1
|
Manzoor MA, Xu Y, Lv Z, Xu J, Wang Y, Sun W, Liu X, Wang L, Abdullah M, Liu R, Jiu S, Zhang C. Comparative genomics of N-acetyl-5-methoxytryptamine members in four Prunus species with insights into bud dormancy and abiotic stress responses in Prunus avium. PLANT CELL REPORTS 2024; 43:89. [PMID: 38462577 DOI: 10.1007/s00299-024-03184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
KEY MESSAGE This study provides novel insights into the evolution, diversification, and functions of melatonin biosynthesis genes in Prunus species, highlighting their potential role in regulating bud dormancy and abiotic stresses. The biosynthesis of melatonin (MEL) in plants is primarily governed by enzymatic reactions involving key enzymes such as serotonin N-acetyltransferase (SNAT), tryptamine 5-hydroxylase (T5H), N-acetylserotonin methyltransferase (ASMT) and tryptophan decarboxylase (TDC). In this study, we analyzed Melatonin genes in four Prunus species such as Prunus avium (Pavi), Prunus pusilliflora (Ppus), Prunus serulata (Pser), and Prunus persica (Pper) based on comparative genomics approach. Among the four Prunus species, a total of 29 TDCs, 998 T5Hs, 16 SNATs, and 115 ASMTs within the genome of four Prunus genomes. A thorough investigation of melatonin-related genes was carried out using systematic biological methods and comparative genomics. Through phylogenetic analysis, orthologous clusters, Go enrichment, syntenic relationship, and gene duplication analysis, we discovered both similarities and variations in Melatonin genes among these Prunus species. Additionally, our study revealed the existence of unique subgroup members in the Melatonin genes of these species, which were distinct from those found in Arabidopsis genes. Furthermore, the transcriptomic expression analysis revealed the potential significance of melatonin genes in bud dormancy regulation and abiotic stresses. Our extensive results offer valuable perspectives on the evolutionary patterns, intricate expansion, and functions of PavMEL genes. Given their promising attributes, PavTDCs, PavT5H, PavNAT, and three PavASMT genes warrant in-depth exploration as prime candidates for manipulating dormancy in sweet cherry. This was done to lay the foundation for future explorations into the structural and functional aspects of these factors in Prunus species. This study offers significant insights into the functions of ASMT, SNAT, T5H, and TDC genes and sheds light on their roles in Prunus avium. Moreover, it established a robust foundation for further exploration functional characterization of melatonin genes in fruit species.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Muhammad Abdullah
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District Jianchuan Road No.601, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
2
|
Gao T, Liu X, Xu S, Yu X, Zhang D, Tan K, Zhou Y, Jia X, Zhang Z, Ma F, Li C. Melatonin confers tolerance to nitrogen deficiency through regulating MdHY5 in apple plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1115-1129. [PMID: 37966861 DOI: 10.1111/tpj.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/29/2023] [Indexed: 11/16/2023]
Abstract
Nitrogen (N) is an essential nutrient for crop growth and development, significantly influencing both yield and quality. Melatonin (MT), a known enhancer of abiotic stress tolerance, has been extensively studied. However, its relationship with nutrient stress, particularly N deficiency, and the underlying regulatory mechanisms of MT on N absorption remain unclear. In this study, exogenous MT treatment was found to improve the tolerance of apple plants to N deficiency. Apple plants overexpressing the MT biosynthetic gene N-acetylserotonin methyltransferase 9 (MdASMT9) were used to further investigate the effects of endogenous MT on low-N stress. Overexpression of MdASMT9 improved the light harvesting and heat transfer capability of apple plants, thereby mitigating the detrimental effects of N deficiency on the photosynthetic system. Proteomic and physiological data analyses indicated that MdASMT9 overexpression enhanced the trichloroacetic acid cycle and positively modulated amino acid metabolism to counteract N-deficiency stress. Additionally, both exogenous and endogenous MT promoted the transcription of MdHY5, which in turn bound to the MdNRT2.1 and MdNRT2.4 promoters and activated their expression. Notably, MT-mediated promotion of MdNRT2.1 and MdNRT2.4 expression through regulating MdHY5, ultimately enhancing N absorption. Taken together, these findings shed light on the association between MdASMT9-mediated MT biosynthesis and N absorption in apple plants under N-deficiency conditions.
Collapse
Affiliation(s)
- Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Danni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kexin Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xumei Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Wei X, Li L, Xu L, Zeng L, Xu J. Genome-wide identification of the AOMT gene family in wax apple and functional characterization of SsAOMTs to anthocyanin methylation. FRONTIERS IN PLANT SCIENCE 2023; 14:1213642. [PMID: 37822338 PMCID: PMC10562569 DOI: 10.3389/fpls.2023.1213642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Introduction Anthocyanins are major pigments in the peels of red-series wax apple fruits, and two principal components of them, namely, the cyanin and the peonidin, are non-methoxylated and methoxylated anthocyanins, respectively. Anthocyanin O-methyltransferases (AOMTs) are an important group of enzymes that have the ability to catalyze anthocyanins methylation to promote the solubility, stability, and bioactivity of anthocyanins. Although AOMT genes have been studied in a variety of plants, the function of them in wax apple is generally not well understood. Methods The anthocyanin composition in peels of two wax apple cultivars was determined by High Performance Liquid Chromatography Tandem Mass Spectrometry (HPLS-MS). The genome-wide analysis of the AOMT genes was performed with bioinformatics technology, and the expression patterns of different plant tissues, cultivars, fruit ripening stages, and exogenous abscisic acid (ABA) treatments were analyzed by transcriptome sequencing analysis and real-time quantitative PCR verification. An initial functional evaluation was carried out in vitro using recombinant the Anthocyanin O-methyltransferase Gene 5 of S. samarangense (SsAOMT5) protein. Results Only two main compositions of anthocyanin were found in peels of two wax apple cultivars, and it was worth noting that Tub Ting Jiang cultivar contained non-methoxylated anthocyanin (Cy3G) only, whereas Daye cultivar contained both non-methoxylated and methoxylated (Pn3G) anthocyanins. A total of six SsAOMT genes were identified in the whole genome of wax apple, randomly distributing on three chromosomes. A phylogenic analysis of the protein sequences divided the SsAOMT gene family into three subgroups, and all SsAOMTs had highly conserved domains of AOMT family. In total, four types of stress- related and five types of hormone- related cis-elements were discovered in the promoter region of the SsAOMTs. Expression pattern analysis showed that SsAOMT5 and SsAOMT6 were expressed in all tissues to varying degrees; notably, the expression of SsAOMT5 was high in the flower and fruit and significantly higher in Daye peels than those of other cultivars in the fruit ripening period. Exogenous ABA treatment significantly increased anthocyanin accumulation, but the increase of methoxylated anthocyanin content did not reach significant level compared with those without ABA treatment, whereas the expression of SsAOMT5 upregulated under ABA treatment. We identified two homologous SsAOMT5 genes from Daye cultivar (DSsAOMT5) and Tub Ting Jiang cultivar (TSsAOMT5); the results of functional analyses to two SsAOMT5 recombinant proteins in vitro demonstrated that DSsAOMT5 showed methylation modification activity, but TSsAOMT5 did not. Conclusion In conclusion, SsAOMT5 was responsible for methylated anthocyanin accumulation in the peels of wax apple and played an important role in red coloration in wax apple peels.
Collapse
Affiliation(s)
- Xiuqing Wei
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ling Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Sarcheshmeh MK, Abedi A, Aalami A. Genome-wide survey of catalase genes in Brassica rapa, Brassica oleracea, and Brassica napus: identification, characterization, molecular evolution, and expression profiling of BnCATs in response to salt and cadmium stress. PROTOPLASMA 2023; 260:899-917. [PMID: 36495350 DOI: 10.1007/s00709-022-01822-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Catalase (CAT, EC 1.11.1.6), one of the most important antioxidant enzymes, can control excess levels of H2O2 produced under oxidative stress in plants. In this study, 16, 8, and 7 CAT genes in the genome of Brassica napus, B. rapa, and B. oleracea were identified, respectively. Phylogenetic studies showed that CATs could be divided into two main groups, each containing specific monocotyledon and dicotyledon subgroups. Motifs, gene structure, and intron phase of CATs in B. napus, Brassica rapa, and Brassica oleracea are highly conserved. Analysis of codon usage bias showed the mutation pressure and natural selection of the codon usage of CATs. Segmental duplication and polyploid were major factors in the expansion of this gene family in B. napus, and genes have experienced negative selection during evolution. Existence of hormones and stress-responsive cis-elements and identifying miRNA molecules affecting CATs showed that these genes are complexly regulated at the transcriptional and posttranscriptional levels. Based on RNA-seq data, CATs are divided into two groups; the first group has moderate and specific expression in flowers, leaves, stems, and roots, while the second group shows expression in most tissues. qRT-PCR analysis showed that the expression of these genes is dynamic and has a specific expression consistent with other CAT genes in response to salinity and cadmium (Cd) stresses. These results provide information for further investigation of the function of CAT genes in response to stresses and the development of tolerant plants.
Collapse
Affiliation(s)
- Monavar Kanani Sarcheshmeh
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Amin Abedi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Ali Aalami
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
5
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Xu F, Liu W, Wang H, Alam P, Zheng W, Faizan M. Genome Identification of the Tea Plant ( Camellia sinensis) ASMT Gene Family and Its Expression Analysis under Abiotic Stress. Genes (Basel) 2023; 14:409. [PMID: 36833335 PMCID: PMC9957374 DOI: 10.3390/genes14020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The tea plant (Camellia sinensis (L.) O. Ktze) is an important cash crop grown worldwide. It is often subjected to environmental stresses that influence the quality and yield of its leaves. Acetylserotonin-O-methyltransferase (ASMT) is a key enzyme in melatonin biosynthesis, and it plays a critical role in plant stress responses. In this paper, a total of 20 ASMT genes were identified in tea plants and classified into three subfamilies based on a phylogenetic clustering analysis. The genes were unevenly distributed on seven chromosomes; two pairs of genes showed fragment duplication. A gene sequence analysis showed that the structures of the ASMT genes in the tea plants were highly conserved and that the gene structures and motif distributions slightly differed among the different subfamily members. A transcriptome analysis showed that most CsASMT genes did not respond to drought and cold stresses, and a qRT-PCR analysis showed that CsASMT08, CsASMT09, CsASMT10, and CsASMT20 significantly responded to drought and low-temperature stresses; in particular, CsASMT08 and CsASMT10 were highly expressed under low-temperature stress and negatively regulated in response to drought stress. A combined analysis revealed that CsASMT08 and CsASMT10 were highly expressed and that their expressions differed before and after treatment, which indicates that they are potential regulators of abiotic stress resistance in the tea plant. Our results can facilitate further studies on the functional properties of CsASMT genes in melatonin synthesis and abiotic stress in the tea plant.
Collapse
Affiliation(s)
- Fangfang Xu
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Wenxiang Liu
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Hui Wang
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Wei Zheng
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| |
Collapse
|
7
|
Feng BS, Kang DC, Sun J, Leng P, Liu LX, Wang L, Ma C, Liu YG. Research on melatonin in fruits and vegetables and the mechanism of exogenous melatonin on postharvest preservation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Liu Y, Wang X, Lv H, Cao M, Li Y, Yuan X, Zhang X, Guo YD, Zhang N. Anabolism and signaling pathways of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5801-5817. [PMID: 35430630 DOI: 10.1093/jxb/erac158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a small multifunctional molecule found ubiquitously in plants, which plays an important role in plant growth, development, and biotic and abiotic stress responses. The classical biosynthetic and metabolic pathways of phytomelatonin have been elucidated, and uncovering alternative pathways has deepened our understanding of phytomelatonin synthesis. Phytomelatonin functions mainly via two pathways. In the direct pathway, phytomelatonin mediates the stress-induced reactive oxygen species burst through its strong antioxidant capacity. In the indirect pathway, phytomelatonin acts as a signal to activate signaling cascades and crosstalk with other plant hormones. The phytomelatonin receptor PMTR1/CAND2 was discovered in 2018, which enhanced our understanding of phytomelatonin function. This review summarizes the classical and potential pathways involved in phytomelatonin synthesis and metabolism. To elucidate the functions of phytomelatonin, we focus on the crosstalk between phytomelatonin and other phytohormones. We propose two models to explain how PMTR1 transmits the phytomelatonin signal through the G protein and MAPK cascade. This review will facilitate the identification of additional signaling molecules that function downstream of the phytomelatonin signaling pathway, thus improving our understanding of phytomelatonin signal transmission.
Collapse
Affiliation(s)
- Ying Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoyun Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yongchong Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Yuan
- Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Xichun Zhang
- School of Plant Science and Technology, Beijing Agricultural University, Beijing, 102206, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| |
Collapse
|
9
|
Xie Q, Zhang Y, Cheng Y, Tian Y, Luo J, Hu Z, Chen G. The role of melatonin in tomato stress response, growth and development. PLANT CELL REPORTS 2022; 41:1631-1650. [PMID: 35575808 DOI: 10.1007/s00299-022-02876-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Melatonin has attracted widespread attention after its discovery in higher plants. Tomato is a key model economic crop for studying fleshy fruits. Many studies have shown that melatonin plays important role in plant stress resistance, growth, and development. However, the research progress on the role of melatonin and related mechanisms in tomatoes have not been systematically summarized. This paper summarizes the detection methods and anabolism of melatonin in tomatoes, including (1) the role of melatonin in combating abiotic stresses, e.g., drought, heavy metals, pH, temperature, salt, salt and heat, cold and drought, peroxidation hydrogen and carbendazim, etc., (2) the role of melatonin in combating biotic stresses, such as tobacco mosaic virus and foodborne bacillus, and (3) the role of melatonin in tomato growth and development, such as fruit ripening, postharvest shelf life, leaf senescence and root development. In addition, the future research directions of melatonin in tomatoes are explored in combination with the role of melatonin in other plants. This review can provide a theoretical basis for enhancing the scientific understanding of the role of melatonin in tomatoes and the improved breeding of fruit crops.
Collapse
Affiliation(s)
| | - Yu Zhang
- Chongqing University, Chongqing, China
| | | | | | | | - Zongli Hu
- Chongqing University, Chongqing, China
| | | |
Collapse
|
10
|
Ma K, Xu R, Zhao Y, Han L, Xu Y, Li L, Wang J, Li N. Walnut N-Acetylserotonin Methyltransferase Gene Family Genome-Wide Identification and Diverse Functions Characterization During Flower Bud Development. FRONTIERS IN PLANT SCIENCE 2022; 13:861043. [PMID: 35498672 PMCID: PMC9051526 DOI: 10.3389/fpls.2022.861043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 05/24/2023]
Abstract
Melatonin widely mediates multiple developmental dynamics in plants as a vital growth stimulator, stress protector, and developmental regulator. N-acetylserotonin methyltransferase (ASMT) is the key enzyme that catalyzes the final step of melatonin biosynthesis in plants and plays an essential role in the plant melatonin regulatory network. Studies of ASMT have contributed to understanding the mechanism of melatonin biosynthesis in plants. However, AMST gene is currently uncharacterized in most plants. In this study, we characterized the JrASMT gene family using bioinformatics in a melatonin-rich plant, walnut. Phylogenetic, gene structure, conserved motifs, promoter elements, interacting proteins and miRNA analyses were also performed. The expansion and differentiation of the ASMT family occurred before the onset of the plant terrestrialization. ASMT genes were more differentiated in dicotyledonous plants. Forty-six ASMT genes were distributed in clusters on 10 chromosomes of walnut. Four JrASMT genes had homologous relationships both within walnut and between species. Cis-regulatory elements showed that JrASMT was mainly induced by light and hormones, and targeted cleavage of miRNA172 and miR399 may be an important pathway to suppress JrASMT expression. Transcriptome data showed that 13 JrASMT were differentially expressed at different periods of walnut bud development. WGCNA showed that JrASMT1/10/13/23 were coexpressed with genes regulating cell fate and epigenetic modifications during early physiological differentiation of walnut female flower buds. JrASMT12/28/37/40 were highly expressed during morphological differentiation of flower buds, associated with altered stress capacity of walnut flower buds, and predicted to be involved in the regulatory network of abscisic acid, salicylic acid, and cytokinin in walnut. The qRT-PCR validated the results of differential expression analysis and further provided three JrASMT genes with different expression profiles in walnut flower bud development. Our study explored the evolutionary relationships of the plant ASMT gene family and the functional characteristics of walnut JrASMT. It provides a valuable perspective for further understanding the complex melatonin mechanisms in plant developmental regulation.
Collapse
Affiliation(s)
- Kai Ma
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Ruiqiang Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Liqun Han
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Yuhui Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Lili Li
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Juan Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Ning Li
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| |
Collapse
|
11
|
Kumar G, Arya M, Padma R, Puthusseri B, Giridhar P. Distinct GmASMTs are involved in regulating transcription factors and signalling cross-talk across embryo development, biotic, and abiotic stress in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:948901. [PMID: 36035712 PMCID: PMC9403468 DOI: 10.3389/fpls.2022.948901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/15/2022] [Indexed: 05/08/2023]
Abstract
N-Acetylserotonin O-methyltransferase (ASMT) is the final enzyme involved in melatonin biosynthesis. Identifying the expression of ASMT will reveal the regulatory role in the development and stress conditions in soybean. To identify and characterize ASMT in soybean (GmASMT), we employed genome-wide analysis, gene structure, cis-acting elements, gene expression, co-expression network analysis, and enzyme assay. We found seven pairs of segmental and tandem duplication pairs among the 44 identified GmASMTs by genome-wide analysis. Notably, co-expression network analysis reported that distinct GmASMTs are involved in various stress response. For example, GmASMT3, GmASMT44, GmASMT17, and GmASMT7 are involved in embryo development, heat, drought, aphid, and soybean cyst nematode infections, respectively. These distinct networks of GmASMTs were associated with transcription factors (NAC, MYB, WRKY, and ERF), stress signalling, isoflavone and secondary metabolites, calcium, and calmodulin proteins involved in stress regulation. Further, GmASMTs demonstrated auxin-like activities by regulating the genes involved in auxin transporter (WAT1 and NRT1/PTR) and auxin-responsive protein during developmental and biotic stress. The current study identified the key regulatory role of GmASMTs during development and stress. Hence GmASMT could be the primary target in genetic engineering for crop improvement under changing environmental conditions.
Collapse
Affiliation(s)
- Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Monisha Arya
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Radhika Padma
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- *Correspondence: Parvatam Giridhar,
| |
Collapse
|
12
|
Bhowal B, Bhattacharjee A, Goswami K, Sanan-Mishra N, Singla-Pareek SL, Kaur C, Sopory S. Serotonin and Melatonin Biosynthesis in Plants: Genome-Wide Identification of the Genes and Their Expression Reveal a Conserved Role in Stress and Development. Int J Mol Sci 2021; 22:ijms222011034. [PMID: 34681693 PMCID: PMC8538589 DOI: 10.3390/ijms222011034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
Serotonin (Ser) and melatonin (Mel) serve as master regulators of plant growth and development by influencing diverse cellular processes. The enzymes namely, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) catalyse the formation of Ser from tryptophan. Subsequently, serotonin N-acetyl transferase (SNAT) and acetyl-serotonin methyltransferase (ASMT) form Mel from Ser. Plant genomes harbour multiple genes for each of these four enzymes, all of which have not been identified. Therefore, to delineate information regarding these four gene families, we carried out a genome-wide analysis of the genes involved in Ser and Mel biosynthesis in Arabidopsis, tomato, rice and sorghum. Phylogenetic analysis unravelled distinct evolutionary relationships among these genes from different plants. Interestingly, no gene family except ASMTs showed monocot- or dicot-specific clustering of respective proteins. Further, we observed tissue-specific, developmental and stress/hormone-mediated variations in the expression of the four gene families. The light/dark cycle also affected their expression in agreement with our quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Importantly, we found that miRNAs (miR6249a and miR-1846e) regulated the expression of Ser and Mel biosynthesis under light and stress by influencing the expression of OsTDC5 and OsASMT18, respectively. Thus, this study may provide opportunities for functional characterization of suitable target genes of the Ser and Mel pathway to decipher their exact roles in plant physiology.
Collapse
Affiliation(s)
- Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Annapurna Bhattacharjee
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Kavita Goswami
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Sneh L. Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Charanpreet Kaur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Correspondence: (C.K.); (S.S.)
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Correspondence: (C.K.); (S.S.)
| |
Collapse
|
13
|
Zheng S, Zhu Y, Liu C, Fan W, Xiang Z, Zhao A. Genome-wide identification and characterization of genes involved in melatonin biosynthesis in Morus notabilis (wild mulberry). PHYTOCHEMISTRY 2021; 189:112819. [PMID: 34087504 DOI: 10.1016/j.phytochem.2021.112819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Melatonin is recognized as an important regulator for human health and widely distributed in many plant species, including mulberry (Morus L.). Previous studies suggested mulberry contains high melatonin content, but the molecular mechanisms underlying melatonin biosynthesis in mulberry remain unclear. Here, 37 genes involved in melatonin biosynthesis were identified in mulberry genome, including a tryptophan decarboxylase gene (MnTDC), seven tryptophan 5-hydroxylase genes (MnT5Hs), six serotonin N-acetyltransferase genes (MnSNATs), 20 N-acetylserotonin methyltransferase genes (MnASMTs) and three caffeic acid 3-O-methyltransferase genes (MnCOMTs). Expression analysis showed that MnTDC, MnT5H2, MnSNAT5, MnASMT12 and MnCOMT1 from these genes had highest expression levels within their corresponding families. In vitro enzymatic assays indicated that MnTDC, MnT5H2, MnSNAT5, MnASMT12 and MnCOMT1 play important roles in melatonin biosynthesis. Multiple different pathways for melatonin biosynthesis in mulberry were discovered. In addition, mulberry ASMT showed distinct roles with those of ASTMs in Arabidopsis and rice. The class I ASMT, MnASMT12, and the class III ASMT, MnASMT20, catalyzed the conversion of N-acetylserotonin to melatonin and serotonin to 5-methoxytryptamine. Furthermore, the class II ASMT, MnASMT16, only catalyzed the conversion of N-acetylserotonin to melatonin. This study improved our knowledge on melatonin biosynthesis in mulberry and expands the repertoire of melatonin biosynthesis pathways in plants.
Collapse
Affiliation(s)
- Sha Zheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - Yingxue Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, 610106, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
14
|
Zhang Z, Zhang Y. Melatonin in plants: what we know and what we don’t. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Melatonin is an endogenous micromolecular compound of indoleamine with multiple physiological functions in various organisms. In plants, melatonin is involved in growth and development, as well as in responses to biotic and abiotic stresses. Furthermore, melatonin functions in phytohormone-mediated signal transduction pathways. There are multiple melatonin biosynthesis pathways, and the melatonin content in plants is greatly affected by intrinsic genetic characteristics and external environmental factors. Although melatonin biosynthesis has been extensively studied in model plants, it remains uncharacterized in most plants. This article focuses on current knowledge on the biosynthesis, regulation and application of melatonin, particularly for fruit quality and preservation. In addition, it highlights the links between melatonin and other hormones, as well as future research directions.
Collapse
|
15
|
Key Genes in the Melatonin Biosynthesis Pathway with Circadian Rhythm Are Associated with Various Abiotic Stresses. PLANTS 2021; 10:plants10010129. [PMID: 33435489 PMCID: PMC7827461 DOI: 10.3390/plants10010129] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is involved in several biological processes including circadian rhythm and the regulation of abiotic stress. A systematic understanding of the circadian regulation of melatonin biosynthesis-related genes has not been achieved in rice. In this study, key genes for all of the enzymes in the melatonin biosynthetic pathway that showed a peak of expression at night were identified by microarray data analysis and confirmed by qRT–PCR analysis. We further examined the expression patterns of the four genes under drought, salt, and cold stresses. The results showed that abiotic stresses, such as drought, salt, and cold, affected the expression patterns of melatonin biosynthetic genes. In addition, the circadian expression patterns of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), and serotonin N-acetyltransferase (SNAT) genes in wild-type (WT) plants was damaged by the drought treatment under light and dark conditions. Conversely, N-acetylserotonin O-methyltransferase (ASMT) retained the circadian rhythm. The expression of ASMT was down-regulated by the rice gigantea (OsGI) mutation, suggesting the involvement of the melatonin biosynthetic pathway in the OsGI-mediated circadian regulation pathway. Taken together, our results provide clues to explain the relationship between circadian rhythms and abiotic stresses in the process of melatonin biosynthesis in rice.
Collapse
|
16
|
Zheng S, Zhu Y, Liu C, Zhang S, Yu M, Xiang Z, Fan W, Wang S, Zhao A. Molecular Mechanisms Underlying the Biosynthesis of Melatonin and Its Isomer in Mulberry. FRONTIERS IN PLANT SCIENCE 2021; 12:708752. [PMID: 34691094 PMCID: PMC8526549 DOI: 10.3389/fpls.2021.708752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/10/2021] [Indexed: 05/19/2023]
Abstract
Mulberry (Morus alba L.) leaves and fruit are traditional Chinese medicinal materials with anti-inflammatory, immune regulatory, antiviral and anti-diabetic properties. Melatonin performs important roles in the regulation of circadian rhythms and immune activities. We detected, identified and quantitatively analyzed the melatonin contents in leaves and mature fruit from different mulberry varieties. Melatonin and three novel isoforms were found in the Morus plants. Therefore, we conducted an expression analysis of melatonin and its isomer biosynthetic genes and in vitro enzymatic synthesis of melatonin and its isomer to clarify their biosynthetic pathway in mulberry leaves. MaASMT4 and MaASMT20, belonging to class II of the ASMT gene family, were expressed selectively in mulberry leaves, and two recombinant proteins that they expressed catalyzed the conversion of N-acetylserotonin to melatonin and one of three isomers in vitro. Unlike the ASMTs of Arabidopsis and rice, members of the three ASMT gene families in mulberry can catalyze the conversion of N-acetylserotonin to melatonin. This study provides new insights into the molecular mechanisms underlying melatonin and its isomers biosynthesis and expands our knowledge of melatonin isomer biosynthesis.
Collapse
Affiliation(s)
- Sha Zheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yingxue Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Shuai Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Maode Yu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- *Correspondence: Aichun Zhao, ;
| |
Collapse
|
17
|
Zhang J, Yao Z, Zhang R, Mou Z, Yin H, Xu T, Zhao D, Chen S. Genome-Wide Identification and Expression Profile of the SNAT Gene Family in Tobacco ( Nicotiana tabacum). Front Genet 2020; 11:591984. [PMID: 33193735 PMCID: PMC7652900 DOI: 10.3389/fgene.2020.591984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Melatonin plays key roles in development and confers stress tolerance to plants. Serotonin N-acetyltransferase (SNAT) is either the enzyme involved in the last step or the penultimate enzyme of phytomelatonin biosynthesis. To date, SNAT genes have not been characterized in tobacco (Nicotiana tabacum), an economically important plant species. The sequence of the Acetyltransf_7 conserved domain was used as a query sequence, and 12 NtSNAT candidate genes were in turn identified in the genome of tobacco. These NtSNATs could be divided into two groups based on the phylogenetic tree. NtSNAT1 and NtSNAT2 clustered together with the other typical SNATs, but the other 10 NtSNATs separately clustered outside of the typical SNATs. These 10 NtSNATs have only motif 1, whereas representative SNATs, such as NtSNAT1 and NtSNAT2 or a SNAT from cyanobacteria, have five motifs. In addition, NtSNAT1 and NtSNAT2 are highly homologous to the characterized OsSNAT1, 62.95 and 71.36%, respectively; however, the homology between the other 10 NtSNAT genes and OsSNAT1 is low. Concomitantly, it is hypothesized that NtSNAT1 and NtSNAT2 are the homolog of SNATs, whereas the other 10 candidates could be considered NtSNAT-like genes. Furthermore, both Nicotiana tomentosiformis and Nicotiana sylvestris, two diploid ancestor species of N. tabacum, have two SNAT candidates; therefore, it is speculated that gene rearrangement or deletion during the process of genomic stabilization after whole-genome duplication or polyploidization led to the preservation of NtSNAT1 and NtSNAT2 during the evolution of tobacco from the ancestral diploid to the allotetraploid. NtSNAT and NtSNAT-like genes were differentially expressed in all organs under different stress conditions, indicating that these genes potentially associated with plant growth and development and stress resistance. Under different stress conditions, the expression of NtSNAT1 was significantly upregulated upon high-temperature and cadmium stresses, while the expression of NtSNAT2 did not significantly increase under any of the tested stress treatments. These results provide valuable information for elucidating the evolutionary relationship of SNAT genes in tobacco and genetic resources for improving tobacco production in the future.
Collapse
Affiliation(s)
- Jiemei Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Zhengping Yao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Renjun Zhang
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Honghui Yin
- Wenshan Branch of Yunnan Tobacco Company, Wenshan, China
| | - Tianyang Xu
- Wenshan Branch of Yunnan Tobacco Company, Wenshan, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
18
|
Tan DX, Reiter RJ. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4677-4689. [PMID: 32413108 DOI: 10.1093/jxb/eraa235] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 05/22/2023]
Abstract
Plant melatonin research is a rapidly developing field. A variety of isoforms of melatonin's biosynthetic enzymes are present in different plants. Due to the different origins, they exhibit independent responses to the variable environmental stimuli. The locations for melatonin biosynthesis in plants are chloroplasts and mitochondria. These organelles have inherited their melatonin biosynthetic capacities from their bacterial ancestors. Under ideal conditions, chloroplasts are the main sites of melatonin biosynthesis. If the chloroplast pathway is blocked for any reason, the mitochondrial pathway will be activated for melatonin biosynthesis to maintain its production. Melatonin metabolism in plants is a less studied field; its metabolism is quite different from that of animals even though they share similar metabolites. Several new enzymes for melatonin metabolism in plants have been cloned and these enzymes are absent in animals. It seems that the 2-hydroxymelatonin is a major metabolite of melatonin in plants and its level is ~400-fold higher than that of melatonin. In the current article, from an evolutionary point of view, we update the information on plant melatonin biosynthesis and metabolism. This review will help the reader to understand the complexity of these processes and promote research enthusiasm in these fields.
Collapse
Affiliation(s)
| | - Russel J Reiter
- Department of Anatomy and Cell System, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
19
|
Analysis of the ASMT Gene Family in Pepper ( Capsicum annuum L.): Identification, Phylogeny, and Expression Profiles. Int J Genomics 2019; 2019:7241096. [PMID: 31065551 PMCID: PMC6466892 DOI: 10.1155/2019/7241096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Acetylserotonin methyltransferase (ASMT) in plant species, one of the most important enzymes in melatonin biosynthesis, plays a rate-limiting role in the melatonin production. In this study, based on the whole genome sequence, we performed a systematic analysis for the ASMT gene family in pepper (Capsicum annuum L.) and analyzed their expression profiles during growth and development, as well as abiotic stresses. The results showed that at least 16 CaASMT genes were identified in the pepper genome. Phylogenetic analyses of all the CaASMTs were divided into three groups (group I, group II, and group III) with a high bootstrap value. Through the online MEME tool, six distinct motifs (motif 1 to motif 6) were identified. Chromosome location found that most CaASMT genes were mapped in the distal ends of the pepper chromosomes. In addition, RNA-seq analysis revealed that, during the vegetative and reproductive development, the difference in abundance and distinct expression patterns of these CaASMT genes suggests different functions. The qRT-PCR analysis showed that high abundance of CaASMT03, CaASMT04, and CaASMT06 occurred in mature green fruit and mature red fruit. Finally, using RNA-seq and qRT-PCR technology, we also found that several CaASMT genes were induced under abiotic stress conditions. The results will not only contribute to elucidate the evolutionary relationship of ASMT genes but also ascertain the biological function in pepper plant response to abiotic stresses.
Collapse
|
20
|
Melatonin: A Small Molecule but Important for Salt Stress Tolerance in Plants. Int J Mol Sci 2019; 20:ijms20030709. [PMID: 30736409 PMCID: PMC6387279 DOI: 10.3390/ijms20030709] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Salt stress is one of the most serious limiting factors in worldwide agricultural production, resulting in huge annual yield loss. Since 1995, melatonin (N-acetyl-5-methoxytryptamine)—an ancient multi-functional molecule in eukaryotes and prokaryotes—has been extensively validated as a regulator of plant growth and development, as well as various stress responses, especially its crucial role in plant salt tolerance. Salt stress and exogenous melatonin lead to an increase in endogenous melatonin levels, partly via the phyto-melatonin receptor CAND2/PMTR1. Melatonin plays important roles, as a free radical scavenger and antioxidant, in the improvement of antioxidant systems under salt stress. These functions improve photosynthesis, ion homeostasis, and activate a series of downstream signals, such as hormones, nitric oxide (NO) and polyamine metabolism. Melatonin also regulates gene expression responses to salt stress. In this study, we review recent literature and summarize the regulatory roles and signaling networks involving melatonin in response to salt stress in plants. We also discuss genes and gene families involved in the melatonin-mediated salt stress tolerance.
Collapse
|
21
|
Jue D, Sang X, Liu L, Shu B, Wang Y, Xie J, Liu C, Shi S. The Ubiquitin-Conjugating Enzyme Gene Family in Longan (Dimocarpus longan Lour.): Genome-Wide Identification and Gene Expression during Flower Induction and Abiotic Stress Responses. Molecules 2018; 23:molecules23030662. [PMID: 29543725 PMCID: PMC6017367 DOI: 10.3390/molecules23030662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-conjugating enzymes (E2s or UBC enzymes) play vital roles in plant development and combat various biotic and abiotic stresses. Longan (Dimocarpus longan Lour.) is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes (DlUBCs), which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar “Sijimi” (SJ), suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid) treatment, seven under methyl jasmonate (MeJA) treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.
Collapse
Affiliation(s)
- Dengwei Jue
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Xuelian Sang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Bo Shu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Yicheng Wang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Chengming Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| |
Collapse
|