1
|
Siedlecka-Kroplewska K, Kmiec Z, Zmijewski MA. The Interplay Between Autophagy and Apoptosis in the Mechanisms of Action of Stilbenes in Cancer Cells. Antioxidants (Basel) 2025; 14:339. [PMID: 40227400 PMCID: PMC11939748 DOI: 10.3390/antiox14030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Plant-based stilbenes are low-molecular-weight polyphenolic compounds that exhibit anti-oxidant, anti-microbial, anti-fungal, anti-inflammatory, anti-diabetic, cardioprotective, neuroprotective, and anti-cancer activities. They are phytoalexins produced in diverse plant species in response to stress, such as fungal and bacterial infections or excessive UV irradiation. Plant-derived dietary products containing stilbenes are common components of the human diet. Stilbenes appear to be promising chemopreventive and chemotherapeutic agents. Accumulating evidence indicates that stilbenes are able to trigger both apoptotic and autophagic molecular pathways in many human cancer cell lines. Of note, the molecular crosstalk between autophagy and apoptosis under cellular stress conditions determines the cell fate. The autophagy and apoptosis relationship is complex and depends on the cellular context, e.g., cell type and cellular stress level. Apoptosis is a type of regulated cell death, whereas autophagy may act as a pro-survival or pro-death mechanism depending on the context. The interplay between autophagy and apoptosis may have an important impact on chemotherapy efficiency. This review focuses on the in vitro effects of stilbenes in different human cancer cell lines concerning the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
| | - Zbigniew Kmiec
- Department of Anatomy and Histology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | | |
Collapse
|
2
|
Rodrigues T, Busso JDS, Dias RVR, Ottenio Lourenço I, de Sa JM, Carvalho SJD, Caruso IP, Souza FPD, Fossey MA. Interaction of Human Respiratory Syncytial Virus (HRSV) Matrix Protein with Resveratrol Shows Antiviral Effect. Int J Mol Sci 2024; 25:12790. [PMID: 39684498 DOI: 10.3390/ijms252312790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
The respiratory syncytial virus (RSV) matrix protein plays key roles in the virus life cycle and is essential for budding, as it stimulates the optimal membrane curvature necessary for the emergence of viral particles. Resveratrol, a polyphenol (3,4',5-trihydroxy-trans-stilbene) produced by plants, exhibits pharmacological effects, including anti-inflammatory and antiviral activities. In this study, resveratrol was tested in HEp-2 (Epidermoid carcinoma of the larynx cell) cells for its post-infection effects, and recombinant M protein was produced to characterize the biophysical mechanisms underlying this interaction. The CC50 (Cytotoxic concentration 50%) value for resveratrol was determined to be 297 μM over 48 h, and the results from the HEp-2 cell cultures demonstrated a viral inhibition of 42.7% in the presence of resveratrol, with an EC50 (Half maximal effective concentration) of 44.26 μM. This mechanism may occur through interaction with the M protein responsible for the budding of mature viral particles. Biophysical assays enabled us to characterize the interaction of the M/resveratrol complex as an entropically driven bond, guided by hydrophobic interactions at the dimerization interface of the M protein, which is essential for the stabilization and formation of the oligomers necessary for viral budding. These findings suggest that one of the targets for resveratrol binding is the M protein, indicating a potential site for blocking the progression of the infection.
Collapse
Affiliation(s)
- Thaina Rodrigues
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Jefferson de Souza Busso
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Raphael Vinicius Rodrigues Dias
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Isabella Ottenio Lourenço
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Jessica Maróstica de Sa
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Sidney Jurado de Carvalho
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Icaro Putinhon Caruso
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Fatima Pereira de Souza
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Marcelo Andres Fossey
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
3
|
Goleij P, Sanaye PM, Babamohamadi M, Tabari MAK, Amirian R, Rezaee A, Mirzaei H, Kumar AP, Sethi G, Sadreddini S, Jeandet P, Khan H. Phytostilbenes in lymphoma: Focuses on the mechanistic and clinical prospects of resveratrol, pterostilbene, piceatannol, and pinosylvin. Leuk Res 2024; 138:107464. [PMID: 38422882 DOI: 10.1016/j.leukres.2024.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Lymphoma is a cancer affecting the lymphatic system that fights infections and diseases. In addition to surgery, radiotherapy, and chemotherapy, novel approaches have recently been investigated, such as phytostilbenes in treating lymphoma. Phytostilbenes are natural compounds present in various plants and have been shown to have different therapeutic effects, including anticancer properties. Resveratrol is a main phytostilbene with various derivates followed by pterostilbene and piceatannol. Studies have revealed that phytostilbenes can suppress the growth and proliferation of lymphoma cells by inducing apoptosis and inhibiting specific enzyme activity in cancer cell survival. The compounds also have antiinflammatory effects contributing to reducing lymphoma-associated inflammation. Additionally, phytostilbenes have been shown to increase the immune system's ability to fight cancer cells by activating immune cells (T-cells and natural killer cells). This review investigates the potential therapeutic effects of phytostilbenes, including resveratrol, pterostilbene, piceatannol, and pinosylvin, against lymphoma.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehregan Babamohamadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran; Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roshanak Amirian
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit "Induced Resistance and Plant Bioprotection", RIBP-USC INRA 1488, Reims 51100, France
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
4
|
R. M. Metawea O, Teleb M, Haiba NS, Elzoghby AO, Khafaga AF, Noreldin AE, Khattab SN, Khalil HH. Folic acid-poly(N-isopropylacrylamide-maltodextrin) nanohydrogels a novel thermo-/pH-responsive polymer for resveratrol breast cancer targeted therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Castro‐Guarda M, Arancibia Y, Chipón C, Matamala C, Oyarzo P, Vargas G, Reyes A, Salas M, Morera FJ, Zambrano A. Metabolic changes induced by DNA damage in Ramos cells: exploring the role of mTORC1 complex. FEBS Open Bio 2022; 12:1509-1522. [PMID: 35538662 PMCID: PMC9340868 DOI: 10.1002/2211-5463.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/26/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
DNA damage induces the activation of many different signals associated with repair or cell death, but it is also connected with physiological events, such as adult neurogenesis and B-cell differentiation. DNA damage induces different signaling pathways, some of them linked to important metabolic changes. The mTORC1 pathway has a central role in the regulation of growth processes and cell division in response to environmental changes and also controls protein synthesis, lipid biogenesis, nucleotide synthesis, and expression of glycolytic genes. Here, we report that double-strand breaks induced with etoposide affect the expression of genes encoding different enzymes associated with specific metabolic pathways in Ramos cells. We also analyzed the role of mTOR signaling, demonstrating that double-strand breaks induce downregulation of mTOR signaling. Specific inhibition of mTORC1 using rapamycin also induced changes in the expression of metabolic genes. Finally, we demonstrated that DNA damage and rapamycin can regulate glucose uptake. In summary, our findings show that etoposide and rapamycin affect the expression of metabolic genes as well as apoptotic and proliferation markers in Ramos cells, increasing our understanding of cancer metabolism.
Collapse
Affiliation(s)
- Marcos Castro‐Guarda
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Yennyfer Arancibia
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Carina Chipón
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Christofer Matamala
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Paola Oyarzo
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Gabriela Vargas
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Alejandro Reyes
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
- Universidad Austral de ChileCoyhaiqueChile
| | - Mónica Salas
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
| | - Francisco J. Morera
- Facultad de Ciencias VeterinariasInstituto de Farmacología y MorfofisiologíaUniversidad Austral de ChileValdiviaChile
| | - Angara Zambrano
- Facultad de CienciasInstituto de Bioquímica y MicrobiologíaUniversidad Austral de ChileValdiviaChile
- Center for Interdisciplinary Studies on the Nervous System (CISNe)Universidad Austral de ChileValdiviaChile
| |
Collapse
|
6
|
Hasan ZYM, Obed FAA, Jasim AA, Alwan AF. In vitro study of the effect of resveratrol purified from the skin of Iraqi black grape ( Vitis vinifera) on lymphocyte cultures isolated from the blood of patients with lymphoma. J Med Life 2022; 15:778-783. [PMID: 35928372 PMCID: PMC9321486 DOI: 10.25122/jml-2022-0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
The natural stilbene compound resveratrol (RSV) was extracted and purified locally from the black grape skin (Vitis vinifera) cultivated in Iraq. Cultures of human peripheral lymphocytes were obtained from the blood samples of patients with and without lymphoma to be treated with RSV at different concentrations. Three RSV concentration levels were subjected to isolated lymphocytes from blood samples of Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), and without lymphoma to estimate the change in TNF-α and IL-10. Resveratrol seemed to differently affect cytokines level in normal and lymphoma lymphocytes in relation to its concentration. The lowest resveratrol concentration (50 µg/ml) decreased TNF-α levels for patients without lymphoma and all NHL patients in contrast to the HL sample. Treating normal lymphocytes with a higher dose (1000 µg/ml) might elevate the levels of TNF-α in almost all samples. There was an inverse relationship between both cytokines in most treatments; with the increase in TNF-α level, there was a decrease in IL-10 level except in HL and normal lymphocytes treatment. The locally purified resveratrol could serve as a multi-target drug that modulates the immune system to improve body defense in patients suffering from lymphoma and in patients without lymphoma by altering cytokine levels in response to different resveratrol concentrations in a different manner.
Collapse
Affiliation(s)
- Zainab Yaseen Mohammed Hasan
- Department of Health Science, Biotechnology Research Center, Al-Nahrain University, Baghdad, Iraq,Corresponding Author: Zainab Yaseen Mohammed Hasan, Department of Health Science, Biotechnology Research Center, Al-Nahrain University, Baghdad, Iraq. E-mail:
| | | | - Ahmed Abdulmunem Jasim
- Department of Health Science, Biotechnology Research Center, Al-Nahrain University, Baghdad, Iraq
| | - Alaa Fadhil Alwan
- National Center of Hematology, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
7
|
Almatroodi SA, A. Alsahli M, S. M. Aljohani A, Alhumaydhi FA, Babiker AY, Khan AA, Rahmani AH. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules 2022; 27:2665. [PMID: 35566016 PMCID: PMC9101422 DOI: 10.3390/molecules27092665] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| |
Collapse
|
8
|
Gao P, Ren G. Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis. Aging (Albany NY) 2021; 13:23245-23261. [PMID: 34633989 PMCID: PMC8544309 DOI: 10.18632/aging.203616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type in lung cancer in the world, and it severely threatens the life of patients. Resveratrol has been reported to inhibit cancer. However, mechanisms of resveratrol inhibiting NSCLC were unclear. The aim of this study was to identify differentially expressed genes (DEGs) of NSCLC treated with resveratrol and reveal the potential targets of resveratrol in NSCLC. We obtained mRNA expression profiles of two datasets from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) and 271 DEGs were selected for further analysis. Data from STRING shown that 177 nodes and 342 edges were in the protein-protein interaction (PPI) network, and 10 hub genes (ANPEP, CD69, ITGAL, PECAM1, PTPRC, CD34, ITGA1, CCL2, SOX2, and EGFR) were identified by Cytoscape plus-in cytoHubba. Survival analysis revealed that NSCLC patients showing low expression of PECAM1, ANPEP, CD69, ITGAL, and PTPRC were associated with worse overall survival (OS) (P < 0.05), and high expression of SOX2 and EGFR was associated with worse OS for NSCLC patients (P < 0.05). Overall, we identified ANPEP, CD69, ITGAL, and PTPRC as potential candidate genes which were main effects of resveratrol on the treatment of NSCLC. ANPEP, ITGAL, CD69, and PTPRC are all clusters of differentiation (CD) antigens, might be the targets of resveratrol. The bioinformatic results suggested that the inhibitory effect of resveratrol on lung cancer may be related to the immune signaling pathway. Further studies are needed to validate these findings and to explore their functional mechanisms.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
9
|
Batool A, Hazafa A, Ahmad S, Khan HA, Abideen HMZ, Zafar A, Bilal M, Iqbal HMN. Treatment of lymphomas via regulating the Signal transduction pathways by natural therapeutic approaches: A review. Leuk Res 2021; 104:106554. [PMID: 33684680 DOI: 10.1016/j.leukres.2021.106554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Lymphoma is a heterogeneous group of malignancies, which comprises 4.2 % of all new cancer cases and 3.3 % of all cancer deaths in 2019, globally. The dysregulation of immune system, certain bacterial or viral infections, autoimmune diseases, and immune suppression are associated with a high risk of lymphoma. Although several conventional strategies have improved during the past few decades, but their detrimental impacts remain an obstacle to be resolved. However, natural compounds are considered a good option in the treatment of lymphomas because of their easy accessibility, specific mode of action, high biodegradability, and cost-effectiveness. Vegetables, fruits, and beverages are the primary sources of natural active compounds. The present review investigated the activities of different natural medicinal compounds including curcumin, MK615, resveratrol, bromelain, EGCG, and Annonaceous acetogenins to treat lymphomas. Moreover, in vitro and in vivo studies, classification, risk factors, and diagnosis of lymphoma are also discussed in the present review. The accumulated data proposed that natural compounds regulate the signaling pathways at the level of cell proliferation, apoptosis, and cell cycle to exhibit anti-lymphoma activities both in-vivo and in-vitro studies and suggested that these active compounds could be a good therapeutic option in the treatment of different types of lymphomas.
Collapse
Affiliation(s)
- Ammara Batool
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38000, Pakistan; International Society of Engineering Science and Technology, Coventry, CV1 5EH, United Kingdom.
| | - Saeed Ahmad
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Hamid Ali Khan
- Institute of Biological Sciences, Sarhad University of Science and Information Technology, Peshawar, 25000, Pakistan
| | - Hafiz M Z Abideen
- Institute of Public Health, The University of Lahore, Lahore, 54590, Pakistan
| | - Ayesha Zafar
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849, Monterrey, NL, Mexico
| |
Collapse
|
10
|
Zhong J, Yang D, Zhou Y, Liang M, Ai Y. Multi-frequency single cell electrical impedance measurement for label-free cell viability analysis. Analyst 2021; 146:1848-1858. [PMID: 33619511 DOI: 10.1039/d0an02476g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell viability is a physiological status connected to cell membrane integrity and cytoplasmic topography, which is profoundly important for fundamental biological research and practical biomedical applications. A conventional method for assessing cell viability is through cell staining analysis. However, cell staining involves laborious and complicated processing procedures and is normally cytotoxic. Intrinsic cellular phenotypes thus provide new avenues for measuring cell viability in a stain-free and non-toxic manner. In this work, we present a label-free non-destructive impedance-based approach for cell viability assessment by simultaneously characterizing multiple electrical cellular phenotypes in a high-throughput manner (>1000 cells per min). A novel concept called the complex opacity spectrum is introduced for improving the discrimination of live and dead cells. The analysis of the complex opacity spectrum leads to the discovery of two frequency ranges that are optimized for characterizing membranous and cytoplasmic electrical phenotypes. The present impedance-based approach has successfully discriminated between living and dead cells in two different experimental scenarios, including mixed living and dead cells in both homogenous and heterogeneous cell samples. This impedance-based single cell phenotyping technique provides highly accurate and consistent cell viability analysis, which has been validated by commercial fluorescence-based flow cytometry (∼1% difference) using heterogeneous cell samples. This label-free high-throughput cell viability analysis strategy will have broad applications in the field of biology and medicine.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | | | | | | | | |
Collapse
|
11
|
Review of Natural Compounds for the Management and Prevention of Lymphoma. Processes (Basel) 2020. [DOI: 10.3390/pr8091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lymphoma is a type of blood cancer that can be categorized into two types-Hodgkin lymphoma (HL) and Non-Hodgkin lymphoma (NHL). A total of 509,590 and 79,990 cases of NHL and HL were newly diagnosed in 2018, respectively. Although conventional therapy has stridden forward over recent decades, its adverse effects are still a hurdle to be solved. Thus, to help researchers develop better lymphoma treatment, this study aims to review the systematic anticancer data for natural products and their compounds. A variety of natural products showed anticancerous effects on lymphoma by regulation of intracellular mechanisms including apoptosis as well as cell cycle arrest. As these results shed light on the potential to substitute conventional therapy with natural products, it may become a promising strategy for lymphoma treatment in the near future.
Collapse
|
12
|
Qin T, Cheng L, Xiao Y, Qian W, Li J, Wu Z, Wang Z, Xu Q, Duan W, Wong L, Wu E, Ma Q, Ma J. NAF-1 Inhibition by Resveratrol Suppresses Cancer Stem Cell-Like Properties and the Invasion of Pancreatic Cancer. Front Oncol 2020; 10:1038. [PMID: 32766132 PMCID: PMC7378530 DOI: 10.3389/fonc.2020.01038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a natural polyphenolic compound with multiple biological effects, e.g., proliferation inhibition, anti-oxidation, and neuroprotection. Besides that, studies have shown that resveratrol inhibits tumor growth and migration, as well as epithelial–mesenchymal transition (EMT). However, its molecular mechanisms in tumor progression are not fully understood. Nutrient-deprivation autophagy factor-1 (NAF-1) is mainly found in the endoplasmic reticulum and mitochondrial outer membrane. It is an important genetic locus for regulating oxidative stress and autophagy. The molecular mechanism of NAF-1 in pancreatic cancer is currently unclear. The current study found that NAF-1 is expressed in pancreatic cancer tissue and correlated with the progression of pancreatic cancer. Furthermore, we found that NAF-1 inhibition significantly inhibits the stem cell characteristics and the invasion and migration abilities of pancreatic cancer cells. In a subcutaneous xenograft model of pancreatic cancer in nude mice, resveratrol inhibited the expression of NAF-1, thereby inhibiting tumor growth. Taken together, resveratrol could be an effective anti-tumor drug, and NAF-1 may be a rational therapeutic target.
Collapse
Affiliation(s)
- Tao Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lucas Wong
- Department of Oncology, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Erxi Wu
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States.,Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States.,Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, TX, United States.,LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiguang Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Sharifi-Rad J, Rajabi S, Martorell M, López MD, Toro MT, Barollo S, Armanini D, Fokou PVT, Zagotto G, Ribaudo G, Pezzani R. Plant natural products with anti-thyroid cancer activity. Fitoterapia 2020; 146:104640. [PMID: 32474055 DOI: 10.1016/j.fitote.2020.104640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Thyroid cancer is the most frequent endocrine malignancy, with more than 500,000 cases per year worldwide. Differentiated thyroid cancers are the most common forms with best prognosis, while poorly/undifferentiated ones are rare (2% of all thyroid cancer), aggressive, frequently metastasize and have a worse prognosis. For aggressive, metastatic and advanced thyroid cancer novel antitumor molecules are urgently needed and phytochemical products can be a rational and extensive source, since secondary plant metabolites can guarantee the necessary biochemical variability for therapeutic purpose. Among bioactive molecules that present biological activity on thyroid cancer, resveratrol, curcumin, isoflavones, glucosinolates are the most common and used in experimental model. Most of them have been studied both in vitro and in vivo on this cancer, but rarely in clinical trial. This review summarizes phytochemicals, phytotherapeutics and plant derived compounds used in thyroid cancer.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile; Centre for Healthy Living, University of Concepción, Concepción, Chile; Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile.
| | - Maria Dolores López
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile
| | - María Trinidad Toro
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile.
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | - Decio Armanini
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | | | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| |
Collapse
|
14
|
Dariya B, Behera SK, Srivani G, Farran B, Alam A, Nagaraju GP. Computational analysis of nuclear factor-κB and resveratrol in colorectal cancer. J Biomol Struct Dyn 2020; 39:2914-2922. [PMID: 32306846 DOI: 10.1080/07391102.2020.1757511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nuclear factor κB (NF-κB), a dimeric transcription factor, is a major regulator and an important determinant of the biological characteristics of tumour cells. Some antioxidants or protease inhibitors have been found to act against NF-κB to suppress colorectal cancer (CRC). In the current investigation, a computational study was performed to investigate the molecular interaction between NF-κB and resveratrol. Molecular docking studies revealed that, resveratrol with NF-κB are predicted to be quite effective. The application of molecular dynamics simulation (MDS) tactics has considerably supported in increasing the prediction precision of the outcomes. Further, this study revealed that NF-κB could be a potential target for various anti-cancerous drugs for cancer therapeutics. Furthermore, animal investigations are necessary to confirm the efficacy and evaluate potency of target and drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, India
| | - Santosh Kumar Behera
- Biomedical Informatics Centre, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Gowru Srivani
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, India
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, India
| | | |
Collapse
|
15
|
Skonieczna M, Hudy D, Poterala-Hejmo A, Hejmo T, Buldak RJ, Dziedzic A. Effects of Resveratrol, Berberine and Their Combinations on Reactive Oxygen Species, Survival and Apoptosis in Human Squamous Carcinoma (SCC-25) Cells. Anticancer Agents Med Chem 2019; 19:1161-1171. [DOI: 10.2174/1871520619666190405111151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Levels of cellular Reactive Oxygen Species (ROS) influence the oxidized/reduced
states of cellular proteins, and create redox-signaling pathways that can activate transcription factors, kinases,
and phosphatases. ROS levels can be increased radically by external factors, including ionizing and UV radiation or
exposure to chemical compounds. These increased ROS levels can, in turn, lead to oxidative damage of DNA.
Natural plant treatments against cancer can modulate these processes by inducing or decreasing ROS production.
Methods:
Here we report new observations that squamous carcinoma (SCC-25) cells, exposed to 24 hours of
combined resveratrol and berberine treatment, contain increased ROS levels. Using flow cytometry, for drug
activity characteristics, an accumulation of ROS was observed. A combination of different dyes, CellROX
Green (Life Technologies) and DCFH-DA (Sigma), allowed for flow cytometric estimation of levels of cellular
ROS as well as cellular localization.
Results:
Live staining and microscopic observations confirmed the accumulation of ROS in SCC-25 cells following
a combination treatment at concentrations of 10μg/ml. Additionally, the cytotoxicity of the compounds
was significantly improved after their combined application. Additive effects were observed for doses lower
than the calculated IC50 of berberine [IC50=23µg/ml] and resveratrol [IC50=9µg/ml]. Viability (MTS) assays and
analysis of isobolograms revealed a significant impact on cell viability upon combination treatment.
Conclusion:
These results suggest that administration of berberine, in the presence of resveratrol, could be
decreased even to 50% (half the IC50 for berberine) for cancer treatment.
Collapse
Affiliation(s)
- Magdalena Skonieczna
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Dorota Hudy
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Aleksandra Poterala-Hejmo
- Biosystems Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
| | - Tomasz Hejmo
- Department of Biochemistry, Medical University of Silesia, School of Medicine with the Division of Dentistry, Jordana 19, 41-808 Zabrze, Poland
| | - Rafal J. Buldak
- Department of Biochemistry, Medical University of Silesia, School of Medicine with the Division of Dentistry, Jordana 19, 41-808 Zabrze, Poland
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry and Endodontics, Medical University of Silesia, Pl. Akademicki 17, 41-902 Bytom, Poland
| |
Collapse
|
16
|
Chatterjee B, Ghosh K, Kanade SR. Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, p53, p21 CIP1 in human breast cancer cell lines. Biofactors 2019; 45:818-829. [PMID: 31317586 DOI: 10.1002/biof.1544] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/27/2019] [Indexed: 01/09/2023]
Abstract
The epigenetic enzymes catalyze posttranslational modifications (PTMs) of histones, which functionally determine gene expression at the chromatin level. Resveratrol (RVT) a much studied anti-cancer natural molecule is known for restoration of BRCA1, p53, and p21 in cancer cells. We aimed to investigate the role of histone methylation and acetylation on upregulation of these tumor suppressor genes. Our results suggest RVT significantly increase expression of BRCA1, p53, and p21, while decreased expression of protein arginine methyltransferase 5 (PRMT5) and enhancer of Zeste homolog 2 (EZH2) at a 20 μM concentration by 48 hr in both MCF-7 and MDA-MB-231 breast cancer cells. Also, there was an overall loss of H4R3me2s (catalytic product of PRMT5) and H3K27me3 (catalytic product of PRMT5). In contrast, RVT exposure caused a significant decrease in lysine deacetylase (KDAC) activity and expression of KDAC1-3, whereas the expression of lysine acetyltransferase KAT2A/3B was increased compared to the unexposed cells. As an outcome, RVT increased global level of H3K9ac and H3K27ac marks. The chromatin immunoprecipitation showed 20 μM RVT exposure significantly reduced the enrichment of repressive histone marks (H4R3me2s and H3K27me3) while the abundance of activating histone marks (H3K9/27ac) within the proximal promoter region of BRCA1, p53, and p21 was increased. We hypothesize RVT by affecting the expression and function of methylation and acetylation enzymes altered the epigenetic modifications on promoter histones that restored expression of these critically important tumor suppressor genes.
Collapse
Affiliation(s)
- Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
| | - Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
| |
Collapse
|
17
|
Chen J, Tian B, Zhou C, Sun J, Lin L, Jin S, Liu Q, Fu S, Liu L, Liu H, Zhang Z, Li C, Wei H. A Novel Resveratrol-Arsenic Trioxide Combination Treatment Synergistically Induces Apoptosis of Adriamycin-Selected Drug-Resistant Leukemia K562 Cells. J Cancer 2019; 10:5483-5493. [PMID: 31632492 PMCID: PMC6775695 DOI: 10.7150/jca.34506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Leukemia cells can develop resistance to apoptosis induced by chemotherapeutic agents. Concomitant multidrug resistance of cells remains the greatest clinical obstacle in the effective treatment of blood and solid tumors. Natural products have been identified that possess the capacity to modulate chemotherapeutic resistance and induce apopotosis. In this study, we generated adriamycin-resistant K562 leukemia (K562/RA) cells and compared the responses of sensitive and resistant leukemia cells to the natural products arsenic trioxide (ATO) and resveratrol (Rsv), with a view to determining whether Rsv potentiates the sensitivity of drug-resistant cells to ATO-induced apoptosis and the associated molecular mechanisms. Our results showed that resistance of K562/RA cells induced by adriamycin treatment was significantly higher (115.81-fold) than that of parental K562 cells. Simultaneously, K562/RA cells were cross-resistant to multiple agents, with the exception of ATO. Rsv enhanced the sensitivity of K562/RA cells to ATO and reduced the required dose of ATO as well as associated adverse reactions by promoting the proliferation inhibitory and apoptosis-inducing effects of ATO, which may be associated with reduced expression of the drug resistance genes mdr1/P-gp, mrp1/MRP1 and bcrp/BCRP, as well as the apoptotic inhibitory genes bcl-2, NF-κB and P53, and conversely, activation of caspase-3. Our collective findings indicate that ATO and Rsv synergistically enhance the sensitivity of drug-resistant leukemia cells to apoptosis.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Baoying Tian
- Hanzhong vocational and technical college, Hanzhong, Shanxi, 723000
| | - Cunmin Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Jingjing Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Shucheng Jin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Quanrui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Siyu Fu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Lian Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Hang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Caili Li
- School of Medicine of Northwest University for Nationalities, Lanzhou, Gansu 730030, P.R. China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| |
Collapse
|
18
|
Uzawa K, Amelio AL, Kasamatsu A, Saito T, Kita A, Fukamachi M, Sawai Y, Toeda Y, Eizuka K, Hayashi F, Kato-Kase I, Sunohara M, Iyoda M, Koike K, Nakashima D, Ogawara K, Endo-Sakamoto Y, Shiiba M, Takiguchi Y, Yamauchi M, Tanzawa H. Resveratrol Targets Urokinase-Type Plasminogen Activator Receptor Expression to Overcome Cetuximab-Resistance in Oral Squamous Cell Carcinoma. Sci Rep 2019; 9:12179. [PMID: 31434965 PMCID: PMC6704133 DOI: 10.1038/s41598-019-48717-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
Drug resistance to anti-cancer agents is a major concern regarding the successful treatment of malignant tumors. Recent studies have suggested that acquired resistance to anti-epidermal growth factor receptor (EGFR) therapies such as cetuximab are in part caused by genetic alterations in patients with oral squamous cell carcinoma (OSCC). However, the molecular mechanisms employed by other complementary pathways that govern resistance remain unclear. In the current study, we performed gene expression profiling combined with extensive molecular validation to explore alternative mechanisms driving cetuximab-resistance in OSCC cells. Among the genes identified, we discovered that a urokinase-type plasminogen activator receptor (uPAR)/integrin β1/Src/FAK signal circuit converges to regulate ERK1/2 phosphorylation and this pathway drives cetuximab-resistance in the absence of EGFR overexpression or acquired EGFR activating mutations. Notably, the polyphenolic phytoalexin resveratrol, inhibited uPAR expression and consequently the signaling molecules ERK1/2 downstream of EGFR thus revealing additive effects on promoting OSCC cetuximab-sensitivity in vitro and in vivo. The current findings indicate that uPAR expression plays a critical role in acquired cetuximab resistance of OSCC and that combination therapy with resveratrol may provide an attractive means for treating these patients.
Collapse
Affiliation(s)
- Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| | - Antonio L Amelio
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA. .,Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA. .,Biomedical Research Imaging Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA.
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Tomoaki Saito
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Akihiro Kita
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Megumi Fukamachi
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuki Sawai
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuriko Toeda
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Keitaro Eizuka
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Fumihiko Hayashi
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ikuko Kato-Kase
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Manabu Iyoda
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Dai Nakashima
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Katsunori Ogawara
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
19
|
Elshaer M, Chen Y, Wang XJ, Tang X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci 2018; 207:340-349. [DOI: 10.1016/j.lfs.2018.06.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
|
20
|
Structure, Chemical Analysis, Biosynthesis, Metabolism, Molecular Engineering, and Biological Functions of Phytoalexins. Molecules 2017; 23:molecules23010061. [PMID: 29283365 PMCID: PMC6017555 DOI: 10.3390/molecules23010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 12/24/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023] Open
|