1
|
Calabrese EJ, Pressman P, Hayes AW, Baldwin L, Agathokleous E, Kapoor H, Dhawan G, Kapoor R, Calabrese V. Kaempferol, a widely ingested dietary flavonoid and supplement, enhances biological performance via hormesis, especially for ageing-related processes. Mech Ageing Dev 2025; 225:112065. [PMID: 40287100 DOI: 10.1016/j.mad.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Kaempferol is a polyphenol in various fruits and vegetables. It is also commercially developed and sold to consumers as a supplement. It has been extensively assessed in clinical trials for clinical utility based upon its numerous experimentally based chemopreventive properties. Kaempferol has been evaluated at the levels of molecule, cell, and individual animal, showing a broad spectrum of biological effects. Kaempferol-induced hormetic concentration responses are common, being reported in many cell types and biological models for numerous endpoints. While the hormetic effects of kaempferol are biologically diverse, there has been a strong focus on age-related endpoints affecting numerous organ systems and endpoints, indicating that kaempferol is a senolytic agent, showing similar properties as quercetin and fisetin. This paper offers the first integrated evaluation of kaempferol-induced hormetic dose responses, their quantitative characteristics, mechanistic explanations, extrapolative strengths or limitations, and related experimental design, biomedical, therapeutic, ageing, and public health, including ageing related applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, University of Massachusetts, Morrill I-N344, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Linda Baldwin
- Independent Researcher, Sapphire Lane, Greenfield, MA 01301, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Harshita Kapoor
- Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India; Independent Consultant, Hartford, CT, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
2
|
Amano S, Matsumoto M, Morimoto M, Kawamoto H, Takeshita F, Yasui T, Sakagami H. Efficacy of toothpaste containing Brazilian green propolis extracts with an optimal kaempferide/betuletol ratio for improving oral microbiota: A randomized, controlled, paired crossover study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118762. [PMID: 39214193 DOI: 10.1016/j.jep.2024.118762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis is a resinous substance collected by honeybees from various plant sources and has been used in traditional folk medicine for centuries. Propolis has various biological properties, including antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. The use of propolis in oral health care is attributable to its antimicrobial and anti-inflammatory effects. However, limited evidence exists on the in vivo efficacy of propolis against periodontal pathogens. AIM OF THE STUDY We aimed to evaluate the efficacy of Brazilian green propolis (BGP)-containing toothpaste for improving the oral environment and define its antibacterial compounds. MATERIALS AND METHODS Overall, 48 student volunteers aged 18-40 years (24 females and 24 males) were randomly categorized into the BGP and placebo groups. The BGP and placebo groups received toothpaste with and without BGP, respectively. After a baseline assessment, the plaque index (PI) score, gingival index (GI) score, and proportion of periodontal pathogens on the tongue surface were analyzed at 0, 1, and 2 weeks. Antibacterial compounds were identified using liquid-liquid partitioning, high-performance liquid chromatography purification, and nuclear magnetic resonance methods. RESULTS The concentration of BGP in the toothpaste was set at 0.0347 w/v%. Compared with the placebo group, the BGP group demonstrated a reduction in the PI score (p < 0.05) but not in the GI score, as well as a reduction in Porphyromonas gingivalis (Pg)/Total bacteria (Tb), Fusobacterium nucleatum (Fn)/Tb, and Aggregatibacter actinomycetemcomitans (Aa)/Tb (p < 0.05) but not in Streptococcus salivalius/Tb. Effect sizes for Pg, Fn and Aa were 0.360, 0.556, and 0.164, respectively. The antibacterial compounds of the BGP-containing toothpaste included a mixture of kaempferide/betuletol. CONCLUSIONS We confirmed the efficacy of propolis toothpaste with an optimal kaempferide/betuletol ratio for improving oral microbiota, thereby suggesting that BGP toothpaste is clinically useful in maintaining oral health and preventing periodontal disease.
Collapse
Affiliation(s)
- Shigeru Amano
- Meikai University Research Institute of Odontology, Japan.
| | - Masaru Matsumoto
- Division of Sports Dentistry Meikai University School of Dentistry, Japan
| | - Masanori Morimoto
- Department of Applied Biological Chemistry/Graduate School of Agriculture Kindai University, Japan.
| | | | | | | | | |
Collapse
|
3
|
Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, Rahmani AH. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024; 29:2007. [PMID: 38731498 PMCID: PMC11085411 DOI: 10.3390/molecules29092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fadiyah A. Alharbi
- Department of Obstetrics/Gynecology, Maternity and Children’s Hospital, Buraydah 52384, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
4
|
Shen P, Sun Y, Jiang X, Zhou X, Nian B, Wang W, Zhang J. Interaction of bioactive kaempferol with HMGB1: Investigation by multi-spectroscopic and molecular simulation methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122360. [PMID: 36724682 DOI: 10.1016/j.saa.2023.122360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Chronic and persistent inflammation associated with excessive high mobility group protein 1 (HMGB1) is a risk factor for various diseases. Dietary intake of kaempferol has been proven to be effective in reducing HMGB1 levels and the degree of inflammation, but the structural mechanism remains unclear. In this context, we first investigated the interaction between bioactive kaempferol and HMGB1 using multi-spectroscopic and molecular simulation techniques. The surface plasmon resonance (SPR) data indicated that kaempferol binds directly to HMGB1 with a Kd value of 2.89 × 10-5 M. Binding of kaempferol with HMGB1 led to the intrinsic fluorescence quenching and modest secondary structure change of HMGB1 supported by fluorescence spectrometry and circular dichroism (CD). Using dynamic light scattering (DLS), it was found that kaempferol induced the aggregation of HMGB1 protein complex to form larger particles. On HMGB1-activated RAW264.7 cells, kaempferol co-incubation exhibited a remarkable inhibitory effect on nitric oxide (NO) release with an IC50 value of 5.02 μM, which was lower than that of quercetin. In silico, kaempferol binds to HMGB1 mainly through hydrogen bonds and hydrophobic forces. Collectively, our study showed kaempferol as a potential HMGB1 inhibitor, mainly acting by direct binding to HMGB1 and inducing its conformational changes, which provides clues for the treatment of chronic inflammation by kaempferol.
Collapse
Affiliation(s)
- Pingping Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yueming Sun
- The Affiliated Baiyun Hospital of Guizhou Medical University, Guizhou 550025, PR China
| | - Xuewa Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaoyang Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Binbin Nian
- RWTH Aachen University, Aachen 52062, Germany
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210046, PR China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
5
|
de Oliveira Rodrigues Junior E, de Santana IR, Durço AO, Conceição LSR, Barreto AS, Menezes IAC, Roman-Campos D, Dos Santos MRV. The effects of flavonoids in experimental sepsis: A systematic review and meta-analysis. Phytother Res 2023. [PMID: 37115723 DOI: 10.1002/ptr.7846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Sepsis is a host's dysregulated immune response to an infection associated with systemic inflammation and excessive oxidative stress, which can cause multiple organ failure and death. The literature suggests that flavonoids, a broad class of secondary plant metabolites, have numerous biological activities which can be valuable in the treatment of sepsis. This study aimed to review the effects of flavonoids on experimental sepsis, focusing mainly on survival rate, and also summarizing information on its mechanisms of action. We searched in the main databases up to November 2022 using relevant keywords, and data were extracted and analyzed qualitatively and quantitatively. Thirty-two articles met the study criteria for review and 29 for meta-analysis. Overall, 30 different flavonoids were used in the studies. The flavonoids were able to strongly inhibit inflammatory response by reducing the levels of important pro-inflammatory mediators, for example, tumor necrosis factor-alpha and interleukin-1β, oxidative stress, and showed antibacterial and anti-apoptotic actions. The meta-analysis found an increase of 50% in survival rate of the animals treated with flavonoids. They appear to act as multi-target drugs and may be an excellent therapeutic alternative to reduce a number of the complications caused by sepsis, and consequently, to improve survival rate.
Collapse
Affiliation(s)
| | - Izabel Rodrigues de Santana
- Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - Aimée Obolari Durço
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - Lino Sérgio Rocha Conceição
- Department of Physical Therapy, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| | - André Sales Barreto
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Márcio Roberto Viana Dos Santos
- Department of Physiology, Federal University of Sergipe, Sao Cristovao, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Hospital Universitário, Aracaju, Sergipe, Brazil
| |
Collapse
|
6
|
Winiarska-Mieczan A, Kwiecień M, Jachimowicz-Rogowska K, Donaldson J, Tomaszewska E, Baranowska-Wójcik E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int J Mol Sci 2023; 24:ijms24032258. [PMID: 36768580 PMCID: PMC9916817 DOI: 10.3390/ijms24032258] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Depressive disorders can affect up to 350 million people worldwide, and in developed countries, the percentage of patients with depressive disorders may be as high as 10%. During depression, activation of pro-inflammatory pathways, mitochondrial dysfunction, increased markers of oxidative stress, and a reduction in the antioxidant effectiveness of the body are observed. It is estimated that approximately 30% of depressed patients do not respond to traditional pharmacological treatments. However, more and more attention is being paid to the influence of active ingredients in food on the course and risk of neurological disorders, including depression. The possibility of using foods containing polyphenols as an element of diet therapy in depression was analyzed in the review. The possibility of whether the consumption of products such as polyphenols could alleviate the course of depression or prevent the progression of it was also considered. Results from preclinical studies demonstrate the potential of phenolic compounds have the potential to reduce depressive behaviors by regulating factors related to oxidative stress, neuroinflammation, and modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-81-445-67-44
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
7
|
Mahomoodally MF, Aumeeruddy MZ, Legoabe LJ, Dall’Acqua S, Zengin G. Plants' bioactive secondary metabolites in the management of sepsis: Recent findings on their mechanism of action. Front Pharmacol 2022; 13:1046523. [PMID: 36588685 PMCID: PMC9800845 DOI: 10.3389/fphar.2022.1046523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a severe inflammatory response to systemic infection and is a threatening cause of death in intensive care units. In recent years, a number of studies have been conducted on the protective effect of natural products against sepsis-induced organ injury. However, a comprehensive review of these studies indicating the mechanisms of action of the bioactive compounds is still lacking. In this context, this review aimed to provide an updated analysis of the mechanism of action of plants' secondary metabolites in the management of sepsis. Scopus, Science Direct, Google Scholar, and PubMed were searched from inception to July 2022. A variety of secondary metabolites were found to be effective in sepsis management including allicin, aloin, cepharanthine, chrysin, curcumin, cyanidin, gallic acid, gingerol, ginsenoside, glycyrrhizin, hesperidin, kaempferol, narciclasine, naringenin, naringin, piperine, quercetin, resveratrol, rosmarinic acid, shogaol, silymarin, sulforaphane, thymoquinone, umbelliferone, and zingerone. The protective effects exerted by these compounds can be ascribed to their antioxidant properties as well as induction of endogenous antioxidant mechanisms, and also via the downregulation of inflammatory response and reduction of biochemical and inflammatory markers of sepsis. These findings suggest that these secondary metabolites could be of potential therapeutic value in the management of sepsis, but human studies must be performed to provide strength to their potential clinical relevance in sepsis-related morbidity and mortality reduction.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam,Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam,*Correspondence: Mohamad Fawzi Mahomoodally, ; Stefano Dall’Acqua,
| | | | - Lesetja Jan Legoabe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Potchefstroom, South Africa
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,*Correspondence: Mohamad Fawzi Mahomoodally, ; Stefano Dall’Acqua,
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| |
Collapse
|
8
|
Zhang P, Song Y, Wang H, Fu Y, Zhang Y, Pavlovna KI. Optimization of Flavonoid Extraction from Salix babylonica L. Buds, and the Antioxidant and Antibacterial Activities of the Extract. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175695. [PMID: 36080462 PMCID: PMC9457869 DOI: 10.3390/molecules27175695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
The present study was designed to evaluate the chemical extraction, chemical composition, and antioxidant and antibacterial properties of the total flavonoids in Willow Buds (TFW). We investigated the optimal extraction of TFW using response surface methodology (RSM). Chemical compounds were analyzed using Q-Orbitrap LC-MS/MS. The DPPH radical scavenging capacity, hydroxy radical inhibitory ability, and superoxide anion radical inhibitory ability were explored to determine the antioxidant properties of flavonoid extractions. The antibacterial effect was assessed via minimal inhibitory concentration. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 50%, a time of 35 min, and a liquid/material ratio of 70:1 mL/g. Under these conditions, the yield of TFW was 7.57%. Eight flavonoids, a phenolic glycoside, and an alkaloid were enriched in the Willow Buds. The TFW exhibited significant antioxidant activity, with IC50 values of 0.18-0.24 mg/mL and antimicrobial activity against Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Streptococcus pneumoniae. TFW may be explored as potential and natural compounds in food and pharmacological applications.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China
- Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
- Correspondence: (P.Z.); (K.I.P.); Tel.: +86-56618010 (P.Z.); +7-89089743297 (K.I.P.)
| | - Yuwen Song
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongling Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China
| | - Yujie Fu
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China
- Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
| | - Yingying Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China
- Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
| | - Korotkova Irina Pavlovna
- Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
- Correspondence: (P.Z.); (K.I.P.); Tel.: +86-56618010 (P.Z.); +7-89089743297 (K.I.P.)
| |
Collapse
|
9
|
Tang JL, Xin M, Zhang LC. Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury. Aging (Albany NY) 2022; 14:5855-5877. [PMID: 35859295 PMCID: PMC9365550 DOI: 10.18632/aging.204189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Background: Acute kidney injury (AKI) is the most common target organ damage in sepsis. Sepsis-associated AKI (SA-AKI) may be characterized by damage to the renal tubular epithelium. In this study, the pharmacological mechanisms of Astragalus membranaceus and its active monomer Astragaloside IV (AS-IV) were predicted based on a network pharmacology approach and validated both in vitro and in vivo using the SA-AKI model. Method: We constructed an in vivo sepsis model using a mouse cecum ligation puncture (CLP) and HK-2 cells were treated with lipopolysaccharide (LPS) to mimic Gram (–) induced sepsis to assess the renal-protective efficacy of Astragalus membranaceus and AS-IV. Results: The findings demonstrated that Astragalus membranaceus and AS-IV attenuate renal tubular injury in mice with polymicrobial sepsis, including vacuolization, loss of brush border, mitochondrial ultrastructural changes, and increased staining of kidney injury molecule-1 (KIM-1). AS-IV protected human proximal tubular epithelial (HK-2) cells against LPS induced cell viability loss. Both Astragalus membranaceus and AS-IV activated the PI3K/AKT pathway both in vitro and in vivo, as shown by Western blot and immunohistochemistry analysis. Conclusion: The findings demonstrate that Astragalus membranaceus and AS-IV protect against sepsis-induced kidney tubular injury by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jia-Long Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xin
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Pharmacological, Neurochemical, and Behavioral Mechanisms Underlying the Anxiolytic- and Antidepressant-like Effects of Flavonoid Chrysin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113551. [PMID: 35684488 PMCID: PMC9182416 DOI: 10.3390/molecules27113551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 01/03/2023]
Abstract
Chrysin (5,7-dihydroxyflavone) is a flavonoid isolated from plants, such as Passiflora coerulea, Passiflora incarnata, and Matricaria chamomilla. This natural molecule exerts diverse pharmacological effects, which includes antioxidant, anti-inflammatory, anti-cancer, neuroprotective, and anti-apoptotic effects. Additionally, in brain structures, such as the hippocampus, prefrontal cortex, raphe nucleus, and striatum, involved in the physiopathology of anxiety and depression disorders, several neuropharmacological activities, including the activation of neurotransmitter systems (GABAergic, serotonergic, dopaminergic, and noradrenergic), neurotrophic factors, such as brain-derived neurotrophic factor and the nerve growth factor, and some signaling pathways are affected. The results showed that the anxiolytic and antidepressant-like effects of chrysin occurs through its interaction with specific neurotransmitter systems, principally the GABAergic and the serotonergic, and activation of other neurotrophic factors. However, it is not possible to discard the antioxidant and anti-inflammatory activities of chrysin while producing its anxiolytic- and antidepressant-like effects. Although these results have been obtained principally from pre-clinical research, they consistently demonstrate the potential therapeutic use of flavonoid chrysin as an anxiolytic and antidepressant agent. Therefore, this flavonoid could be considered as a promising novel therapy for anxiety and depression disorders.
Collapse
|
11
|
Lee JW, Kang B, Park J. Protective effects of 3,4',5,7‐tetrahydroxyflavone against squalene monohydroperoxide‐induced skin wrinkles and its green extraction using deep eutectic solvents. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jong Woo Lee
- Department of Engineering Chemistry Chungbuk National University Cheongju Republic of Korea
| | - Byungyoung Kang
- Innovation Center AMOREPACIFIC Corporation Seoul Republic of Korea
| | - Junseong Park
- Department of Engineering Chemistry Chungbuk National University Cheongju Republic of Korea
| |
Collapse
|
12
|
Almuhayawi MS. Propolis as a novel antibacterial agent. Saudi J Biol Sci 2020; 27:3079-3086. [PMID: 33100868 PMCID: PMC7569119 DOI: 10.1016/j.sjbs.2020.09.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 11/01/2022] Open
Abstract
Propolis (bee glue) is a bee glue, sticky resinous material released from various plant sources such as bud exudates, flowers, and leaves modified by bee secretions and wax propolis is composed of resins, waxes, polyphenols, polysaccharides, volatile materials, and secondary metabolites that are responsible for various bioactivity such as antibacterial, anti-angiogenic, antiulcer, anti-inflammatory, antioxidant, and anti-viral activities. The physico-chemical characteristics and the natural properties of various kinds of propolis have been studied for the past decade. Novel active anti-microbial compounds have been identified in propolis. Those compounds positively modulated the antimicrobial resistance of multidrug resistant bacteria. Published research has indicated that propolis and its derivatives has many natural antimicrobial compounds with a broad spectrum against different types of bacteria and that it enhanced the efficacy of conventional antibiotics. Besides, the combination of propolis with other compounds such as honey has been studied whereby, such combinations have a synergistic effect against bacterial strains such as Escherichia coli and Staphylococcus aureus. The activity of propolis is very much dependent on seasonal and regional factors, and Middle Eastern propolis have shown best antibacterial efficacy. Propolis and its main flavonoids ingredients should not be overlooked and should be evaluated in clinical trials to better elucidate their potential application in various fields of medicine. Clinical antibacterial potential and its use in new drugs of biotechnological products should be conducted. This review aims at highlighting some of the recent scientific findings associated with the antibacterial properties of propolis and its components.
Collapse
Affiliation(s)
- Mohammed Saad Almuhayawi
- Department of Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Alblihed MA. Hydroxytyrosol ameliorates oxidative challenge and inflammatory response associated with lipopolysaccharide-mediated sepsis in mice. Hum Exp Toxicol 2020; 40:342-354. [PMID: 32840384 DOI: 10.1177/0960327120949618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxytyrosol (HT) is among the main bioactive ingredients isolated from olive tree with a variety of biological and pharmacological activities. In the current study, the antioxidative and anti-inflammatory activities of HT were distinguished in the splenic tissue following lipopolysaccharide (LPS)-mediated septic response. Thirty-five Swiss mice were divided into five groups (n = 7): control, HT (40 mg/kg), LPS (10 mg/kg), HT 20 mg+LPS and HT 40 mg+LPS. HT was administered for 10 days, while a single LPS dose was applied. The obtained findings demonstrate that HT administration enhanced the survival rate and decreased lactate dehydrogenase level in LPS-challenged mice. Treatment with HT inhibited the incidence of oxidative damage in splenic tissue through decreasing lipoperoxidation and increasing antioxidant molecules, namely glutathione, superoxide dismutase and catalase. HT also decreased total leukocytes count, C-reactive protein, monocyte chemoattractant protein-1, and myeloperoxidase levels. Additionally, HT suppressed the production levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6. Moreover, mRNA expression of inducible nitric oxide synthase and nitric oxide production were increased after HT administration. Furthermore, HT supplementation resulted in a downregulation of p38 mitogen-activated protein kinase, inhibited the activation of the nuclear factor kappa-B from the nucleus to the cytoplasm, and attenuated infiltration of activated immune cells and tissue injury following LPS injection. Collectively, these findings demonstrate the antioxidative and anti-inflammatory properties of HT against LPS-mediated inflammation and sepsis. Therefore, HT could be applied as an alternative anti-inflammatory agent to minimize or prevent the development of systemic inflammatory response associated with septic shock.
Collapse
Affiliation(s)
- Mohamed A Alblihed
- Department of Medical Microbiology and Immunology, 158240College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
14
|
Koc F, Tekeli MY, Kanbur M, Karayigit MÖ, Liman BC. The effects of chrysin on lipopolysaccharide-induced sepsis in rats. J Food Biochem 2020; 44:e13359. [PMID: 32614079 DOI: 10.1111/jfbc.13359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/07/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022]
Abstract
Chrysin (CR) is a flavone found in propolis and many plants. Lipopolysaccharide (LPS) is a component of the cell wall of gram-negative bacteria that causes sepsis. The purpose of this study was to investigate the effects of CR on LPS-induced sepsis in rats. LPS intraperitoneal and a single dose and CR were given orally for 10 days. Rats were sacrificed, blood samples were taken, liver, lung, and kidney tissues were dissected, homogenized, and histopathological analysis was carried out. When CR groups compared to sepsis group, CR significantly decreased the serum levels of aspartate transaminase (AST) and alanine aminotransferase (ALT), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and levels of malondialdehyde (MDA) in tissues. CR also increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in tissues. Histopathological findings were consistent with biochemical findings. Conclusion, CR could reduce the oxidative stress markers and cytokines in sepsis. PRACTICAL APPLICATIONS: Our approach is to determine the antioxidant and anti-inflammatory effects of chrysin, known as a flavolonoid, which are found in many plants and foods such as honey and propolis. In this study, experimental sepsis model was created using LPS. According to the results of the study, CR can attribute to the ameliorating of oxidative damage in tissues (lung, liver, and kidney) and it can suppress the sepsis-associated acute tissue injury via reduction of inflammation in rats. Even, CR can be used as a pharmacological agent in inflammatory diseases caused by other sources and in many cases causing oxidation.
Collapse
Affiliation(s)
- Feride Koc
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Muhammet Yasin Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Kanbur
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Önder Karayigit
- Department of Pathology, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkey
| | - Bilal Cem Liman
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
15
|
Malkoç M, Patan H, Yaman SÖ, Türedi S, Kerimoğlu G, Kural BV, Örem A. l-theanine alleviates liver and kidney dysfunction in septic rats induced by cecal ligation and puncture. Life Sci 2020; 249:117502. [PMID: 32142764 DOI: 10.1016/j.lfs.2020.117502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
AIMS Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response against infection that triggers systemic inflammatory response syndrome. l-theanine (LT), a glutamate derivative, is a non-protein amino acid derived from tea (Camellia sinensis), and a valuable nutraceutical product used as an additive in the food industry. This study we aimed to investigate whether LT would exert any therapeutic effect on liver and kidney tissues in Sprague Dawley rats with sepsis induced with cecal ligation and puncture (CLP). MAIN METHODS Rats were divided into four groups; sham, CLP, CLP+LT1 (2x250 mg/kg) and CLP+LT2 (2 × 750 mg/kg). Liver and kidney tissues were subjected to histopathological examination. Apoptotic index percentages (AI%) were examined using the TUNEL method. The oxidized glutathione to total glutathione (GSSG/TGSH) ratio (as a marker of oxidative stress, levels of caspase-3 (a marker of apoptosis), glutathione peroxidase (GPx) and glutathione S-transferase (GST) (as antioxidant enzymes), inducible nitric oxide synthase (iNOS) and the tumor necrosis factor-α to Interleukin-10 ratio (TNF-α/IL-10) (as markers of inflammation) were investigated using commercial kits. Levels of malondialdehyde (MDA) (a marker of oxidative stress) were determined spectrophotometrically. KEY FINDINGS A high dose of LT exhibited more significant effects in reducing oxidative stress, inflammation and apoptosis than a low dose of LT in liver and kidney tissues with CLP-induced sepsis (p < 0.05). SIGNIFICANCE Our results indicated that LT significantly and dose-dependently inhibited sepsis induced liver and kidney injury. This effect may be attributed to the antioxidant, anti-inflammatory, and anti-apoptotic activities of LT.
Collapse
Affiliation(s)
- Meltem Malkoç
- Vocational School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Huriye Patan
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Serap Özer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Süleyman Türedi
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, 61080 Trabzon, Turkey
| | - Gökçen Kerimoğlu
- Karadeniz Technical University, Faculty of Medicine, Department of Histology, 61080 Trabzon, Turkey
| | - Birgül Vanizor Kural
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Asım Örem
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
16
|
Przybyłek I, Karpiński TM. Antibacterial Properties of Propolis. Molecules 2019; 24:2047. [PMID: 31146392 PMCID: PMC6600457 DOI: 10.3390/molecules24112047] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022] Open
Abstract
Researchers are continuing to discover all the properties of propolis due to its complex composition and associated broad spectrum of activities. This review aims to characterize the latest scientific reports in the field of antibacterial activity of this substance. The results of studies on the influence of propolis on more than 600 bacterial strains were analyzed. The greater activity of propolis against Gram-positive bacteria than Gram-negative was confirmed. Moreover, the antimicrobial activity of propolis from different regions of the world was compared. As a result, high activity of propolis from the Middle East was found in relation to both, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains. Simultaneously, the lowest activity was demonstrated for propolis samples from Germany, Ireland and Korea.
Collapse
Affiliation(s)
- Izabela Przybyłek
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Tomasz M Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
17
|
Flavonoids: From Structure to Health Issues. Molecules 2017; 22:molecules22030477. [PMID: 28304364 PMCID: PMC6155379 DOI: 10.3390/molecules22030477] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
|