1
|
Podvin S, Florio J, Spencer B, Mante M, Guzman E, Arias C, Mosier C, Phan VV, Yoon MC, Almaliti J, O’Donoghue AJ, Gerwick WH, Rissman RA, Hook V. Activation of Cytosolic Cathepsin B Activity in the Brain by Traumatic Brain Injury and Inhibition by the Neutral pH Selective Inhibitor Probe Z-Arg-Lys-AOMK. ACS Chem Neurosci 2025; 16:1297-1308. [PMID: 40130579 PMCID: PMC11969537 DOI: 10.1021/acschemneuro.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Cathepsin B has been shown to contribute to deficits in traumatic brain injury (TBI), an important risk factor for Alzheimer's disease (AD). Cathepsin B is elevated in TBI and AD patients, as well as in animal models of these conditions. Knockout of the cathepsin B gene results in amelioration of TBI-induced motor dysfunction and improvement of AD memory deficit in mice. The mechanism of cathepsin B pathogenesis in these brain disorders has been hypothesized to involve its translocation to the cytosol from its normal lysosomal location. This study, therefore, evaluated brain cytosolic cathepsin B activity in the controlled cortical impact (CCI) mouse model of TBI. CCI-TBI resulted in motor deficits demonstrated by the rotarod assay, brain tissue lesions, and disorganization of the hippocampus. Significantly, CCI-TBI increased cytosolic cathepsin B activity in the brain cortex in the ipsilateral brain hemisphere that received the CCI-TBI injury, with a concomitant decrease in the lysosomal fraction. Cathepsin B activity was monitored using the substrate Z-Nle-Lys-Arg-AMC which specifically detects cathepsin B activity but not other cysteine proteases. The normal lysosomal distribution of cathepsin B was observed by its discrete localization in brain cortical cells. CCI-TBI resulted in a more diffuse cellular distribution of cathepsin B consistent with translocation to the cytosol. Further studies utilized the novel neutral pH-selective inhibitor, Z-Arg-Lys-AOMK, that specifically inhibits cathepsin B at neutral pH 7.2 of the cytosol but not at acidic pH 4.6 of lysosomes. Daily administration of Z-Arg-Lys-AOMK (ip), beginning 1 day before CCI-TBI, resulted in the reduction of the increased cytosolic cathepsin B activity induced by CCI-TBI. The inhibitor also reduced cathepsin B activities in homogenates of the brain cortex and hippocampus which were increased by CCI-TBI. Furthermore, the Z-Arg-Lys-AOMK inhibitor resulted in the reduction of motor function deficit resulting from CCI-TBI. These findings demonstrate the activation of cytosolic cathepsin B activity in CCI-TBI mouse brain injury.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jazmin Florio
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Brian Spencer
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Michael Mante
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Estefani Guzman
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Carlos Arias
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Von V. Phan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Michael C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jehad Almaliti
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Department
Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Robert A. Rissman
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Neurosciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Alqaraleh M, Khleifat KM, Al-Samydai A, Al-Najjar BO, Saqallah FG, Al Qaisi YT, Alsarayreh AZ, Alqudah DA, Fararjeh AS. Bioactive potency of extracts from Stylissa carteri and Amphimedon chloros with silver nanoparticles against cancer cell lines and pathogenic bacteria. Biomed Rep 2025; 22:34. [PMID: 39777210 PMCID: PMC11704841 DOI: 10.3892/br.2024.1912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis). In addition, sponge extracts contain biologically active substances with therapeutic effects. Therefore, the concurrent use of these agents may present a potential for the development of novel antitumor and antimicrobial drugs. The present study investigated the cytotoxic effects of AgNPs combined with the extracts from sponge species, Stylissa carteri or Amphimedon chloros, against various cancer cell lines and pathogenic bacterial strains. The present study was novel as it provided a further understanding of the cytotoxicity and underlying mechanisms of AgNPs. Alterations in the properties, such as size, charge and polydispersity index, of the AgNPs were demonstrated after lyophilization. Scanning electron microscopy revealed submicron-sized particles. The cytotoxic potential of AgNPs across various cancer cell lines such as lung, colorectal, breast and pancreatic cancer cell lines, was demonstrated, especially when the AgNPs were combined with sponge extracts, which suggested a synergistic effect. Analysis using liquid chromatography-mass spectrometry revealed key chemical components in the extracts, and molecular docking simulations indicated potential inhibition interactions between a number of the extract components and the epidermal growth factor receptor and tyrosine kinase receptor A. Synergistic antibacterial effects against several bacterial species such as Staphylococcus xylosus, Klebsiella oxytoca, Enterobacter aerogenes, Micrococcus spp. and Escherichia coli, were observed when AgNPs were combined with sponge ethyl acetate extracts. The results of the present study suggested a potential therapeutic application of marine-derived compounds and nanotechnology in combating cancer and bacterial infections. Future research should further elucidate the mechanistic pathways and investigate the in vivo therapeutic efficacy.
Collapse
Affiliation(s)
- Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Khaled M. Khleifat
- Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Ali Al-Samydai
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 11814, Jordan
| | - Belal O. Al-Najjar
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 11814, Jordan
| | - Fadi G. Saqallah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Yaseen T. Al Qaisi
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Ahmad Z. Alsarayreh
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Dana A. Alqudah
- Department of Pharmaceutics and Technology, Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abdulfattah S. Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| |
Collapse
|
3
|
Mohammed HA, Emwas AH, Khan RA. Salt-Tolerant Plants, Halophytes, as Renewable Natural Resources for Cancer Prevention and Treatment: Roles of Phenolics and Flavonoids in Immunomodulation and Suppression of Oxidative Stress towards Cancer Management. Int J Mol Sci 2023; 24:ijms24065171. [PMID: 36982245 PMCID: PMC10048981 DOI: 10.3390/ijms24065171] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Halophytes and xerophytes, plants with adequate tolerance to high salinity with strong ability to survive in drought ecosystem, have been recognized for their nutritional and medicinal values owing to their comparatively higher productions of secondary metabolites, primarily the phenolics, and the flavonoids, as compared to the normal vegetation in other climatic regions. Given the consistent increases in desertification around the world, which are associated with increasing salinity, high temperature, and water scarcity, the survival of halophytes due to their secondary metabolic contents has prioritized these plant species, which have now become increasingly important for environmental protection, land reclamation, and food and animal-feed security, with their primary utility in traditional societies as sources of drugs. On the medicinal herbs front, because the fight against cancer is still ongoing, there is an urgent need for development of more efficient, safe, and novel chemotherapeutic agents, than those currently available. The current review describes these plants and their secondary-metabolite-based chemical products as promising candidates for developing newer cancer therapeutics. It further discusses the prophylactic roles of these plants, and their constituents in prevention and management of cancers, through an exploration of their phytochemical and pharmacological properties, with a view on immunomodulation. The important roles of various phenolics and structurally diverse flavonoids as major constituents of the halophytes in suppressing oxidative stress, immunomodulation, and anti-cancer effects are the subject matter of this review and these aspects are outlined in details.
Collapse
Affiliation(s)
- Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
4
|
Ali HSHM, Altayb HN, Firoz A, Bayoumi AAM, El Omri A, Chaieb K. Inhibitory activity of marine sponge metabolites on SARS-CoV-2 RNA dependent polymerase: virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 2022; 40:10191-10202. [PMID: 34151745 DOI: 10.1080/07391102.2021.1940283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Marine species are known as rich sources of metabolites involved mainly in the pharmaceutical industry. This study aimed to evaluate the effect of biologically active compounds in the marine sponge on the SARS-CoV-2 RNA-dependent-RNA polymerase protein (RdRp) using the in-silico method. A total of 51 marine compounds were checked for their possible interaction with SARS-CoV-2 RdRp using Maestro interface for molecular docking, molecular dynamic (MD) simulation, and MM/GBSA method to estimate compounds binding affinities. Among the 51 compounds screened in this study, two (mycalamide A, and nakinadine B) exhibited the lowest docking energy and best interaction. Among these compounds, mycalamide A was identified as a potent inhibitor of SARS-CoV-2 RdRp that showed the best and stable interaction during molecular dynamic simulation, with residues (Asp760 and Asp761) found in the catalytic domain of RdRp. The analysis through MM/GBSA for molecular dynamic simulation results revealed binding energy -59.7 ± 7.18 for Mycalamide A and -56 ± 10.55 for Nakinadine B. These results elucidate the possible use of mycalamide A for treating coronavirus disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hani S H Mohammed Ali
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham N Altayb
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Firoz
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Abdelfatteh El Omri
- Center of Excellence in Bio-nanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Science, Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamel Chaieb
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory of Analysis, Treatment, and valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| |
Collapse
|
5
|
Tang B, Chong K, Massefski W, Evans R. Quantitative Interpretation of Protein Diffusion Coefficients in Mixed Protiated-Deuteriated Aqueous Solvents. J Phys Chem B 2022; 126:5887-5895. [PMID: 35917500 PMCID: PMC9376945 DOI: 10.1021/acs.jpcb.2c03554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy
is widely used for the analysis of mixtures, dispersing the signals
of different species in a two-dimensional spectrum according to their
diffusion coefficients. However, interpretation of these diffusion
coefficients is typically purely qualitative, for example, to deduce
which species are bigger or smaller. In studies of proteins in solution,
important questions concern the molecular weight of the proteins,
the presence or absence of aggregation, and the degree of folding.
The Stokes–Einstein Gierer–Wirtz estimation (SEGWE)
method has been previously developed to simplify the complex relationship
between diffusion coefficient and molecular mass, allowing the prediction
of a species’ diffusion coefficient in a pure solvent based
on its molecular weight. Here, we show that SEGWE can be extended
to successfully predict both peptide and protein diffusion coefficients
in mixed protiated–deuteriated water samples and, hence, distinguish
effectively between globular and disordered proteins.
Collapse
Affiliation(s)
- Bridget Tang
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, U.K
| | - Katie Chong
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham B4 7ET, U.K
| | - Walter Massefski
- Department of Chemistry Instrumentation Facility, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Evans
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, U.K
| |
Collapse
|
6
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|
7
|
Emwas AH, Szczepski K, Al-Younis I, Lachowicz JI, Jaremko M. Fluxomics - New Metabolomics Approaches to Monitor Metabolic Pathways. Front Pharmacol 2022; 13:805782. [PMID: 35387341 PMCID: PMC8977530 DOI: 10.3389/fphar.2022.805782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Fluxomics is an innovative -omics research field that measures the rates of all intracellular fluxes in the central metabolism of biological systems. Fluxomics gathers data from multiple different -omics fields, portraying the whole picture of molecular interactions. Recently, fluxomics has become one of the most relevant approaches to investigate metabolic phenotypes. Metabolic flux using 13C-labeled molecules is increasingly used to monitor metabolic pathways, to probe the corresponding gene-RNA and protein-metabolite interaction networks in actual time. Thus, fluxomics reveals the functioning of multi-molecular metabolic pathways and is increasingly applied in biotechnology and pharmacology. Here, we describe the main fluxomics approaches and experimental platforms. Moreover, we summarize recent fluxomic results in different biological systems.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Inas Al-Younis
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Qureshi KA, Bholay AD, Rai PK, Mohammed HA, Khan RA, Azam F, Jaremko M, Emwas AH, Stefanowicz P, Waliczek M, Kijewska M, Ragab EA, Rehan M, Elhassan GO, Anwar MJ, Prajapati DK. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X 2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Sci Rep 2021; 11:14539. [PMID: 34267232 PMCID: PMC8282855 DOI: 10.1038/s41598-021-93285-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Streptomyces smyrnaeus UKAQ_23, isolated from the mangrove-sediment, collected from Jubail,Saudi Arabia, exhibited substantial antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), including non-MRSA Gram-positive test bacteria. The novel isolate, under laboratory-scale conditions, produced the highest yield (561.3 ± 0.3 mg/kg fermented agar) of antimicrobial compounds in modified ISP-4 agar at pH 6.5, temperature 35 °C, inoculum 5% v/w, agar 1.5% w/v, and an incubation period of 7 days. The two major compounds, K1 and K2, were isolated from fermented medium and identified as Actinomycin X2 and Actinomycin D, respectively, based on their structural analysis. The antimicrobial screening showed that Actinomycin X2 had the highest antimicrobial activity compared to Actinomycin D, and the actinomycins-mixture (X2:D, 1:1, w/w) against MRSA and non-MRSA Gram-positive test bacteria, at 5 µg/disc concentrations. The MIC of Actinomycin X2 ranged from 1.56-12.5 µg/ml for non-MRSA and 3.125-12.5 µg/ml for MRSA test bacteria. An in-silico molecular docking demonstrated isoleucyl tRNA synthetase as the most-favored antimicrobial protein target for both actinomycins, X2 and D, while the penicillin-binding protein-1a, was the least-favorable target-protein. In conclusion, Streptomyces smyrnaeus UKAQ_23 emerged as a promising source of Actinomycin X2 with the potential to be scaled up for industrial production, which could benefit the pharmaceutical industry.
Collapse
Affiliation(s)
- Kamal A Qureshi
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India.
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia.
| | - Avinash D Bholay
- Department of Microbiology, KTHM College, Savitribai Phule Pune University, Nashik, MS, 422002, India
| | - Pankaj K Rai
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences and Engineering Division (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Monika Kijewska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Ehab A Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Medhat Rehan
- Department of Genetics, Faculty of Agriculture, Kafr El-Sheikh University, Kafr El-Sheikh, 33516, Egypt
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
| | - Gamal O Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Dinesh K Prajapati
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India.
| |
Collapse
|
9
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
10
|
Evans R. The interpretation of small molecule diffusion coefficients: Quantitative use of diffusion-ordered NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:33-69. [PMID: 32471534 DOI: 10.1016/j.pnmrs.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 06/11/2023]
Abstract
Measuring accurate molecular self-diffusion coefficients, D, by nuclear magnetic resonance (NMR) techniques has become routine as hardware, software and experimental methodologies have all improved. However, the quantitative interpretation of such data remains difficult, particularly for small molecules. This review article first provides a description of, and explanation for, the failure of the Stokes-Einstein equation to accurately predict small molecule diffusion coefficients, before moving on to three broadly complementary methods for their quantitative interpretation. Two are based on power laws, but differ in the nature of the reference molecules used. The third addresses the uncertainties in the Stokes-Einstein equation directly. For all three methods, a wide range of examples are used to show the range of chemistry to which diffusion NMR can be applied, and how best to implement the different methods to obtain quantitative information from the chemical systems studied.
Collapse
Affiliation(s)
- Robert Evans
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
11
|
Kleinhaus K, Al-Sawalmih A, Barshis DJ, Genin A, Grace LN, Hoegh-Guldberg O, Loya Y, Meibom A, Osman EO, Ruch JD, Shaked Y, Voolstra CR, Zvuloni A, Fine M. Science, Diplomacy, and the Red Sea’s Unique Coral Reef: It’s Time for Action. FRONTIERS IN MARINE SCIENCE 2020; 7. [PMID: 0 DOI: 10.3389/fmars.2020.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
12
|
Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov 2020; 15:333-348. [DOI: 10.1080/17460441.2020.1714586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Jiang X, Kumar A, Motomura Y, Liu T, Zhou Y, Moro K, Zhang KYJ, Yang Q. A Series of Compounds Bearing a Dipyrido-Pyrimidine Scaffold Acting as Novel Human and Insect Pest Chitinase Inhibitors. J Med Chem 2020; 63:987-1001. [PMID: 31928006 DOI: 10.1021/acs.jmedchem.9b01154] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitinases not only play vital roles in the human innate immune system but are also essential for the development of pathogenic fungi and pests. Chitinase inhibitors are efficient tools to investigate the elusive role of human chitinases and to control pathogens and pests. Via hierarchical virtual screening, we have discovered a series of chitinase inhibitors with a novel scaffold that have high inhibitory activities and selectivities against human and insect chitinases. The most potent human chitotriosidase inhibitor, compound 40, exhibited a Ki of 49 nM, and the most potent inhibitor of the insect pest chitinase OfChi-h, compound 53, exhibited a Ki of 9 nM. The binding of these two most potent inhibitors was confirmed by X-ray crystallography. In a murine model of bleomycin-induced pulmonary fibrosis, compound 40 was found to suppress the chitotriosidase activity by 60%, leading to a significant increase in inflammatory cells and suggesting that chitotriosidase played a protective role.
Collapse
Affiliation(s)
- Xi Jiang
- School of Bioengineering , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , China
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research , RIKEN , 1-7-22 Suehiro , Tsurumi, Yokohama , Kanagawa 230-0045 , Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Center for Integrative Medical Sciences , RIKEN , 1-7-22 Suehiro , Tsurumi, Yokohama , Kanagawa 230-0045 , Japan.,Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine , Osaka University , 2-2 Yamadaoka , Suita-shi, Osaka 565-0871 , Japan
| | - Tian Liu
- School of Bioengineering , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , China
| | - Yong Zhou
- School of Software , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , China
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Center for Integrative Medical Sciences , RIKEN , 1-7-22 Suehiro , Tsurumi, Yokohama , Kanagawa 230-0045 , Japan.,Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine , Osaka University , 2-2 Yamadaoka , Suita-shi, Osaka 565-0871 , Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research , RIKEN , 1-7-22 Suehiro , Tsurumi, Yokohama , Kanagawa 230-0045 , Japan
| | - Qing Yang
- School of Bioengineering , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences , 2 West Yuanmingyuan Road , Beijing 100193 , China
| |
Collapse
|
14
|
Neave MJ, Apprill A, Aeby G, Miyake S, Voolstra CR. Microbial Communities of Red Sea Coral Reefs. CORAL REEFS OF THE RED SEA 2019. [DOI: 10.1007/978-3-030-05802-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|