1
|
Xiao Y, Fu J, Pihosh Y, Karmakar K, Zhang B, Domen K, Li Y. Interface engineering for photoelectrochemical oxygen evolution reaction. Chem Soc Rev 2025; 54:1268-1317. [PMID: 39679444 DOI: 10.1039/d4cs00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a promising approach for solving sustainable energy challenges and achieving carbon neutrality goals. The oxygen evolution reaction (OER), a key bottleneck in the PEC water-splitting system occurring at the photoanode/electrolyte interface, plays a fundamental role in sustainable solar fuel production. Proper surface or interface engineering strategies have been proven to be necessary to achieve efficient and stable PEC water oxidation. This review summarizes the recent advances in interface engineering, including junction formation, surface doping, surface passivation or protection, surface sensitization, and OER cocatalyst modification, while highlighting the remarkable research achievements in the field of PEC water splitting. The benefits of each interface engineering strategy and how it enhances the device performance are critically analyzed and compared. Finally, the outlook for the development of interface engineering for efficient PEC water splitting is briefly discussed. This review illustrates the importance of employing rational interface engineering in realizing efficient and stable PEC water splitting devices.
Collapse
Affiliation(s)
- Yequan Xiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, China Three Gorges University, Yichang, Hubei 443002, China
| | - Jie Fu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yuriy Pihosh
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keshab Karmakar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Beibei Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
| | - Yanbo Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Beckedorf M, Holland J, Godin R. Cobalt-Loaded Carbon Nitride Demonstrates Enhanced Photocatalytic Production of H 2 from Lignocellulosic Biomass Components. ARTIFICIAL PHOTOSYNTHESIS (WASHINGTON, D.C.) 2025; 1:50-62. [PMID: 40200991 PMCID: PMC11783807 DOI: 10.1021/aps.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 04/10/2025]
Abstract
Photocatalytic production of hydrogen (H2) from biomass is a promising avenue for advancing sustainable energy generation. We prepared carbon nitride (CN x ) with cobalt (Co) as an oxidation cocatalyst (denoted CN x /Co) to improve photocatalytic H2 production through photoreforming components of lignocellulosic biomass under visual light irradiation. CN x /Co was synthesized by loading Co onto preformed CN x through a straightforward thermal deposition. The thermal loading of Co at 450 °C led to the formation of a mixed valence CoO x , which shifted Co2+ character to Co3+ over the course of the hydrogen evolution reaction (HER). Compared to CN x without Co, our materials with 0.3 and 0.6 wt % Co demonstrate twice the apparent quantum yield (AQY) for H2 production under irradiation at 405 nm using glucose as a sacrificial electron donor (3.0% and 2.8%, respectively, vs 1.4%). Time-resolved spectroscopic investigations indicate that the Co extracts charges in the subnanosecond time scale and promotes the formation of beneficial long-lived charges. Impressively, some photocatalytic activity is observed when using the robust polymers of cellulose and lignin as the oxidation substrates (0.2 and 0.1% AQY, respectively). The ability to oxidize abundant biomass without extensive prepreparation is promising for waste upcycling applications.
Collapse
Affiliation(s)
- Mitchell Beckedorf
- Department
of Chemistry, The University of British
Columbia, 3247 University
Way, Kelowna, BC V1V 1V7, Canada
| | - Jenna Holland
- Department
of Chemistry, The University of British
Columbia, 3247 University
Way, Kelowna, BC V1V 1V7, Canada
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, 3247 University
Way, Kelowna, BC V1V 1V7, Canada
- Clean
Energy Research Center, University of British
Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
- Okanagan
Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, BC V1
V 1 V7, Canada
| |
Collapse
|
3
|
Wang L, Zhang Y. Impact of Interfaces on the Performance of Covalent Organic Frameworks for Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408395. [PMID: 39558696 DOI: 10.1002/smll.202408395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The rise in global temperatures and environmental contamination resulting from traditional fossil fuel usage has prompted a search for alternative energy sources. Utilizing solar energy to drive the direct splitting of water for hydrogen production has emerged as a promising solution to these challenges. Covalent organic frameworks (COFs) are ordered, crystalline materials made up of organic molecules linked by covalent bonds, featuring permanent porosity and a wide range of structural topologies. COFs serve as suitable platforms for solar-driven water splitting to produce hydrogen, as their building blocks can be tailored to possess adjustable band gaps, charge separation capabilities, porosity, wettability, and chemical stability. Here, the impact of the interface in the context of the photocatalytic reaction is focused and propose strategies to enhance the hydrogen production performance of COFs photocatalysis. In particular, how hybrid photocatalytic interfaces affect photocatalytic performance is focused.
Collapse
Affiliation(s)
- Lin Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Reza MS, Ghosh A, Drissi N, Al-Dmour H, Prodhan RK, Islam MM, Begum S, Reza MS, Sultana S. Evaluation of design and device parameters for lead-free Sr 3PBr 3/Sr 3NCl 3 duel-layer perovskite photovoltaic device technology. RSC Adv 2024; 14:36675-36697. [PMID: 39559582 PMCID: PMC11570882 DOI: 10.1039/d4ra07912d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
The study looks into how Sr3PBr3 and Sr3NCl3 double perovskite materials can be used as absorbers in perovskite solar cells (PSCs). Computational Sr3PBr3 and Sr3NCl3 simulations were employed to assess the performance of each absorber together with electron transport layers (ETL), with a particular emphasis on optimizing ETL thickness to improve charge transport and synchronize current outputs. The simulations yielded valuable insights into the electronic and optical characteristics of the individual absorbers. Subsequently, a tandem simulation was performed to adjust each layer's thickness, ensuring that both devices' current outputs were aligned for maximum system efficiency. The findings revealed that the tandem configuration of Sr3PBr3 and Sr3NCl3 surpassed the performance of the individual absorber setups, attributed to the optimized ETL thicknesses that enhanced charge transport and facilitated effective current matching. This study makes a significant contribution to the design and optimization of tandem PSCs utilizing Sr3PBr3 and Sr3NCl3 absorbers, paving the way for improved overall device efficiency. We investigated three device configurations to find the optimum structure. FTO/SnS2/Sr3PBr3/Ni, FTO/SnS2/Sr3NCl3/Ni, and FTO/SnS2/Sr3PBr3/Sr3NCl3/Ni are considered as Device-I, II, and III. In Device-I, the execution parameters are power conversion efficiency (PCE) of 24.26%, an open-circuit voltage (V OC) of 1.23 V, a short-circuit current density (J SC) of 24.65 mA cm-2, and a fill factor (FF) of 87.42%. For Device-II, PCE, FF, V OC, and J SC are correspondingly 20.35%, 87.91%, 1.28 V, and 18.07 mA cm-2. The further refined tandem configuration achieved a PCE of 30.32%, with a V OC of 1.27 V, an FF of 90.14%, and a J SC of 26.44 mA cm-2, demonstrating the potential of this methodology in enhancing PSC performance.
Collapse
Affiliation(s)
- Md Shamim Reza
- Department of Electrical and Electronic Engineering, Begum Rokeya University Rangpur 5400 Bangladesh
| | - Avijit Ghosh
- Department of Electrical and Electronic Engineering, Begum Rokeya University Rangpur 5400 Bangladesh
| | - Nidhal Drissi
- Department of Physics, Faculty of Science, King Khalid University PO Box 9004 Abha 61413 Saudi Arabia
| | - Hmoud Al-Dmour
- Mutah University, Faculty of Science, Department of Physics 61710 Jordan
| | | | - Md Majharul Islam
- Department of Mechanical Engineering, Lamar University Beaumont Texas USA
| | - Shirin Begum
- Department of Industrial and Systems Engineering, Lamar University 4400 MLK Blvd, PO Box-10009 Beaumont 77710 Texas USA
| | - Md Selim Reza
- Department of Electrical and Electronic Engineering, Begum Rokeya University Rangpur 5400 Bangladesh
| | - Sabina Sultana
- Department of Botany, Lalmatia Govt. Mohila College Dhaka-1207 Bangladesh
| |
Collapse
|
5
|
Garg B, Hait P, Basu S. Unlocking solar energy's potential: Dual photocatalytic activities of g-C 3N 4/Sb 2S 3 for hydrogen evolution and tetracycline degradation in sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122403. [PMID: 39244933 DOI: 10.1016/j.jenvman.2024.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
This study focuses on developing a g-C3N4/Sb2S3 heterojunction photocatalyst with different g-C3N4 to Sb2S3 weight ratios (1:1, 1:3, and 3:1) for degrading tetracycline (TC) pollutants. The 1:3 ratio (13 GS) exhibited optimal photocatalytic performance, achieving 99% TC degradation under sunlight within 120 min, compared to 78.4% under visible light and 38% under UV light. The 13 GS catalyst demonstrated strong reusability, maintaining 80% degradation efficiency after six cycles. Scavenger experiments identified hydroxyl radicals as crucial for TC degradation, with DMSO reducing activity by 30%. The photocatalyst also showed high hydrogen production with an apparent quantum efficiency (AQE) of 19.8% under standard conditions, and improved AQE in acidic (23%) and basic (22.7%) conditions, and with CH3OH (23.2%). This g-C3N4/Sb2S3 heterojunction offers a promising solution for degrading toxic contaminants and has the potential for solar-powered applications.
Collapse
Affiliation(s)
- Bhavika Garg
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Pritam Hait
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India
| | - Soumen Basu
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, India.
| |
Collapse
|
6
|
Wadhai S, Thakur P. Synthesis of Ag/Cu decorated 3D self-assembled nanowire TiO 2 photocatalyst for hydrogen production: a promising pathway towards sustainable energy generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60836-60851. [PMID: 39392577 DOI: 10.1007/s11356-024-35238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Here, synthesis and characterization of TiO2 with different morphologies along with the cost-effective bimetallic decoration on optimized 3D self-assembled nanowire TiO2 (NWT) photocatalyst (Ag/Cu-NWT) with overwhelming hydrogen production rate is reported. All the photocatalysts were well characterized by different characterization techniques. Initially, the effect of morphology change obtained by changing the NaOH concentration has been studied for TiO2. Morphology obtained at 10 M NaOH solution, i.e., NWT (678 μmol/g), showed better hydrogen production than morphology obtained at 5 M (410 μmol/g), 15 M (210 μmol/g), and 20 M (160 μmol/g) NaOH solutions. Further, with the aim to achieve comparable or better activity low-cost photocatalyst as compared to Pt-TiO2 system, NWT was decorated with various Cu percentages and then with a minimal percentage of Ag on an optimized Cu-NWT photocatalyst. The observed trend for photocatalytic hydrogen production has been found to be P25 TiO2 < NWT < 1.0Cu-NWT < 0.5Pt-NWT ≤ 0.1Ag/1.0Cu-NWT. The marked increase by a factor of 103 in hydrogen production for the optimized bimetallic 0.1Ag/1.0Cu-NWT (10,184 μmol/g) photocatalyst compared to P25 TiO2 (99 μmol/g), nearly threefold increment in hydrogen production than an optimized 1.0 Cu-NWT (3907 μmol/g) photocatalyst and comparable hydrogen production as compared to 0.5Pt-NWT (10,050 μmol/g) may be attributed to the successful synthesis of a highly porous NWT morphology, which offers large surface area, increased light absorption combined with the synergistic effects of surface plasmon resonance (SPR), and the Schottky barrier for H+ reduction to H2 gas. The optimization of TiO2 morphology and an inexpensive bimetallic decoration strategy opens up promising opportunities for the development of cost-effective photocatalysts in the realm of energy and environment.
Collapse
Affiliation(s)
- Sachin Wadhai
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Pragati Thakur
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
7
|
Goyal A, Zhu Y, Bevan KH. Band Diagram Insights into the Kinetic and Thermodynamic Engineering of Tandem Photocatalytic Cells. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18465-18482. [PMID: 39502801 PMCID: PMC11534008 DOI: 10.1021/acs.jpcc.4c04508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
In this work, we theoretically investigate the impact of kinetic and thermodynamic properties on the performance of photocatalytic cells operating in an unassisted tandem configuration, including electron affinity and ionization energies, recombination rates, and reaction rates. To this end, we present general rules and metrics for identifying and isolating the origin of an observed shift in the onset potential at either the photoanode or the photocathode of these devices. The correlation between kinetic and thermodynamic shifts in the onset potential is demonstrated through the use of band diagrams and key comparable features within readily accessible characterization tools: current-voltage plots are taken both under illumination and in the dark and further coupled with Mott-Schottky plots. To illustrate this conceptual framework, a model system comprised of a p-type doped BiVO4 photocathode and an n-type doped BiVO4 photoanode is employed. By varying each of the aforementioned kinetic and thermodynamic parameters in isolation, the manner in which these various mechanisms shift the onset potential is demonstrated. This work intends to showcase how kinetic and thermodynamic effects are distinctly manifested in these commonly used characterization tools and further proposes thermodynamic band-edge engineering as a potentially useful and largely unexplored avenue for possibly improving tandem cell performance, in addition to the conventional approach of optimizing kinetics.
Collapse
Affiliation(s)
- Aastha Goyal
- Division
of Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Yuanhui Zhu
- Division
of Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Kirk H. Bevan
- Division
of Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
- Centre
for the Physics of Materials, Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
8
|
Tsai CY, Chang WH, Lu MY, Chen LJ. Advances in the heterostructures for enhanced hydrogen production efficiency: a comprehensive review. NANOSCALE 2024; 16:16376-16403. [PMID: 39171376 DOI: 10.1039/d4nr01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The growing global energy demand and heightened environmental consciousness have contributed to the increasing interest in green energy sources, including hydrogen production. However, the efficacy of this technology is contingent upon the efficient separation of charges, high absorption of sunlight, rapid charge transfer rate, abundant active sites and resistance to photodegradation. The utilization of photocatalytic heterostructures coupling two materials has proved to be effective in tackling the aforementioned challenges and delivering exceptional performance in the production of hydrogen. The present article provides a comprehensive overview of operational principles of photocatalysis and the combination of photocatalytic and piezo-catalytic applications with heterostructures, including the transfer behavior and mechanisms of photoexcited non-equilibrium carriers between the materials. Furthermore, the effects of recent advances and state-of-the-art designs of heterostructures on hydrogen production are discussed, offering practical approaches to form heterostructures for efficient hydrogen production.
Collapse
Affiliation(s)
- Chen-Yo Tsai
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Wei-Hsuan Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ming-Yen Lu
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Lih-Juann Chen
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
9
|
Zhang C, Yuan R, Chen H, Zhou B, Cui Z, Zhu B. Advancements in Inorganic Membrane Filtration Coupled with Advanced Oxidation Processes for Wastewater Treatment. Molecules 2024; 29:4267. [PMID: 39275114 PMCID: PMC11397059 DOI: 10.3390/molecules29174267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Membrane filtration is an effective water recycling and purification technology to remove various pollutants in water. Inorganic membrane filtration (IMF) technology has received widespread attention because of its unique high temperature and corrosion resistance. Commonly used inorganic membranes include ceramic membranes and carbon-based membranes. As novel catalytic inorganic membrane processes, IMF coupled with advanced oxidation processes (AOPs), can realize the separation and in situ degradation of pollutants, thus mitigating membrane contamination. In this paper, the types and performance of IMF are discussed. The influencing factors of inorganic membranes in practical wastewater treatment are summarized. The applications, advantages, and disadvantages of the coupled process of IMF and AOPs are summarized and outlined. Finally, the challenges and prospects of IMF and IMF coupled with AOPs are presented, respectively. This contributes to the design and development of coupled systems of membrane filtration with inorganic materials and IMF coupled with AOPs for practical wastewater treatment.
Collapse
Affiliation(s)
- Chaoying Zhang
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zexin Cui
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Boyun Zhu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Ascrizzi E, Goniakowski J, Yang J, Agnoli S, Ferrari AM. DFT study of the moiré pattern of FeO monolayer on Au(111). Phys Chem Chem Phys 2024; 26:20103-20111. [PMID: 39010758 DOI: 10.1039/d4cp01546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Metal oxides are a class of material of particular interest for catalytic purposes. Among them the iron oxide as a monolayer supported on gold, FeO/Au, stands out for its capability to promote the CO oxidation and the dissociation of O2 and H2. In this work, we use density functional theory calculations to characterize interfacial properties of this heterostructure. We consider a FeO/Au realistic model system, managing to reproduce the moiré pattern experimentally found. Specific features of the high-symmetry domains of the moiré are identified, providing a robust ground for establishing a structure-activity relationship and guessing how the surface would behave in catalytic conditions. We also describe a strategy to model smaller systems representative of each high-symmetry domains of the moiré, which will be useful in the future to model catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Eleonora Ascrizzi
- Dipartimento di Chimica, Università di Torino, via Pietro Giuria 5, I-10125 Turin, Italy.
| | - Jacek Goniakowski
- CNRS, Sorbonne Université, Institut des NanoSciences de Paris, UMR 7588, 4 Place Jussieu, F-75005 Paris, France
| | - Jijin Yang
- Department of Chemical Sciences, University of Padua, via Francesco Marzolo, 1, Padua 35131, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padua, via Francesco Marzolo, 1, Padua 35131, Italy
| | - Anna Maria Ferrari
- Dipartimento di Chimica, Università di Torino, via Pietro Giuria 5, I-10125 Turin, Italy.
| |
Collapse
|
11
|
Liu M, Lu Y, Song J, Ma B, Qiu K, Bai L, Wang Y, Chen Y, Tang Y. First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc 2CF 2 and GaN/Sc 2CF 2 Heterostructures. Molecules 2024; 29:3303. [PMID: 39064882 PMCID: PMC11279752 DOI: 10.3390/molecules29143303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Heterostructure catalysts are highly anticipated in the field of photocatalytic water splitting. AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are proposed in this work, and the electronic structures were revealed with the first-principles method to explore their photocatalytic properties for water splitting. The results found that the thermodynamically stable AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are indirect semiconductors with reduced band gaps of 1.75 eV and 1.84 eV, respectively. These two heterostructures have been confirmed to have type-Ⅰ band alignments, with both VBM and CBM contributed to by the Sc2CF2 layer. AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures exhibit the potential for photocatalytic water splitting as their VBM and CBM stride over the redox potential of water. Gibbs free energy changes in HER occurring on AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are as low as -0.31 eV and -0.59 eV, respectively. The Gibbs free energy change in HER on the AlN (GaN) layer is much lower than that on the Sc2CF2 surface, owing to the stronger adsorption of H on AlN (GaN). The AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures possess significant improvements in absorption range and intensity compared to monolayered AlN, GaN, and Sc2CF2. In addition, the band gaps, edge positions, and absorption properties of AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures can be effectively tuned with strains. All the results indicate that AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are suitable catalysts for photocatalytic water splitting.
Collapse
Affiliation(s)
- Meiping Liu
- School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, China
| | - Yidan Lu
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jun Song
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Benyuan Ma
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Kangwen Qiu
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Liuyang Bai
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yinling Wang
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yuanyuan Chen
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Yong Tang
- Henan Key Laboratory of Smart Lighting, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
12
|
Androutsopoulos A, Sader S, Miliordos E. Potential of Molecular Catalysts with Electron-Rich Transition Metal Centers for Addressing Long-Standing Chemistry Enigmas. J Phys Chem A 2024; 128:4401-4411. [PMID: 38797970 DOI: 10.1021/acs.jpca.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molecular complexes with electron-rich metal centers are highlighted as potential catalysts for the following five important chemical transformations: selective conversion of methane to methanol, capture and utilization of carbon dioxide, fixation of molecular nitrogen, water splitting, and recycling of perfluorochemicals. Our initial focus lies on negatively charged metal centers and ligands that can stabilize anionic metal atoms. Catalysts with electron-rich metal atoms (CERMAs) can sustain catalytic cycles with a "ping-pong" mechanism, where one or more electrons are transferred from the metal center to the substrate and back. The donated electrons can activate the chemical bonds of the substrate by populating its antibonding orbitals. At the last step of the catalytic cycle, the electrons return to the metal and the product interacts only weakly with the formed anion, which enables the solvent molecules to remove the product fast from the catalytic cycle and prevent subsequent unfavorable reactions. This process resembles electrocatalysis, but the metal serves as both an anode and a cathode (molecular electrocatalysis). We also analyze the usage of CERMAs as the base of Frustrated Lewis pairs proposing a new type of bimetallic catalysts. This Featured Article aspires to initiate systematic experimental and theoretical studies on CERMAs and their reactivity, the potential of which has probably been underestimated in the literature.
Collapse
Affiliation(s)
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | | |
Collapse
|
13
|
Liu R, Liu S, Lin J, Zhang X, Li Y, Pan H, Kong L, Zhu S, Wang J. Bi-directional charge transfer channels in highly crystalline carbon nitride enabling superior photocatalytic hydrogen evolution. NANOSCALE 2024; 16:9802-9810. [PMID: 38712434 DOI: 10.1039/d4nr00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introducing a donor-acceptor (D-A) unit is an effective approach to facilitate charge transfer in polymeric carbon nitride (PCN) and enhance photocatalytic performance. However, the introduction of hetero-molecules can lead to a decrease in crystallinity, limiting interlayer charge transfer and inhibiting further improvement. In this study, we constructed a novel D-A type carbon nitride with significantly higher crystallinity and a bi-directional charge transfer channel, which was achieved through 2,5-thiophenedicarboxylic acid (2,5-TDCA)-assisted self-assembly followed by KCl-templated calcination. The thiophene and cyano groups introduced serve as the electron donor and acceptor, respectively, enhancing in-plane electron delocalization. Additionally, introduced potassium ions are intercalated among the adjacent layers of carbon nitride, creating an interlayer charge transfer channel. Moreover, the highly ordered structure and improved crystallinity further facilitate charge transfer. As a result, the as-prepared photocatalyst exhibits superior photocatalytic hydrogen evolution (PHE) activity of 7.449 mmol h-1 g-1, which is 6.03 times higher than that of pure carbon nitride. The strategy of developing crystalline D-A-structured carbon nitride with controlled in-plane and interlayer charge transfer opens new avenues for the design of carbon nitride with enhanced properties for PHE.
Collapse
Affiliation(s)
- Runlu Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyuan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingyi Lin
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoxiao Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hui Pan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lingti Kong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
14
|
Kong T, Liao A, Xu Y, Qiao X, Zhang H, Zhang L, Zhang C. Recent advances and mechanism of plasmonic metal-semiconductor photocatalysis. RSC Adv 2024; 14:17041-17050. [PMID: 38808242 PMCID: PMC11130645 DOI: 10.1039/d4ra02808b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Benefiting from the unique surface plasmon properties, plasmonic metal nanoparticles can convert light energy into chemical energy, which is considered as a potential technique for enhancing plasmon-induced semiconductor photocatalytic reactions. Due to the shortcomings of large bandgap and high carrier recombination rate of semiconductors, their applications are limited in the field of sustainable and clean energy sources. Different forms of plasmonic nanoparticles have been reported to improve the photocatalytic reactions of adjacent semiconductors, such as water splitting, carbon dioxide reduction, and organic pollutant degradation. Although there are various reports on plasmonic metal-semiconductor photocatalysis, the related mechanism and frontier progress still need to be further explored. This review provides a brief explanation of the four main mechanisms of plasmonic metal-semiconductor photocatalysis, namely, (i) enhanced local electromagnetic field, (ii) light scattering, (iii) plasmon-induced hot carrier injection and (iv) plasmon-induced resonance energy transfer; some related typical frontier applications are also discussed. The study on the mechanism of plasmonic semiconductor complexes will be favourable to develop a new high-performance semiconductor photocatalysis technology.
Collapse
Affiliation(s)
- Ting Kong
- School of Science, Xi'an University of Posts & Telecommunications Xi'an 710121 China
| | - Aizhen Liao
- School of Science, Xi'an University of Posts & Telecommunications Xi'an 710121 China
| | - Yonggang Xu
- School of Science, Xi'an University of Posts & Telecommunications Xi'an 710121 China
| | - Xiaoshuang Qiao
- School of Science, Xi'an University of Posts & Telecommunications Xi'an 710121 China
| | - Hanlu Zhang
- School of Science, Xi'an University of Posts & Telecommunications Xi'an 710121 China
| | - Linji Zhang
- School of Science, Xi'an University of Posts & Telecommunications Xi'an 710121 China
| | - Chengyun Zhang
- School of Electronic Engineering, Xi'an University of Posts & Telecommunications Xi'an 710121 China
| |
Collapse
|
15
|
Christudas Beena N, Magnard NPL, Puggioni D, Dos Reis R, Chatterjee K, Zhan X, Dravid VP, Rondinelli JM, Jensen KMØ, Skrabalak SE. Influence of Composition and Structure on the Optoelectronic Properties of Photocatalytic Bi 4NbO 8Cl-Bi 2GdO 4Cl Intergrowths. Inorg Chem 2024; 63:8131-8141. [PMID: 38639743 DOI: 10.1021/acs.inorgchem.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl-Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl-Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.
Collapse
Affiliation(s)
- Nayana Christudas Beena
- Department of Chemistry, Indiana University-Bloomington, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Nicolas P L Magnard
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Danilo Puggioni
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaustav Chatterjee
- Department of Chemistry, Indiana University-Bloomington, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Xun Zhan
- Department of Chemistry, Indiana University-Bloomington, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
- International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University-Bloomington, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Tanos F, Razzouk A, Lesage G, Cretin M, Bechelany M. A Comprehensive Review on Modification of Titanium Dioxide-Based Catalysts in Advanced Oxidation Processes for Water Treatment. CHEMSUSCHEM 2024; 17:e202301139. [PMID: 37987138 DOI: 10.1002/cssc.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
It has become necessary to develop effective strategies to prevent and reduce water pollution as a result of the increase in dangerous pollutants in water reservoirs. Consequently, there is a need to design new catalyst materials to promote the efficiency of advanced oxidation processes (AOPs) in the field of wastewater treatment plant to ensure the mineralization of trace organic contaminants. A notable approach gaining attention involves the coupling of sulfate radicals-based AOPs to photocatalysis or electrocatalysis processes, aiming to achieve the complete removal of refractory contaminants into water and carbon dioxide. Titanium dioxide as metal oxide has received great attention for its catalytic application in water purification. TiO2 catalysts offer a multitude of advantages in AOPs. They are characterized by their high photocatalytic activity under both ultraviolet and visible light, making them environmentally friendly due to the absence of toxic byproducts during oxidation. Their versatility is remarkable, finding utility in various AOPs, from photocatalysis to photo-Fenton processes. TiO2's durability ensures long-lasting catalytic activity, which is crucial for continuous treatment processes, and their cost-effectiveness is particularly advantageous. Furthermore, their chemical stability allows it to withstand varying pH conditions. However, the large band gap energy and low electrical conductivity hinder the catalytic reaction effectiveness. This review aims to examine various approaches to enhance the catalytic performance of titanium dioxide, with the objective of enabling more efficient water purification methods.
Collapse
Affiliation(s)
- Fida Tanos
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Antonio Razzouk
- Laboratoire d'Analyses Chimiques, Faculty of Sciences, LAC-Lebanese University, Jdeidet, 90656, Lebanon
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
- Gulf University for Science and Technology, GUST, 32093, Hawally, Kuwait
| |
Collapse
|
17
|
Sohail M, Rauf S, Irfan M, Hayat A, Alghamdi MM, El-Zahhar AA, Ghernaout D, Al-Hadeethi Y, Lv W. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. NANOSCALE ADVANCES 2024; 6:1286-1330. [PMID: 38419861 PMCID: PMC10898449 DOI: 10.1039/d3na00442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Photocatalytic water splitting (PWS) is an up-and-coming technology for generating sustainable fuel using light energy. Significant progress has been made in the developing of PWS innovations over recent years. In addition to various water-splitting (WS) systems, the focus has primarily been on one- and two-steps-excitation WS systems. These systems utilize singular or composite photocatalysts for WS, which is a simple, feasible, and cost-effective method for efficiently converting prevalent green energy into sustainable H2 energy on a large commercial scale. The proposed principle of charge confinement and transformation should be implemented dynamically by conjugating and stimulating the photocatalytic process while ensuring no unintentional connection at the interface. This study focuses on overall water splitting (OWS) using one/two-steps excitation and various techniques. It also discusses the current advancements in the development of new light-absorbing materials and provides perspectives and approaches for isolating photoinduced charges. This article explores multiple aspects of advancement, encompassing both chemical and physical changes, environmental factors, different photocatalyst types, and distinct parameters affecting PWS. Significant factors for achieving an efficient photocatalytic process under detrimental conditions, (e.g., strong light absorption, and synthesis of structures with a nanometer scale. Future research will focus on developing novel materials, investigating potential synthesis techniques, and improving existing high-energy raw materials. The endeavors aim is to enhance the efficiency of energy conversion, the absorption of radiation, and the coherence of physiochemical processes.
Collapse
Affiliation(s)
- Muhammad Sohail
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| | - Sana Rauf
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 PR China
| | - Muhammad Irfan
- Department of Chemistry, Hazara University Mansehra 21300 Pakistan
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University 321004 Jinhua Zhejiang P. R. China
| | - Majed M Alghamdi
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Adel A El-Zahhar
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il PO Box 2440 Ha'il 81441 Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida PO Box 270 Blida 09000 Algeria
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Weiqiang Lv
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| |
Collapse
|
18
|
Zhao H, Zhu Y, Wang C, Zhang Y, Zhang L. Application of GaS nanotubes as efficient catalysts in photocatalytic hydrolysis: a first principles study. Phys Chem Chem Phys 2024; 26:6148-6154. [PMID: 38299681 DOI: 10.1039/d3cp06072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Photocatalytic hydrogen production is a promising and sustainable technology that converts solar energy into hydrogen energy with the assistance of semiconductor photocatalysts. Herein, we investigated the geometric structure and electronic and photocatalytic properties of single-walled GaS nanotubes under the framework of density functional theory with HSE06 as an exchange-correlation function. This paper presents the first study on the geometric structure, electron, and photocatalytic properties of single-walled GaS nanotubes. The results show that the strain energy and formation energy of GaS nanotubes decrease, while the structure is more stable, with increasing radius. Our study shows that after rolling from the slab, the nanotubes undergo a transition from an indirect band gap to a direct band gap and have appropriate band gaps for absorbing visible light. Moreover, it is speculated that the large disparity between the effective mass of electrons and holes can reduce charge carrier recombination. Among them, the nanotube with a diameter larger than (35, 0) showed promising band edge positions for photocatalytic hydrolysis redox potential with pH values between 0 and 7. Based on these properties, we believe that GaS nanotubes will be promising in photocatalytic hydrolysis.
Collapse
Affiliation(s)
- Huanyu Zhao
- School of Physics and Materials Science, Changji University, Changji 831100, People's Republic of China.
| | - Yingtao Zhu
- School of Physics and Materials Science, Changji University, Changji 831100, People's Republic of China.
| | - Chao Wang
- School of Physics and Materials Science, Changji University, Changji 831100, People's Republic of China.
| | - Yujiao Zhang
- School of Physics and Materials Science, Changji University, Changji 831100, People's Republic of China.
| | - Long Zhang
- School of Physics and Materials Science, Changji University, Changji 831100, People's Republic of China.
| |
Collapse
|
19
|
Li P, Kowalczyk D, Liessem J, Elnagar MM, Mitoraj D, Beranek R, Ziegenbalg D. Optimizing reaction conditions for the light-driven hydrogen evolution in a loop photoreactor. Beilstein J Org Chem 2024; 20:74-91. [PMID: 38264450 PMCID: PMC10804759 DOI: 10.3762/bjoc.20.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Photocatalytic hydrogen production from water is a promising way to fulfill energy demands and attain carbon emission reduction goals effectively. In this study, a loop photoreactor with a total volume of around 500 mL is presented for the photocatalytic hydrogen evolution using a Pt-loaded polymeric carbon nitride photocatalyst under 365 nm irradiation in the presence of sacrificial reducing agents. The fluid flow pattern of the developed photoreactor was characterized experimentally and the photon flux incident to the loop photoreactor was measured by chemical actinometry. The system displayed exceptional stability, with operation sustained over 70 hours. A design of experiment (DOE) analysis was used to systematically investigate the influence of key parameters - photon flux, photocatalyst loading, stirring speed, and inert gas flow rate - on the hydrogen generation rate. Linear relationships were found between hydrogen evolution rate and photon flux as well as inert gas flow rate. Photocatalyst loading and stirring speed also showed linear correlations, but could not be correctly described by DOE analysis. Instead, linear single parameter correlations could be applied. Notably, the loop photoreactor demonstrated an external photon efficiency up to 17 times higher than reported in literature studies, while scaling the reactor size by a factor of 10.
Collapse
Affiliation(s)
- Pengcheng Li
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Daniel Kowalczyk
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Liessem
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Mohamed M Elnagar
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Dariusz Mitoraj
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Radim Beranek
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Dirk Ziegenbalg
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
20
|
Shanmugaratnam S, Ravirajan P, Yohi S, Velauthapillai D. Well-Separated Photoinduced Charge Carriers on Hydrogen Production Using NiS 2/TiO 2 Nanocomposites. ACS OMEGA 2024; 9:1627-1633. [PMID: 38222661 PMCID: PMC10785294 DOI: 10.1021/acsomega.3c08194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Photocatalytic hydrogen production is a sustainable and greenhouse-gas-free method that requires an efficient and abundant photocatalyst, which minimizes energy consumption. Currently, interests in transition metal chalcogenide materials have been utilized in different applications due to their quantum confinement effect and low band gaps. In this study, different wt % of NiS2-embedded TiO2 nanocomposites were synthesized by a facile hydrothermal method and utilized for photocatalytic hydrogen production under extended solar irradiation. Among the materials studied, the highest amount (4.185 mmol g-1) of hydrogen production was observed with 15 wt % of the NiS2/TiO2 nanocomposite. The highest photocatalytic activity may be due to the well separation of photoinduced charge carriers on the catalyst, which was confirmed by the electrochemical studies. Thus, we believe that these photocatalysts are promising candidates for future applications.
Collapse
Affiliation(s)
- Sivagowri Shanmugaratnam
- Clean
Energy Research Laboratory (CERL), Department of Physics, University of Jaffna, Jaffna 40000, Sri Lanka
- Faculty
of Engineering and Science, Western Norway
University of Applied Sciences, P.O. Box 7030, Bergen 5020, Norway
| | - Punniamoorthy Ravirajan
- Clean
Energy Research Laboratory (CERL), Department of Physics, University of Jaffna, Jaffna 40000, Sri Lanka
| | | | - Dhayalan Velauthapillai
- Faculty
of Engineering and Science, Western Norway
University of Applied Sciences, P.O. Box 7030, Bergen 5020, Norway
| |
Collapse
|
21
|
Krysiak S, Gotić M, Madej E, Moreno Maldonado AC, Goya GF, Spiridis N, Burda K. The effect of ultrafine WO 3 nanoparticles on the organization of thylakoids enriched in photosystem II and energy transfer in photosystem II complexes. Microsc Res Tech 2023; 86:1583-1598. [PMID: 37534550 DOI: 10.1002/jemt.24394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
In this work, a new approach to construct self-assembled hybrid systems based on natural PSII-enriched thylakoid membranes (PSII BBY) is demonstrated. Superfine m-WO3 NPs (≈1-2 nm) are introduced into PSII BBY. Transmission electron microscopy (TEM) measurements showed that even the highest concentrations of NPs used did not degrade the PSII BBY membranes. Using atomic force microscopy (AFM), it is shown that the organization of PSII BBY depends strongly on the concentration of NPs applied. This proved that the superfine NPs can easily penetrate the thylakoid membrane and interact with its components. These changes are also related to the modified energy transfer between the external light-harvesting antennas and the PSII reaction center, shown by absorption and fluorescence experiments. The biohybrid system shows stability at pH 6.5, the native operating environment of PSII, so a high rate of O2 evolution is expected. In addition, the light-induced water-splitting process can be further stimulated by the direct interaction of superfine WO3 NPs with the donor and acceptor sides of PSII. The water-splitting activity and stability of this colloidal system are under investigation. RESEARCH HIGHLIGHTS: The phenomenon of the self-organization of a biohybrid system composed of thylakoid membranes enriched in photosystem II and superfine WO3 nanoparticles is studied using AFM and TEM. A strong dependence of the organization of PSII complexes within PSII BBY membranes on the concentration of NPs applied is observed. This observation turns out to be crucial to understand the complexity of the mechanism of the action of WO3 NPs on modifications of energy transfer from external antenna complexes to the PSII reaction center.
Collapse
Affiliation(s)
- S Krysiak
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| | - M Gotić
- Division of Materials Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - E Madej
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - A C Moreno Maldonado
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - G F Goya
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - N Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - K Burda
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| |
Collapse
|
22
|
Li JQ, Hu JY, Cheng J. Water effect on the band edges of anatase TiO 2 surfaces: A theoretical study on charge migration across surface heterojunctions and facet-dependent photoactivity. Phys Chem Chem Phys 2023; 25:29143-29154. [PMID: 37869989 DOI: 10.1039/d3cp03662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The charge migration mechanism across the surface heterojunction constructed on an anatase TiO2 nanocrystal is still under debate. To solve this longstanding question, we present a systematic study of the band edges (vs. standard hydrogen electrode, SHE) of aqueous TiO2 interfaces with anatase (101), (100) and (001) surfaces, using a combination of density functional theory-based molecular dynamics (DFTMD) and efficient computational SHE (cSHE) methods. Our calculations show that the conduction band minimum (CBM) of the (101) surface is lower than that of (001) and (100) surfaces, which is thermodynamically favorable for electrons migrating to the (101) surface through the surface heterojunction, while the hole preferentially accumulates on the (100) surface due to its highest valence band minimum (VBM). In addition, we qualitatively explore the facet-dependent photocatalytic activity of anatase TiO2. Due to the possession of both the beneficial atomic structure (with 100% undercoordinated Ti5c atoms at the surface) and electronic structure (more strongly oxidizing holes in the VBM and efficient electron-hole spatial separation separation), the (001) surface exhibits the most efficient photocatalytic performance for water oxidation. Furthermore, it is confirmed that the use of simplified theoretical models neglecting the detailed atomic structures of water at the aqueous interface is inadequate to predict the band alignment of semiconductors relative to water redox potentials, so that it may result in substantial errors in evaluating the photocatalytic performance of materials to be used for water splitting.
Collapse
Affiliation(s)
- Jie-Qiong Li
- State Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jin-Yuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
23
|
Eidsvåg H, Vajeeston P, Velauthapillai D. Doped MoS 2 Polymorph for an Improved Hydrogen Evolution Reaction. ACS OMEGA 2023; 8:26263-26275. [PMID: 37521613 PMCID: PMC10373197 DOI: 10.1021/acsomega.3c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Green hydrogen produced from solar energy could be one of the solutions to the growing energy shortage as non-renewable energy sources are phased out. However, the current catalyst materials used for photocatalytic water splitting (PWS) cannot compete with other renewable technologies when it comes to efficiency and production cost. Transition-metal dichalcogenides, such as molybdenum disulfides (MoS2), have previously proven to have electronic and optical properties that could tackle these challenges. In this work, optical properties, the d-band center, and Gibbs free energy are calculated for seven MoS2 polymorphs using first-principles calculations and density functional theory (DFT) to show that they could be suitable as photocatalysts for PWS. Out of the seven, the two polymorphs 3Ha and 2R1 were shown to have d-band center values closest to the optimal value, while the Gibbs free energy for all seven polymorphs was within 5% of each other. In a previous study, we found that 3Hb had the highest electron mobility among all seven polymorphs and an optimal bandgap for photocatalytic reactions. The 3Hb polymorphs were therefore selected for further study. An in-depth analysis of the enhancement of the electronic properties and the Gibbs free energy through substitutional doping with Al, Co, N, and Ni was carried out. For the very first time, substitutional doping of MoS2 was attempted. We found that replacing one Mo atom with Al, Co, I, N, and Ni lowered the Gibbs free energy by a factor of 10, which would increase the hydrogen evolution reaction of the catalyst. Our study further shows that 3Hb with one S atom replaced with Al, Co, I, N, or Ni is dynamically and mechanically stable, while for 3Hb, replacing one Mo atom with Al and Ni makes the structure stable. Based on the low Gibbs free energy, stability, and electronic bandgap 3Hb, MoS2 doped with Al for one Mo atom emerges as a promising candidate for photocatalytic water splitting.
Collapse
Affiliation(s)
- Håkon Eidsvåg
- Department
of Computing, Mathematics and Physics, Western
Norway University of Applied Sciences, Inndalsveien 28, Box, 5063 Bergen, Norway
| | - Ponniah Vajeeston
- Department
of Chemistry, Center for Materials Science and Nanotechnology, University of Oslo, Box 1033 Blindern, N-0315 Oslo, Norway
| | - Dhayalan Velauthapillai
- Department
of Computing, Mathematics and Physics, Western
Norway University of Applied Sciences, Inndalsveien 28, Box, 5063 Bergen, Norway
| |
Collapse
|
24
|
Mamun AA, Billah A, Anisuzzaman Talukder M. Effects of activation overpotential in photoelectrochemical cells considering electrical and optical configurations. Heliyon 2023; 9:e17191. [PMID: 37484406 PMCID: PMC10361385 DOI: 10.1016/j.heliyon.2023.e17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Photoelectrochemical cells (PECs) are a promising option for directly converting solar energy into chemical energy by producing hydrogen (H2) gas, thus providing a clean alternative to consuming fossil fuels. H2 as fuel is free from any carbon footprints and negative environmental impacts. Therefore, the H2 production, especially directly using sunlight in PECs, is critically important for the rapidly growing energy demand of the world. Although promising, PECs are inefficient and must overcome a few inherent losses in producing H2-the most important being the activation overpotential (ηa) required for splitting water. This work analyzes the impact of ηa on solar-to-fuel efficiency (ηSTF) and H2 production rate (HPR). This work also discusses choosing appropriate photo-absorbing materials based on their energy bandgaps and suitable electrode pairs to achieve desired ηSTF and HPR for different electrical and optical PEC configurations. Significant changes are observed in ηSTF and HPR when ηa is considered in water splitting.
Collapse
|
25
|
Liu P, Dörfler A, Tabrizi AA, Skokan L, Rawach D, Wang P, Peng Z, Zhang J, Ruediger AP, Claverie JP. In Operando Photoswitching of Cu Oxidation States in Cu-Based Plasmonic Heterogeneous Photocatalysis for Efficient H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257196 DOI: 10.1021/acsami.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metal nanoparticles (NP) supported on TiO2 are known to be efficient photocatalysts for solar-to-chemical energy conversion. While TiO2 decorated with copper NPs has the potential to become an attractive system, the poor oxidative stability of Cu severely limits its applicability. In this work, we demonstrate that, when Cu NPs supported on TiO2 nanobelts (NBs) are engaged in the photocatalytic generation of H2 from water under light illumination, Cu is not only oxidized in CuO but also dissolved under the form of Cu+/Cu2+ ions, leading to a continuous reconstruction of nanoparticles via Ostwald ripening. By nanoencapsulating the CuOx (Cu/CuO/Cu2O) NPs by a few layers of carbon supported on TiO2 (TC@C), Ostwald ripening can be suppressed. Simultaneously, the resulting CuOx@C NPs are photoreduced under light illumination to generate Cu@C NPs. This photoswitching strategy allows the preparation of a Cu plasmonic photocatalyst with enhanced activity for H2 production. Remarkably, the photocatalyst is even active when illuminated with visible light, indicating a clear plasmonic enhancement of photocatalytic activity from the surface plasmonic resonance (SPR) effect of Cu NPs. Three-dimensional electromagnetic wave-frequency domain (3D-EWFD) simulations were conducted to confirm the SPR enhancement. This advance bodes for the development of scalable multifunctional Cu-based plasmonic photocatalysts for solar energy transfer.
Collapse
Affiliation(s)
- Peipei Liu
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Andreas Dörfler
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Afsaneh Asgariyan Tabrizi
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Lilian Skokan
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Diane Rawach
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Peikui Wang
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
| | - Zhiyuan Peng
- Department of Chemistry and Biochemistry, Université du Québec à Montréal, CP8888, Montréal QC H3C 3P8, Canada
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Andreas Peter Ruediger
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Jerome P Claverie
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
| |
Collapse
|
26
|
Lee JH, Jeong SY, Son YD, Lee SW. Facile Fabrication of TiO 2 Quantum Dots-Anchored g-C 3N 4 Nanosheets as 0D/2D Heterojunction Nanocomposite for Accelerating Solar-Driven Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091565. [PMID: 37177110 PMCID: PMC10180858 DOI: 10.3390/nano13091565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
TiO₂ semiconductors exhibit a low catalytic activity level under visible light because of their large band gap and fast recombination of electron-hole pairs. This paper reports the simple fabrication of a 0D/2D heterojunction photocatalyst by anchoring TiO₂ quantum dots (QDs) on graphite-like C₃N₄ (g-C₃N₄) nanosheets (NSs); the photocatalyst is denoted as TiO₂ QDs@g-C₃N₄. The nanocomposite was characterized via analytical instruments, such as powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, t orange (MO) under solar light were compared. The TiO₂ QDs@g-C₃N₄ photocatalyst exhibited 95.57% MO degradation efficiency and ~3.3-fold and 5.7-fold higher activity level than those of TiO₂ QDs and g-C₃N₄ NSs, respectively. Zero-dimensional/two-dimensional heterojunction formation with a staggered electronic structure leads to the efficient separation of photogenerated charge carriers via a Z-scheme pathway, which significantly accelerates photocatalysis under solar light. This study provides a facile synthetic method for the rational design of 0D/2D heterojunction nanocomposites with enhanced solar-driven catalytic activity.
Collapse
Affiliation(s)
- Jin-Hyoek Lee
- Chemical and Biological Engineering Department, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Sang-Yun Jeong
- Chemical and Biological Engineering Department, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Young-Don Son
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Sang-Wha Lee
- Chemical and Biological Engineering Department, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
27
|
Farah J, Malloggi F, Miserque F, Kim J, Gravel E, Doris E. Continuous Flow Photocatalytic Hydrogen Production from Water Synergistically Activated by TiO 2, Gold Nanoparticles, and Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1184. [PMID: 37049277 PMCID: PMC10097087 DOI: 10.3390/nano13071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Titanium dioxide nanoparticles were combined with carbon nanotubes and gold to develop improved photocatalysts for the production of hydrogen from water. The entangled nature of the nanotubes allowed for the integration of the photoactive hybrid catalyst, as a packed-bed, in a microfluidic photoreactor, and the chips were studied in the photocatalyzed continuous flow production of hydrogen. The combination of titanium dioxide with carbon nanotubes and gold significantly improved hydrogen production due to a synergistic effect between the multi-component system and the stabilization of the active catalytic species. The titanium dioxide/carbon nanotubes/gold system permitted a 2.5-fold increase in hydrogen production, compared to that of titanium dioxide/carbon nanotubes, and a 20-fold increase, compared to that of titanium dioxide.
Collapse
Affiliation(s)
- Joseph Farah
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Frédéric Miserque
- Université Paris-Saclay, Service de Recherche en Corrosion et Comportement des Matériaux, CEA, 91191 Gif-sur-Yvette, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Edmond Gravel
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| | - Eric Doris
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| |
Collapse
|
28
|
Research Progress of Tungsten Oxide-Based Catalysts in Photocatalytic Reactions. Catalysts 2023. [DOI: 10.3390/catal13030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Photocatalysis technology is a potential solution to solve the problem of environmental pollution and energy shortage, but its wide application is limited by the low efficiency of solar energy conversion. As a non-toxic and inexpensive n-type semiconductor, WO3 can absorb approximately 12% of sunlight which is considered one of the most attractive photocatalytic candidates. However, the narrow light absorption range and the high recombination rate of photogenerated electrons and holes restrict the further development of WO3-based catalysts. Herein, the studies on preparation and modification methods such as doping element, regulating defects and constructing heterojunctions to enlarge the range of excitation light to the visible region and slow down the recombination of carriers on WO3-based catalysts so as to improve their photocatalytic performance are reviewed. The mechanism and application of WO3-based catalysts in the dissociation of water, the degradation of organic pollutants, as well as the hydrogen reduction of N2 and CO2 are emphatically investigated and discussed. It is clear that WO3-based catalysts will play a positive role in the field of future photocatalysis. This paper could also provide guidance for the rational design of other metallic oxide (MOx) catalysts for the increasing conversion efficiency of solar energy.
Collapse
|
29
|
Xie K, Xu S, Xu K, Hao W, Wang J, Wei Z. BiOCl Heterojunction photocatalyst: Construction, photocatalytic performance, and applications. CHEMOSPHERE 2023; 317:137823. [PMID: 36649899 DOI: 10.1016/j.chemosphere.2023.137823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BiOCl semiconductors have attracted extensive amounts of attention and have substantial potential in alleviating energy shortages, improving sterilization performance, and solving environmental issues. To improve the optical quantum efficiency of layered BiOCl, the lifetimes of photogenerated electron-hole pairs, and BiOCl reduction capacity. During the past decade, researchers have designed many effective methods to weaken the effects of these limitations, and heterojunction construction is regarded as one of the most promising strategies. In this paper, BiOCl heterojunction photocatalysts designed and synthesized by various research groups in recent years were reviewed, and their photocatalytic properties were tested. Among them, direct Z-scheme and S-scheme photocatalysts have high redox potentials and intense redox capabilities. Hence, they exhibit excellent photocatalytic activity. Furthermore, the applications of BiOCl heterojunctions for pollutant degradation, CO2 reduction, water splitting, N2 fixation, organic synthesis, and tumor ablation are also reviewed. Finally, we summarize research on the BiOCl heterojunctions and put forth new insights on overcoming their present limitations.
Collapse
Affiliation(s)
- Kefeng Xie
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Shengyuan Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jie Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, Henan, China; School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China.
| |
Collapse
|
30
|
Han S, Yang J, Wei X, Huang Y, Zhang J, Wang Z. Tuning Catalytic Performance of C
2
N/GaN Heterostructure for Hydrogen Evolution Reaction by Doping. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Shuang Han
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
- Chongqing BOE Optoelectronics Technology Co., Ltd
| | - Jian Yang
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Xiumei Wei
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Yuhong Huang
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Jianmin Zhang
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Zhenduo Wang
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| |
Collapse
|
31
|
Sabir AS, Pervaiz E, Khosa R, Sohail U. An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Adv 2023; 13:4963-4993. [PMID: 36793292 PMCID: PMC9924225 DOI: 10.1039/d2ra07901a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, there has been a resurgence of interest in developing green and renewable alternate energy sources as a solution to the energy and environmental problems produced by conventional fossil fuel use. As a very effective energy transporter, hydrogen (H2) is a possible candidate for the future energy supply. Hydrogen production by water splitting is a promising new energy option. Strong, efficient, and abundant catalysts are required for increasing the efficiency of the water splitting process. Cu-based materials as an electrocatalyst have shown promising results for application in the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in water splitting. In this review, our aim is to cover the latest developments in the synthesis, characterisation, and electrochemical behaviour of Cu-based materials as a HER, and OER electrocatalyst, highlighting the impact that these advances have had on the field. It is intended that this review article will serve as a roadmap for developing novel, cost-effective electrocatalysts for electrochemical water splitting based on nanostructured materials with particular emphasis on Cu-based materials for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Abdul Shakoor Sabir
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Erum Pervaiz
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Rafiq Khosa
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Umair Sohail
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|
32
|
Semiconductors-based Z-scheme materials for photoelectrochemical water splitting: A review. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
33
|
Sorbelli D, Belpassi L, Belanzoni P. Widening the Landscape of Small Molecule Activation with Gold-Aluminyl Complexes: A Systematic Study of E-H (E=O, N) Bonds, SO 2 and N 2 O Activation. Chemistry 2023; 29:e202203584. [PMID: 36660925 DOI: 10.1002/chem.202203584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
The electronic features of gold-aluminyl complexes have been thoroughly explored. Their similarity with Group 14 dimetallenes and other metal-aluminyl complexes suggests that their reactivity with small molecules beyond carbon dioxide could be accessed. In this work, the reactivity of the [t Bu3 PAuAl(NON)] (NON=4,5-bis(2,6 diisopropylanilido)-2,7-ditert-butyl-9,9-dimethylxanthene) complex towards water, ammonia, sulfur dioxide and nitrous oxide is computationally explored. The reaction mechanisms computed for each substrate strongly suggest that all activation processes are in principle experimentally feasible. Electronic structure analysis highlights that, in all cases, the reactivity is driven by the presence of the poorly polarized electron-sharing gold-aluminyl bond, which induces a radical-like reactivity of the complex towards all the substrates. A flat topology of the potential energy surface (PES) has been found for the reaction with N2 O, where two almost isoenergetic transition states can be located along the same reaction coordinate with different geometries, suggesting that the N2 O binding mode may not be a good indicator of the nature of N2 O activation in a cooperative bimetallic reactivity. In addition, the catalytic potentialities of these complexes have been explored in the framework of nitrous oxide reduction. The study reveals that the [t Bu3 PAuAl(NON)] complex might be an efficient catalyst towards oxidation of phosphines (and boranes) via N2 O reduction. These findings underline recurring trends in the novel chemistry of gold-aluminyl complexes and call for experimental feedbacks.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy.,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy.,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8, 06123, Perugia, Italy
| |
Collapse
|
34
|
McQueen E, Bai Y, Sprick RS. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4299. [PMID: 36500922 PMCID: PMC9739915 DOI: 10.3390/nano12234299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic processes have been inorganic semiconductors, but since the first report of carbon nitride organic semiconductors have also been considered. Conjugated materials have been relatively extensively studied as photocatalysts for solar fuels generation over the last 5 years due to the synthetic control over composition and properties. The understanding of materials' properties, its impact on performance and underlying factors is still in its infancy. Here, we focus on the impact of interfaces, and nanostructure on fundamental processes which significantly contribute to performance in these organic photocatalysts. In particular, we focus on presenting explicit examples in understanding the interface of polymer photocatalysts with water and how it affects performance. Wetting has been shown to be a clear factor and we present strategies for increased wettability in conjugated polymer photocatalysts through modifications of the material. Furthermore, the limited exciton diffusion length in organic polymers has also been identified to affect the performance of these materials. Addressing this, we also discuss how increased internal and external surface areas increase the activity of organic polymer photocatalysts for hydrogen production from water.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Yang Bai
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
35
|
Moreno YP, de Escobar CC, Skovroinski E, Weibel DE, dos Santos JH. TiO2/SiO2 dopant-free nanophotocatalysts for highly efficient photocatalytic water splitting: Challenging traditional TiO2-based systems. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
36
|
Wu J, Liu Z, Lin X, Jiang E, Zhang S, Huo P, Yan Y, Zhou P, Yan Y. Breaking through water-splitting bottlenecks over carbon nitride with fluorination. Nat Commun 2022; 13:6999. [DOI: 10.1038/s41467-022-34848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractGraphitic carbon nitride has long been considered incapable of splitting water molecules into hydrogen and oxygen without adding small molecule organics despite the fact that the visible-light response and proper band structure fulfills the proper energy requirements to evolve oxygen. Herein, through in-situ observations of a collective C = O bonding, we identify the long-hidden bottleneck of photocatalytic overall water splitting on a single-phased g-C3N4 catalyst via fluorination. As carbon sites are occupied with surface fluorine atoms, intermediate C=O bonding is vastly minimized on the surface and an order-of-magnitude improved H2 evolution rate compared to the pristine g-C3N4 catalyst and continuous O2 evolution is achieved. Density functional theory calculations suggest an optimized oxygen evolution reaction pathway on neighboring N atoms by C–F interaction, which effectively avoids the excessively strong C-O interaction or weak N-O interaction on the pristine g-C3N4.
Collapse
|
37
|
Abstract
Photocatalysis represents a promising technology that might alleviate the current environmental crisis. One of the most representative photocatalysts is graphitic carbon nitride (g-C3N4) due to its stability, cost-effectiveness, facile synthesis procedure, and absorption properties in visible light. Nevertheless, pristine g-C3N4 still exhibits low photoactivity due to the rapid recombination of photo-induced electron-hole (e−-h+) pairs. To solve this drawback, Z-scheme photocatalysts based on g-C3N4 are superior alternatives since these systems present the same band configuration but follow a different charge carrier recombination mechanism. To contextualize the topic, the main drawbacks of using g-C3N4 as a photocatalyst in environmental applications are mentioned in this review. Then, the basic concepts of the Z-scheme and the synthesis and characterization of the Z-scheme based on g-C3N4 are addressed to obtain novel systems with suitable photocatalytic activity in environmental applications (pollutant abatement, H2 production, and CO2 reduction). Focusing on the applications of the Z-scheme based on g-C3N4, the most representative examples of these systems are referred to, analyzed, and commented on in the main text. To conclude this review, an outlook of the future challenges and prospects of g-C3N4-based Z-scheme photocatalysts is addressed.
Collapse
|
38
|
Recent Progress in Photocatalytic Removal of Environmental Pollution Hazards in Water Using Nanostructured Materials. SEPARATIONS 2022. [DOI: 10.3390/separations9100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Water pollution has become a critical issue because of the Industrial Revolution, growing populations, extended droughts, and climate change. Therefore, advanced technologies for wastewater remediation are urgently needed. Water contaminants are generally classified as microorganisms and inorganic/organic pollutants. Inorganic pollutants are toxic and some of them are carcinogenic materials, such as cadmium, arsenic, chromium, cadmium, lead, and mercury. Organic pollutants are contained in various materials, including organic dyes, pesticides, personal care products, detergents, and industrial organic wastes. Nanostructured materials could be potential candidates for photocatalytic reduction and for photodegradation of organic pollutants in wastewater since they have unique physical, chemical, and optical properties. Enhanced photocatalytic performance of nanostructured semiconductors can be achieved using numerous techniques; nanostructured semiconductors can be doped with different species, transition metals, noble metals or nonmetals, or a luminescence agent. Furthermore, another technique to enhance the photocatalytic performance of nanostructured semiconductors is doping with materials that have a narrow band gap. Nanostructure modification, surface engineering, and heterojunction/homojunction production all take significant time and effort. In this review, I report on the synthesis and characterization of nanostructured materials, and we discuss the photocatalytic performance of these nanostructured materials in reducing environmental pollutants.
Collapse
|
39
|
Shi J, Yang L, Zhang J, Wang Z, Zhu W, Wang Y, Zou Z. Dual MOF‐Derived MoS
2
/CdS Photocatalysts with Rich Sulfur Vacancies for Efficient Hydrogen Evolution Reaction. Chemistry 2022; 28:e202202019. [DOI: 10.1002/chem.202202019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jinyan Shi
- School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures Kunshan Innovation Institute of Nanjing University Jiangsu Key Laboratory for Nanotechnology Nanjing University 22 Hankou Road, Gulou District Nanjing 210093 P. R. China
| | - Le Yang
- School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures Kunshan Innovation Institute of Nanjing University Jiangsu Key Laboratory for Nanotechnology Nanjing University 22 Hankou Road, Gulou District Nanjing 210093 P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures Kunshan Innovation Institute of Nanjing University Jiangsu Key Laboratory for Nanotechnology Nanjing University 22 Hankou Road, Gulou District Nanjing 210093 P. R. China
| | - Zejin Wang
- School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures Kunshan Innovation Institute of Nanjing University Jiangsu Key Laboratory for Nanotechnology Nanjing University 22 Hankou Road, Gulou District Nanjing 210093 P. R. China
| | - Wenbo Zhu
- School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures Kunshan Innovation Institute of Nanjing University Jiangsu Key Laboratory for Nanotechnology Nanjing University 22 Hankou Road, Gulou District Nanjing 210093 P. R. China
| | - Ying Wang
- School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue, Qixia District Nanjing 210023 P. R. China
- Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures Kunshan Innovation Institute of Nanjing University Jiangsu Key Laboratory for Nanotechnology Nanjing University 22 Hankou Road, Gulou District Nanjing 210093 P. R. China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures Kunshan Innovation Institute of Nanjing University Jiangsu Key Laboratory for Nanotechnology Nanjing University 22 Hankou Road, Gulou District Nanjing 210093 P. R. China
| |
Collapse
|
40
|
Kanoun MB, Alshoaibi A, Goumri-Said S. Hybrid Density Functional Investigation of Cu Doping Impact on the Electronic Structures and Optical Characteristics of TiO 2 for Improved Visible Light Absorption. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5645. [PMID: 36013781 PMCID: PMC9412576 DOI: 10.3390/ma15165645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
We report a theoretical investigation of the influence of Cu doping into TiO2 with various concentrations on crystal structure, stability, electronic structures and optical absorption coefficient using density functional theory via the hybrid formalism based on Heyd Scuseria Ernzerhof. Our findings show that oxygen-rich environments are better for fabricating Cu-doped materials and that the energy of formation for Cu doping at the Ti site is lower than for Cu doping at the O site under these environments. It is found that Cu doping introduces intermediate bands into TiO2, narrowing the band gap. Optical absorption curves show that the Cu-doped TiO2 can successfully harvest visible light. The presence of widely intermediate bands above the valence-band edge could explain the increase in the visible light absorption range. However, the intensity of visible light absorption rises with the increase in doping concentration.
Collapse
Affiliation(s)
- Mohammed Benali Kanoun
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Souraya Goumri-Said
- Physics Department, College of Science, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
41
|
Constructing porous carbon nitride nanosheets for efficient visible-light-responsive photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 628:214-221. [PMID: 35988516 DOI: 10.1016/j.jcis.2022.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
The photocatalytic performance of polymeric carbon nitride (CN) is mainly restricted by the poor mass charge separation efficiency and poor light absorption due to its polymeric nature. The conventional strategies to address these problems involved constructing a nanosheets structure would result in a blue shifted light absorption and increased exciton binding energy. Here, with combination of ammonia etching and selectively hydrogen-bond breaking, holey carbon nitride nanosheets (hCNNS) were constructed, thus widening the light absorption range, and spontaneously shortening the migration distance of electrons and holes in the lateral and vertical directions, respectively. Further analysis also found out the reserved atomic structure order endowed hCNNS with the relatively high redox potential. When irradiated with visible light (λ > 420 nm) and loaded with 3 wt% Pt as the cocatalyst, the hydrogen evolution rate of hCNNS was about 40 times higher than the bulk CN, and the apparent quantum yield (AQY) of hCNNS is 1.47% at 435 ± 15 nm. We expect this research can provide a new sight for achieving highly efficient solar utilization of CN-based photocatalysts.
Collapse
|
42
|
Gagliardi S, Rondino F, Paoletti C, Falconieri M. On the Morphology of Nanostructured TiO 2 for Energy Applications: The Shape of the Ubiquitous Nanomaterial. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2608. [PMID: 35957039 PMCID: PMC9370519 DOI: 10.3390/nano12152608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023]
Abstract
Nanostructured titania is one of the most commonly encountered constituents of nanotechnology devices for use in energy-related applications, due to its intrinsic functional properties as a semiconductor and to other favorable characteristics such as ease of production, low toxicity and chemical stability, among others. Notwithstanding this diffusion, the quest for improved understanding of the physical and chemical mechanisms governing the material properties and thus its performance in devices is still active, as testified by the large number of dedicated papers that continue to be published. In this framework, we consider and analyze here the effects of the material morphology and structure in determining the energy transport phenomena as cross-cutting properties in some of the most important nanophase titania applications in the energy field, namely photovoltaic conversion, hydrogen generation by photoelectrochemical water splitting and thermal management by nanofluids. For these applications, charge transport, light transport (or propagation) and thermal transport are limiting factors for the attainable performances, whose dependence on the material structural properties is reviewed here on its own. This work aims to fill the gap existing among the many studies dealing with the separate applications in the hope of stimulating novel cross-fertilization approaches in this research field.
Collapse
Affiliation(s)
| | | | | | - Mauro Falconieri
- ENEA, The Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy; (S.G.); (F.R.); (C.P.)
| |
Collapse
|
43
|
Abstract
The advent of fuel cells has led to a series of studies on hydrogen production. As an excellent hydrogen carrier, methanol can be used for reforming to produce hydrogen. Copper-based catalysts have been widely used in methanol reforming due to their high catalytic activity and low-cost preparation. However, copper-based catalysts have been subjected to poor stability due to spontaneous combustion, sintering, and deactivation. Thus, the research on the optimization of copper-based catalysts is of great significance. This review analyzes several major factors that affect the stability of copper-based catalysts, and then comments on the progress made in recent years to improve the catalytic stability through various methods, such as developing preparation methods, adding promoters, and optimizing supports. A large number of studies have shown that sintering and carbon deposition are the main reasons for the deactivation of copper-based catalysts. It was found that the catalysts prepared by the modified impregnation method exhibit higher catalytic activity and stability. For the promoters and supports, it was also found that the doping of metal oxides such as MgO and bimetallic oxides such as CeO2-ZrO2 as the support could present better catalytic performance for the methanol reforming reaction. It is of great significance to discover some new materials, such as copper-based spinel oxide, with a sustained-release catalytic mechanism for enhancing the stability of Cu-based catalysts. However, the interaction mechanism between the metal and the support is not fully understood, and the research of some new material copper-based catalysts in methanol reforming has not been fully studied. These are the problems to be solved in the future.
Collapse
|
44
|
Al-mahamad LL. Analytical study to determine the optical properties of gold nanoparticles in the visible solar spectrum. Heliyon 2022; 8:e09966. [PMID: 35874063 PMCID: PMC9304735 DOI: 10.1016/j.heliyon.2022.e09966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
In this work the optical properties of the formed gold nanoparticles, that obtained upon reducing the gold(I):6-thioguanosine hydrogel by dimethylamine borane (DMAB) have been studied. The analytical measurements to calculate the optical band gap showed a significant narrowing in the optical band gap value (Eg). Tauc plot was used to estimate the optical band gap (Eg) with the direct and indirect allowed transitions, before and after the reducing process. Narrowing the band gap is very important to increase the efficiency of the semiconductor material as it leads to absorbing in the visible region of the solar spectrum.
Collapse
Affiliation(s)
- Lamia L.G. Al-mahamad
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
45
|
Abstract
Hydrogen (H2) has emerged as a sustainable energy carrier capable of replacing/complementing the global carbon-based energy matrix. Although studies in this area have often focused on the fundamental understanding of catalytic processes and the demonstration of their activities towards different strategies, much effort is still needed to develop high-performance technologies and advanced materials to accomplish widespread utilization. The main goal of this review is to discuss the recent contributions in the H2 production field by employing nanomaterials with well-defined and controllable physicochemical features. Nanoengineering approaches at the sub-nano or atomic scale are especially interesting, as they allow us to unravel how activity varies as a function of these parameters (shape, size, composition, structure, electronic, and support interaction) and obtain insights into structure–performance relationships in the field of H2 production, allowing not only the optimization of performances but also enabling the rational design of nanocatalysts with desired activities and selectivity for H2 production. Herein, we start with a brief description of preparing such materials, emphasizing the importance of accomplishing the physicochemical control of nanostructures. The review finally culminates in the leading technologies for H2 production, identifying the promising applications of controlled nanomaterials.
Collapse
|
46
|
Wang L, Huang Z, Yang X, Rogée L, Huang X, Zhang X, Lau SP. Review on optofluidic microreactors for photocatalysis. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Four interrelated issues have been arising with the development of modern industry, namely environmental pollution, the energy crisis, the greenhouse effect and the global food crisis. Photocatalysis is one of the most promising methods to solve them in the future. To promote high photocatalytic reaction efficiency and utilize solar energy to its fullest, a well-designed photoreactor is vital. Photocatalytic optofluidic microreactors, a promising technology that brings the merits of microfluidics to photocatalysis, offer the advantages of a large surface-to-volume ratio, a short molecular diffusion length and high reaction efficiency, providing a potential method for mitigating the aforementioned crises in the future. Although various photocatalytic optofluidic microreactors have been reported, a comprehensive review of microreactors applied to these four fields is still lacking. In this paper, we review the typical design and development of photocatalytic microreactors in the fields of water purification, water splitting, CO2 fixation and coenzyme regeneration in the past few years. As the most promising tool for solar energy utilization, we believe that the increasing innovation of photocatalytic optofluidic microreactors will drive rapid development of related fields in the future.
Collapse
Affiliation(s)
- Lei Wang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Ziyu Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xiaohui Yang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Lukas Rogée
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Xiaowen Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xuming Zhang
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Shu Ping Lau
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| |
Collapse
|
47
|
Wang H, Cheng H, Lv H, Xu H, Wu X, Yang J. Molecular Design of Two-Dimensional Covalent Heptazine Frameworks for Photocatalytic Overall Water Splitting under Visible Light. J Phys Chem Lett 2022; 13:3949-3956. [PMID: 35476932 DOI: 10.1021/acs.jpclett.2c00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic water splitting sustainably offers clean hydrogen energy, but it is challenging to produce low-cost photocatalysts that split water stoichiometrically into H2 and O2 without sacrificial agents under visible light. Here, we designed 17 two-dimensional (2D) covalent heptazine frameworks (CHFs) by topologically assembling heptazine and benzene-containing molecular units that provide active sites for hydrogen and oxygen evolution reactions, respectively. Among them, 12 CHFs have band gap values of <3.0 eV with band margins straddling the chemical reaction potential of H2/H+ and O2/H2O. In particular, a 2D H@DBTD CHF based on heptazine and 4,7-diphenyl-2,1,3-benzothiadiazole is a potential photocatalyst with a band gap of 2.47 eV for overall water splitting, which was confirmed with the calculated Gibbs free energy, non-adiabatic molecular dynamics, and preliminary experiment. This study presents an experimentally feasible molecular design of 2D CHFs as metal-free photocatalysts for overall water splitting under visible light.
Collapse
Affiliation(s)
- Haiyun Wang
- School of Chemistry and Materials Sciences, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Cheng
- School of Chemistry and Materials Sciences, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haifeng Lv
- School of Chemistry and Materials Sciences, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hangxun Xu
- School of Chemistry and Materials Sciences, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- School of Chemistry and Materials Sciences, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Lyu S, Younis MA, Liu Z, Zeng L, Peng X, Yang B, Li Z, Lei L, Hou Y. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Perera DC, Rasaiah JC. Exchange Functionals and Basis Sets for Density Functional Theory Studies of Water Splitting on Selected ZnO Nanocluster Catalysts. ACS OMEGA 2022; 7:12556-12569. [PMID: 35474813 PMCID: PMC9026035 DOI: 10.1021/acsomega.1c05666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In this communication, we use density functional theory (DFT) to study the structural (geometry) and electronic properties (vertical detachment energy and electron affinity) of ZnO monomers and dimers that can be used to form ZnO clusters of different sizes, with a view to adapting one or more of them as catalysts or photocatalysts, standing alone or on suitable substrates like graphene, to split water. We also investigate different pairs of exchange functionals and basis sets to optimize their choice in our DFT calculations and to compare the singlet-triplet energy gaps of small ZnO clusters of different sizes to select an optimal cluster size for water splitting. We find that the B3LYP/DGDZVP2 exchange functional/basis set is a reliable combination for use with DFT to calculate the geometry and electronic properties of small ZnO nanoclusters from among several other combinations of exchange functionals and basis sets. Comparisons of the singlet-triplet energy gaps show that the trimer (ZnO)3 has an energy gap of 58.66 k cal/mol. which is approximately equal to the energy of a visible photon at a wavelength of 500 nm, and a HOMO-LUMO gap of 4.4 eV, making it a suitable choice of photocatalyst for the oxidation of water from among six (ZnO) n nanoclusters of monomers, with n ranging from 1 to 6. We used this exchange functional/basis set to study the structural and energetic details of hydration and hydrolysis of water absorbed on the (ZnO)3 nanocatalyst and calculated the corresponding potential energy profiles to identify three sets of singlet-triplet pathways for water splitting. Detailed study of a pathway showed that oxygen is produced after hydrogen, and the rate-determining step is the formation of hydrogen.
Collapse
|