Transform Infrared Spectroscopy (FT-IR) and Far-ultraviolet Circular Dichroism (Far-UV CD) spectra. Dry heating caused physicochemical and structural changes of whey protein and therefore the complexes can be used to improve the antioxidative properties of the mixture under certain conditions.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Hao Wang
- Department of Food Science, College of Food Science, Northeast Agriculture University, Harbin 150030, China
| | - Xiaomeng Sun
- Department of Food Science, College of Food Science, Northeast Agriculture University, Harbin 150030, China
| | - Yuxue Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Mingruo Guo
- Department of Food Science, College of Food Science, Northeast Agriculture University, Harbin 150030, China.
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont, VT 05405, USA.
| |
Collapse
|
17
|
Identification of bioactive peptides from half-fin anchovy (Setipinna taty) hydrolysates and further modification using Maillard reaction to improve antibacterial activities. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Nooshkam M, Varidi M, Bashash M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem 2019; 275:644-660. [DOI: 10.1016/j.foodchem.2018.09.083] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022]
|
19
|
Antioxidant and functional properties of protein hydrolysates obtained from starry triggerfish muscle using trypsin from albacore tuna liver. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Han JR, Yan JN, Sun SG, Tang Y, Shang WH, Li AT, Guo XK, Du YN, Wu HT, Zhu BW, Xiong YL. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop ( Chlamys farreri ) mantle hydrolysates-ribose Maillard reaction products. Food Chem 2018; 261:337-347. [DOI: 10.1016/j.foodchem.2018.04.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/19/2018] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
|
21
|
Song R, Shi Q, Yang P, Wei R. In vitromembrane damage induced by half-fin anchovy hydrolysates/glucose Maillard reaction products and the effects on oxidative statusin vivo. Food Funct 2018; 9:785-796. [DOI: 10.1039/c7fo01459g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Through induced H2O2generationin vitro, HAHp(9.0)-G MRPs increased the antioxidant status in normal mice after short-term intake.
Collapse
Affiliation(s)
- Ru Song
- School of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan 316022
- China
| | - Qingqing Shi
- School of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan 316022
- China
| | - Peiyu Yang
- School of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan 316022
- China
| | - Rongbian Wei
- School of Marine Science and Technology
- Zhejiang Ocean University
- Zhoushan 316022
- China
| |
Collapse
|
22
|
Hatab S, Chen ML, Miao W, Lin J, Wu D, Wang C, Yuan P, Deng S. Protease Hydrolysates of Filefish (Thamnaconus modestus) Byproducts Effectively Inhibit Foodborne Pathogens. Foodborne Pathog Dis 2017; 14:656-666. [DOI: 10.1089/fpd.2017.2317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shaimaa Hatab
- College of Food and Pharmacy, Zhejiang Ocean University, ZhouShan, China
- Department of Food Science and Technology, College of Environmental Agricultural Sciences, Arish University, Al-Arish, Egypt
| | - Mei-ling Chen
- College of Food and Pharmacy, Zhejiang Ocean University, ZhouShan, China
| | - Wenhua Miao
- College of Food and Pharmacy, Zhejiang Ocean University, ZhouShan, China
| | - Jiheng Lin
- Zhoushan Institute of Food and Drug Inspection, ZhouShan, China
| | - Dandan Wu
- College of Food and Pharmacy, Zhejiang Ocean University, ZhouShan, China
| | - Changyu Wang
- College of Food and Pharmacy, Zhejiang Ocean University, ZhouShan, China
| | - Pengxiang Yuan
- College of Food and Pharmacy, Zhejiang Ocean University, ZhouShan, China
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, ZhouShan, China
| |
Collapse
|
23
|
Song R, Shi Q, Yang P, Wei R. Identification of antibacterial peptides from Maillard reaction products of half-fin anchovy hydrolysates/glucose via LC-ESI-QTOF-MS analysis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
24
|
Han JR, Zhu ZM, Wu HT, Sun N, Tang Y, Yu CP, Zhao CC, Zhang ZY, Li AT, Yan JN. Kinetics of Antioxidant-Producing Maillard Reaction in the Mixture of Ribose and Sea Cucumber (Stichopus japonicus) Gut Hydrolysates. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1366611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jia-Run Han
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
| | - Zhi-Mo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
- National Engineering Research Center of Seafood, Dalian Liaoning, China
| | - Na Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
- National Engineering Research Center of Seafood, Dalian Liaoning, China
| | - Yue Tang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
- National Engineering Research Center of Seafood, Dalian Liaoning, China
| | - Cui-Ping Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
- National Engineering Research Center of Seafood, Dalian Liaoning, China
| | - Chen-Chen Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
| | - Zheng-Yu Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
| | - Ao-Ting Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
| | - Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning, China
| |
Collapse
|
25
|
Xu Y, Guo H. Role of Advanced Glycation End Products in the Progression of Diabetes Mellitus. ACTA ACUST UNITED AC 2017. [DOI: 10.17352/2455-8583.000019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|