1
|
Zimmermann P, Kurth S, Pugin B, Bokulich NA. Microbial melatonin metabolism in the human intestine as a therapeutic target for dysbiosis and rhythm disorders. NPJ Biofilms Microbiomes 2024; 10:139. [PMID: 39604427 PMCID: PMC11603051 DOI: 10.1038/s41522-024-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Melatonin (MT) (N-acetyl-5-methoxytryptamine) is an indoleamine recognized primarily for its crucial role in regulating sleep through circadian rhythm modulation in humans and animals. Beyond its association with the pineal gland, it is synthesized in various tissues, functioning as a hormone, tissue factor, autocoid, paracoid, and antioxidant, impacting multiple organ systems, including the gut-brain axis. However, the mechanisms of extra-pineal MT production and its role in microbiota-host interactions remain less understood. This review provides a comprehensive overview of MT, including its production, actions sites, metabolic pathways, and implications for human health. The gastrointestinal tract is highlighted as an additional source of MT, with an examination of its effects on the intestinal microbiota. This review explores whether the microbiota contributes to MT in the intestine, its relationship to food intake, and the implications for human health. Due to its impacts on the intestinal microbiota, MT may be a valuable therapeutic agent for various dysbiosis-associated conditions. Moreover, due to its influence on intestinal MT levels, the microbiota may be a possible therapeutic target for treating health disorders related to circadian rhythm dysregulation.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland.
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Benoit Pugin
- Laboratory of Food Systems Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicholas A Bokulich
- Laboratory of Food Systems Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Huang M, Wu Y, Li Y, Chen X, Feng J, Li Z, Li J, Chen J, Lu Y, Feng Y. Circadian clock-related genome-wide mendelian randomization identifies putatively genes for ulcerative colitis and its comorbidity. BMC Genomics 2024; 25:130. [PMID: 38302916 PMCID: PMC10832088 DOI: 10.1186/s12864-024-10003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Circadian rhythm is crucial to the function of the immune system. Disorders of the circadian rhythm can contribute to inflammatory diseases such as Ulcerative colitis (UC). This Mendelian Randomization (MR) analysis applies genetic tools to represent the aggregated statistical results of exposure to circadian rhythm disorders and UC and its comorbidities, allowing for causal inferences. METHODS Summary statistics of protein, DNA methylation and gene expression quantitative trait loci in individuals of European ancestry (pQTL, mQTL, and eQTL, respectively) were used. Genetic variants located within or near 152 circadian clock-related genes and closely related to circadian rhythm disorders were selected as instrumental variables. Causal relationships with UC and its comorbidities were then estimated through employed Summary data-based Mendelian Randomization (SMR) and Inverse-Variance-Weighted MR (IVW-MR). RESULTS Through preliminary SMR analysis, we identified a potential causal relationship between circadian clock-related genes and UC along with its comorbidities, which was further confirmed by IVW-MR analysis. Our study identified strong evidence of positive correlation involving seven overlapping genes (CSNK1E, OPRL1, PIWIL2, RORC, MAX, PPP5C, and AANAT) through MWAS and TWAS in UC, four overlapping genes (OPRL1, CHRNB2, FBXL17, and SIRT1) in UC with PSC, and three overlapping genes (ARNTL, USP7, and KRAS) in UC with arthropathy. CONCLUSIONS This SMR study demonstrates the causal effect of circadian rhythm disorders in UC and its comorbidities. Furthermore, our investigation pinpointed candidate genes that could potentially serve as drug targets.
Collapse
Affiliation(s)
- Mengfen Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiqiang Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Jiankun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yue Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yan Feng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| |
Collapse
|
4
|
Lei X, Xu Z, Huang L, Huang Y, Tu S, Xu L, Liu D. The potential influence of melatonin on mitochondrial quality control: a review. Front Pharmacol 2024; 14:1332567. [PMID: 38273825 PMCID: PMC10808166 DOI: 10.3389/fphar.2023.1332567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024] Open
Abstract
Mitochondria are critical for cellular energetic metabolism, intracellular signaling orchestration and programmed death regulation. Therefore, mitochondrial dysfunction is associated with various pathogeneses. The maintenance of mitochondrial homeostasis and functional recovery after injury are coordinated by mitochondrial biogenesis, dynamics and autophagy, which are collectively referred to as mitochondrial quality control. There is increasing evidence that mitochondria are important targets for melatonin to exert protective effects under pathological conditions. Melatonin, an evolutionarily conserved tryptophan metabolite, can be synthesized, transported and metabolized in mitochondria. In this review, we summarize the important role of melatonin in the damaged mitochondria elimination and mitochondrial energy supply recovery by regulating mitochondrial quality control, which may provide new strategies for clinical treatment of mitochondria-related diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Tu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Chojnacki C, Gąsiorowska A, Popławski T, Błońska A, Konrad P, Zajdler R, Chojnacki J, Blasiak J. Reduced Intake of Dietary Tryptophan Improves Beneficial Action of Budesonide in Patients with Lymphocytic Colitis and Mood Disorders. Nutrients 2023; 15:nu15071674. [PMID: 37049514 PMCID: PMC10097278 DOI: 10.3390/nu15071674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Lymphocytic colitis (LC) is a gastrointestinal (GI) tract disease with poorly known pathogenesis, but some environmental and lifestyle factors, including certain dietary components, may play a role. Tryptophan is an essential amino acid, which plays important structural and functional roles as a component of many proteins. It is important in the development and maintenance of the body, in which it is metabolized in two main pathways: kynurenine (KYN) and serotonin. In this work, we explored the effect of reducing of TRP in the diet of patients with LC with mood disorders. We enrolled 40 LC patients who had a normal diet, 40 LC patients with the 8-week diet with TRP content reduced by 25% and 40 controls. All LC patients received budesonide at 9 mg per day, and the severity of their GI symptoms was evaluated by the Gastrointestinal Symptoms Rating Scale. Mood disorders were evaluated by the Hamilton Anxiety Rating Scale (HAM-A) and the Hamilton Depression Rating Scale (HAM-D). The concentration of TRP and its metabolites, 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QA), in urine were determined. Budesonide improved the GI and mental states of LC patients, and the diet with reduced TRP content further amended these symptoms. Dietary intervention decreased the concentration of 5-HIAA by about 50% (3.4 vs. 6.3) and QA by about 45% (3.97 vs. 7.20). These changes were correlated with a significant improvement in the profitable action of budesonide on gastrointestinal and mental health of LC patients as they displayed significantly lower GSRS, HAM-A and HAM-B scores after than before the intervention—10.5 vs. 32, 11.0 vs. 21 and 12 vs. 18, respectively. In conclusion, a reduction in TRP intake in diet may improve GI and mental symptoms in LC patients treated with budesonide and these changes may be mediated by the products of TRP metabolism.
Collapse
|
6
|
Serotonin and Melatonin in Human Lower Gastrointestinal Tract. Diagnostics (Basel) 2023; 13:diagnostics13020204. [PMID: 36673013 PMCID: PMC9857959 DOI: 10.3390/diagnostics13020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND AIMS Melatonin is a ubiquitous hormone produced not only by the pineal gland but also by other organs and tissues. It is involved in the regulation of several gastrointestinal functions. The main cells responsible for the production and release of extrapineal melatonin are the enterochromaffin (EC) cells that produce serotonin. They are involved in the pathogenesis of neuromotor disorders that characterize functional gastrointestinal disorders and in the pathophysiology of inflammatory intestinal diseases. Our aim was the immunohistochemical highlighting on biopsy samples of normal gastrointestinal mucosa and in ulcerative colitis (UC) of immunoreactive cells for melatonin and serotonin in order to identify any differences in their distribution. MATERIALS AND METHODS Our prospective case-control study involves the highlighting on human mucosal biopsies of immunoreactive cells for melatonin and serotonin. All patients undergoing colonoscopy + ileoscopy were considered eligible for the study, divided into two groups: 1. patients with active ulcerative colitis (UC); 2. control group consisting of patients undergoing endoscopic examination for colorectal cancer screening. RESULTS Twenty-one patients were enrolled. The controls had a higher concentration of EC cells containing 5HT particularly in the rectum (p value ≤ 0.05). In patients with active colitis the expression of 5-HT-iR was greater in all tracts of the colon. The correlation analysis in UC patients shows that a higher expression of 5-HT-iR+ cells corresponds to a lower extension of the disease and a greater severity of the same. CONCLUSIONS 5HT+ cells decreased in the case of UC compared to healthy controls. In the severe disease, there was an increase in the expression of melatonin-secreting cells, probably as a compensatory response to the inflammation and oxidative stress. This increase is negatively correlated with the extent of the disease and positively with the severity of the same.
Collapse
|
7
|
Iesanu MI, Zahiu CDM, Dogaru IA, Chitimus DM, Pircalabioru GG, Voiculescu SE, Isac S, Galos F, Pavel B, O’Mahony SM, Zagrean AM. Melatonin-Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants (Basel) 2022; 11:2244. [PMID: 36421432 PMCID: PMC9686962 DOI: 10.3390/antiox11112244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Melatonin is a pineal indolamine, allegedly known as a circadian rhythm regulator, and an antioxidative and immunomodulatory molecule. In both experimental and clinical trials, melatonin has been shown to have positive effects in various pathologies, as a modulator of important biochemical pathways including inflammation, oxidative stress, cell injury, apoptosis, and energy metabolism. The gut represents one of melatonin's most abundant extra pineal sources, with a 400-times-higher concentration than the pineal gland. The importance of the gut microbial community-namely, the gut microbiota, in multiple critical functions of the organism- has been extensively studied throughout time, and its imbalance has been associated with a variety of human pathologies. Recent studies highlight a possible gut microbiota-modulating role of melatonin, with possible implications for the treatment of these pathologies. Consequently, melatonin might prove to be a valuable and versatile therapeutic agent, as it is well known to elicit positive functions on the microbiota in many dysbiosis-associated conditions, such as inflammatory bowel disease, chronodisruption-induced dysbiosis, obesity, and neuropsychiatric disorders. This review intends to lay the basis for a deeper comprehension of melatonin, gut microbiota, and host-health subtle interactions.
Collapse
Affiliation(s)
- Mara Ioana Iesanu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana-Alexandra Dogaru
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Diana Maria Chitimus
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Section Earth, Environmental and Life Sciences, Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sebastian Isac
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Pavel
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
8
|
Synthesis of New 2,3-Dihydroindole Derivatives and Evaluation of Their Melatonin Receptor Binding Affinity. Molecules 2022; 27:molecules27217462. [DOI: 10.3390/molecules27217462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
2,3-Dihydroindoles are promising agents for the synthesis of new compounds with neuroprotective and antioxidant properties. Usually, these compounds are obtained by direct reduction of the corresponding indoles containing acceptor groups in the indole ring for its activation. In this work, we propose a synthetic strategy to obtain new 2,3-dihydroindole derivatives from the corresponding polyfunctional 2-oxindoles. Three methods were proposed for reduction of functional groups in the 2-oxindole and 2-chloroindole molecules using various boron hydrides. The possibility of chemoselective reduction of the nitrile group in the presence of an amide was shown. The proposed synthetic strategy can be used, for example, for the synthesis of new analogs of the endogenous hormone melatonin and other compounds with neuroprotective properties.
Collapse
|
9
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
10
|
Baburina Y, Lomovsky A, Krestinina O. Melatonin as a Potential Multitherapeutic Agent. J Pers Med 2021; 11:jpm11040274. [PMID: 33917344 PMCID: PMC8067360 DOI: 10.3390/jpm11040274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL) is a hormone produced by the pineal gland that was discovered many years ago. The physiological roles of this hormone in the body are varied. The beneficial effects of MEL administration may be related to its influence on mitochondrial physiology. Mitochondrial dysfunction is considered an important factor in various physiological and pathological processes, such as the development of neurodegenerative and cardiovascular diseases, diabetes, various forms of liver disease, skeletal muscle disorders, and aging. Mitochondrial dysfunction induces an increase in the permeability of the inner membrane, which leads to the formation of a permeability transition pore (mPTP) in the mitochondria. The long-term administration of MEL has been shown to improve the functional state of mitochondria and inhibit the opening of the mPTP during aging. It is known that MEL is able to suppress the initiation, progression, angiogenesis, and metastasis of cancer as well as the sensitization of malignant cells to conventional chemotherapy and radiation therapy. This review summarizes the studies carried out by our group on the combined effect of MEL with chemotherapeutic agents (retinoic acid, cytarabine, and navitoclax) on the HL-60 cells used as a model of acute promyelocytic leukemia. Data on the effects of MEL on oxidative stress, aging, and heart failure are also reported.
Collapse
|
11
|
Chojnacki C, Popławski T, Gasiorowska A, Chojnacki J, Blasiak J. Serotonin in the Pathogenesis of Lymphocytic Colitis. J Clin Med 2021; 10:jcm10020285. [PMID: 33466782 PMCID: PMC7830326 DOI: 10.3390/jcm10020285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Lymphocytic colitis (LC) is a chronic inflammatory disease associated with watery diarrhea, abdominal pain, and colonic intraepithelial lymphocytosis. Serotonin (5-hydroxytryptamine, 5-HT) is reported to increase in certain colon diseases; however, little is known regarding its metabolism in LC. In the present work, the level of 5-HT in serum and the number of enteroendocrine cells (EECs) as well as the expression of the 5-HT rate-limiting enzyme tryptophan hydroxylase 1 (TPH1) in colonic biopsies and urine 5-hydroxyindoeoacetic acid (5-HIAA) were determined in 36 LC patients that were treated with budesonide and 32 healthy controls. The 5-HT serum and 5-HIAA urine levels were measured using ELISA, the EEC number was determined immunohistochemically, and the colonic TPH1 mRNA expression was determined using RT-PCR. The levels of 5-HT and 5-HIAA and the number of EECs were higher in LC patients than in the controls, and positive correlations were observed between the 5-HT and 5-HIAA levels, 5-HT and EEC number, TPH1 mRNA and EEC number, as well as the severity of disease symptoms and 5-HIAA. Budesonide decreased the levels of 5-HT, 5-HIAA, and TPH1 expression and the number of EECs to values that did not differ from those for controls. In conclusion, the serotonin metabolism may be important for LC pathogenesis, and the urinary level of 5-HIAA may be considered as a non-invasive marker of this disease activity.
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-639-3040
| | - Tomasz Popławski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (T.P.); (J.B.)
| | - Anita Gasiorowska
- Department of Gastroenterology, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (T.P.); (J.B.)
| |
Collapse
|
12
|
Jastrzębski M, Przybyłkowski A. Biogenic amines in the colon. POSTEP HIG MED DOSW 2021; 75:183-190. [DOI: 10.5604/01.3001.0014.7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Summary
The gastrointestinal (GI) tract contains the highest concentration of biogenic amines in the human body. Neurons located in the GI tract, modulated by biogenic amines and various peptide and non-peptide transmitters, are called Enteric Nervous System (ENS). That explains why many medications used in neurology and psychiatry present side effects from the gut. Serotonin (5-hyroxytrypatamine, 5-HT), 95% of which is synthesized in the gut, is the most important amine (beside epinephrine and norepinephrine) colon functionality but another substances such as histamine, dopamine and melatonin are also potent in modulating intestine’s actions. Over 30 receptors for 5-HT were described in the human body, and 5-HT3, 5-HT4 and 5-HT7 are known to have the highest influence on motility and are a potent target for the drugs for treatment GI disorders, such as Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Diseases (IBD). Histamine is a key biogenic amine for pathogenesis of allergy also in the colon. Alteration in histaminergic system is found in patients with diarrhea and allergic enteropathy. Dopamine affects functions of the large intestine but its modulating actions are more presented in the upper part of GI tract. Melatonin is best known for regulating circadian circle, but may also be a potent anti-inflammatory agent within the gut. Despite many years of research, it seems that more studies are needed to fully understand human colon neurochemistry.
Collapse
Affiliation(s)
- Miłosz Jastrzębski
- Department of Gastroenterology and Internal Medicine , Medical University of Warsaw , Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine , Medical University of Warsaw , Poland
| |
Collapse
|