1
|
Brígido HPC, dos Santos LGA, de Barros RC, Correa-Barbosa J, dos Santos PVB, Paz RFL, Pereira AR, de Albuquerque KCO, Campos MB, Silveira FT, Percário S, Dolabela MF. The Role of Oxidative Stress in the Pathogenesis and Treatment of Leishmaniasis: Impact on Drug Toxicity and Therapeutic Potential of Natural Products. TOXICS 2025; 13:190. [PMID: 40137517 PMCID: PMC11945835 DOI: 10.3390/toxics13030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
The treatment of leishmaniasis has limitations due to drug toxicity and the increasing resistance of the parasite. In this study, we analyze the role of oxidative stress in the pathogenesis and treatment of leishmaniasis, as well as in new therapeutic alternatives of natural origin. The evasion mechanisms against the host immune response involve surface molecules present in the parasite, which modulate oxidative stress to ensure its survival. Drug treatment requires strict monitoring to minimize adverse reactions and ensure patient safety, as mechanisms such as lipid peroxidation, mitochondrial dysfunction, and depletion of antioxidant defenses are associated with drug toxicity. Plant-derived products with antileishmanial activity impact the parasite's redox balance, inducing apoptosis and reducing its parasitic load. Most studies are still in preliminary stages, making in vivo assays and clinical studies essential, along with the development of accessible formulations. Oxidative stress is involved in the pathogenesis of leishmaniasis, as Leishmania manipulates the host's redox balance to survive. It also contributes to drug toxicity, as antimonials and amphotericin B increase reactive oxygen species, causing cellular damage. Several plant-derived compounds have demonstrated antileishmanial activity by modulating oxidative stress and promoting parasite apoptosis. Examples include alkaloids from Aspidosperma nitidum, lignans from Virola surinamensis, flavonoids from Geissospermum vellosii, and triterpenoids such as β-sitosterol. Although these compounds show promising selectivity, most studies remain in preliminary stages, requiring in vivo assays and clinical studies to confirm efficacy and safety, as well as the development of affordable formulations.
Collapse
Affiliation(s)
- Heliton Patrick Cordovil Brígido
- National Council for Scientific and Technological Development (CNPq), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | | | - Renilson Castro de Barros
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Juliana Correa-Barbosa
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | | | - Rayana Franciele Lopes Paz
- Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.G.A.d.S.); (P.V.B.d.S.); (R.F.L.P.)
| | - Amanda Ramos Pereira
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | | | - Marliane Batista Campos
- Parasitology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (M.B.C.); (F.T.S.)
| | - Fernando Tobias Silveira
- Parasitology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (M.B.C.); (F.T.S.)
| | - Sandro Percário
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | - Maria Fâni Dolabela
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil;
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| |
Collapse
|
2
|
Machin L, Piontek M, Todhe S, Staniek K, Monzote L, Fudickar W, Linker T, Gille L. Antileishmanial Anthracene Endoperoxides: Efficacy In Vitro, Mechanisms and Structure-Activity Relationships. Molecules 2022; 27:6846. [PMID: 36296439 PMCID: PMC9612231 DOI: 10.3390/molecules27206846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by protozoal Leishmania parasites. Previous studies have shown that endoperoxides (EP) can selectively kill Leishmania in host cells. Therefore, we studied in this work a set of new anthracene-derived EP (AcEP) together with their non-endoperoxidic analogs in model systems of Leishmania tarentolae promastigotes (LtP) and J774 macrophages for their antileishmanial activity and selectivity. The mechanism of effective compounds was explored by studying their reaction with iron (II) in chemical systems and in Leishmania. The correlation of structural parameters with activity demonstrated that in this compound set, active compounds had a LogPOW larger than 3.5 and a polar surface area smaller than 100 Å2. The most effective compounds (IC50 in LtP < 2 µM) with the highest selectivity (SI > 30) were pyridyl-/tert-butyl-substituted AcEP. Interestingly, also their analogs demonstrated activity and selectivity. In mechanistic studies, it was shown that EP were activated by iron in chemical systems and in LtP due to their EP group. However, the molecular structure beyond the EP group significantly contributed to their differential mitochondrial inhibition in Leishmania. The identified compound pairs are a good starting point for subsequent experiments in pathogenic Leishmania in vitro and in animal models.
Collapse
Affiliation(s)
- Laura Machin
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
- Pharmacy Department, Institute of Pharmacy and Food Sciences, University of Havana, Havana 13600, Cuba
| | - Martin Piontek
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sara Todhe
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Katrin Staniek
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine “Pedro Kouri”, Havana 11400, Cuba
| | - Werner Fudickar
- Department of Organic Chemistry, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Torsten Linker
- Department of Organic Chemistry, Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
3
|
Grajewski J, Zgorzelak M, Janiak A, Taras-Goślińska K. Controlled, Sunlight-Driven Reversible Cycloaddition of Multiple Singlet Oxygen Molecules to Anthracene-Containing Trianglimine Macrocycles. Chempluschem 2022; 87:e202100510. [PMID: 35132825 DOI: 10.1002/cplu.202100510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Indexed: 11/11/2022]
Abstract
Controlled release of singlet oxygen is of interest not only to chemists, but also to biologists and medics involved in cancer therapy. Two chiral polyaza macrocyclic compounds and their corresponding endoperoxides have been synthesized. These peroxides exhibit high temperature stability, up to 80 °C. Detailed studies on their structure, including X-ray analysis as well as NMR, UV-VIS ECD spectroscopy and theoretical calculations, combined with photochemical measurements indicate that their high stability is related to the arrangement of oxygen atoms in a conformationally stable macrocyclic ring. Despite the change of carbon hybridization from sp2 to sp3 at the 9 and 10 positions of the anthracene units, the macrocyclic skeleton of the obtained compounds does not change its conformation. The obtained endoperoxides can be formed and release singlet oxygen by irradiation with UV light of 365 and 275 nm, respectively. Release of the oxygen does not degrade the macrocyclic structure.
Collapse
Affiliation(s)
- Jakub Grajewski
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Mikołaj Zgorzelak
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Agnieszka Janiak
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Katarzyna Taras-Goślińska
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
4
|
Kristinaityte K, Urbańczyk M, Mames A, Pietrzak M, Ratajczyk T. Photoreactivity of an Exemplary Anthracene Mixture Revealed by NMR Studies, including a Kinetic Approach. Molecules 2021; 26:6695. [PMID: 34771104 PMCID: PMC8587725 DOI: 10.3390/molecules26216695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Anthracenes are an important class of acenes. They are being utilized more and more often in chemistry and materials sciences, due to their unique rigid molecular structure and photoreactivity. In particular, photodimerization can be harnessed for the fabrication of novel photoresponsive materials. Photodimerization between the same anthracenes have been investigated and utilized in various fields, while reactions between varying anthracenes have barely been investigated. Here, Nuclear Magnetic Resonance (NMR) spectroscopy is employed for the investigation of the photodimerization of two exemplary anthracenes: anthracene (A) and 9-bromoanthracene (B), in the solutions with only A or B, and in the mixture of A and B. Estimated k values, derived from the presented kinetic model, showed that the dimerization of A was 10 times faster in comparison with B when compounds were investigated in separate samples, and 2 times faster when compounds were prepared in the mixture. Notably, the photoreaction in the mixture, apart from AA and BB, additionally yielded a large amount of the AB mixdimer. Another important advantage of investigating a mixture with different anthracenes is the ability to estimate the relative reactivity for all the reactions under the same experimental conditions. This results in a better understanding of the photodimerization processes. Thus, the rational photofabrication of mix-anthracene-based materials can be facilitated, which is of crucial importance in the field of polymer and material sciences.
Collapse
Affiliation(s)
| | | | | | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, PL-01224 Warsaw, Poland; (K.K.); (M.U.); (A.M.)
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, PL-01224 Warsaw, Poland; (K.K.); (M.U.); (A.M.)
| |
Collapse
|
5
|
Wang X, Bittner T, Milanov M, Kaul L, Mundinger S, Koch HG, Jessen-Trefzer C, Jessen HJ. Pyridinium Modified Anthracenes and Their Endoperoxides Provide a Tunable Scaffold with Activity against Gram-Positive and Gram-Negative Bacteria. ACS Infect Dis 2021; 7:2073-2080. [PMID: 34291902 DOI: 10.1021/acsinfecdis.1c00263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the emergence of multidrug resistant bacteria, the development of new antibiotics is required. We introduce here asymmetrically modified positively charged bis(methylpyridinium) anthracenes as a novel tunable scaffold, in which the two positive charges can be placed at a defined distance and angle. Our structure-activity relationship reveals that coupling the methylpyridiniums with alkynyl linkers to the central anthracene unit yields antibacterial compounds against a wide range of bacteria, including Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. Also, different mycobacteria, such as Mycobacterium smegmatis and Mycobacterium tuberculosis, are efficiently targeted by these compounds. The antibacterial activity depends on the number of alkynyl linkers and consequently also on the distance of the positive charges in the rigid anthracene scaffold. Additionally, the formation of an anthracene endoperoxide further increases the antibacterial activity, likely due to the release of toxic singlet oxygen that converts the endoperoxide back to the antibacterial anthracene scaffold with half-lives of several hours.
Collapse
Affiliation(s)
- Xuan Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Tamara Bittner
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Laurine Kaul
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, 79104 Freiburg, Germany
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Stephan Mundinger
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Dighal A, De Sarkar S, Gille L, Chatterjee M. Can the iron content of culture media impact on the leishmanicidal effect of artemisinin? Free Radic Res 2021; 55:282-295. [PMID: 34121571 DOI: 10.1080/10715762.2021.1939325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Endoperoxides (EPs) like artemisinin following cleavage of their EP bridge can kill parasites via generation of carbon-centered radicals. As the presence of low molecular mass iron and/or heme is crucial, this study aimed to establish the influence of iron on the leishmanicidal action of artemisinin when present in differing amounts in culture media. In promastigotes cultured in Schneiders insect medium (SIM), that had a 8.0-fold higher amount of iron as compared to Medium 199 (M199), the impact of artemisinin on cell viability, redox status, labile iron pool (LIP), and Annexin-V positivity was evaluated. In SIM, the IC50 of artemisinin was 25.50-fold lower than M199, and in both media its cytotoxicity was decreased by the addition of hemin or following chelation of Fe2+ by Deferoxamine (DFO). In SIM vis-a-vis M199, artemisinin caused a greater redox imbalance which translated into a higher degree of externalization of phosphatidylserine and depletion of the LIP. The presence of a higher proportion of iron in SIM as compared to M199 significantly enhanced the cytotoxicity of artemisinin in Leishmania promastigotes, and was attributed to a higher degree of iron-mediated cleavage of its EP bridge that led to a higher generation of free radicals.
Collapse
Affiliation(s)
- Aishwarya Dighal
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Sritama De Sarkar
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
7
|
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, Monari M, Trombini C. Evaluation of the Pharmacophoric Role of the O-O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. J Med Chem 2020; 63:13140-13158. [PMID: 33091297 PMCID: PMC8018184 DOI: 10.1021/acs.jmedchem.0c01589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.
Collapse
Affiliation(s)
- Margherita Ortalli
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
- Department of Experimental, Diagnostic and Specialty
Medicine, Alma Mater Studiorum - University of Bologna, Via
Massarenti 9, 40138 Bologna, Italy
| | - Giorgia Cimato
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Ruben Veronesi
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| |
Collapse
|
8
|
Machín L, Nápoles R, Gille L, Monzote L. Leishmania amazonensis response to artemisinin and derivatives. Parasitol Int 2020; 80:102218. [PMID: 33137506 DOI: 10.1016/j.parint.2020.102218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
The worldwide presence of Leishmania parasites increases in the poorest regions. Current leishmaniasis treatments are unsatisfactory due to resistance development, side effects and cost. Herein, we describe the in vitro activity of artemisinin (ART), artemether (ATM), artesunate (ATS) and dihydroartemisinin (DHA) against Leishmania amazonensis. Selected compounds were assayed in the animal model of cutaneous leishmaniasis in BALB/c mice. On intracellular amastigotes, similar activity (p > 0.05) was observed for ART, ATM and ATS (IC50 = 15.0-19.2 μM), which were inferior (p < 0.05) respect to reference endoperoxide ascaridole (IC50 = 11.5 ± 1.0 μM) and superior (p < 0.05) compared with reference drug Glucantime® (IC50 = 30.1 ± 9.0 μM). In contrast, DHA (IC50 = 38.5 ± 4.7 μM) showed higher IC50 values (p < 0.05) than other artemisinins and ascaridole, but similar (p > 0.05) than Glucantime®; while deoxyartemisinin caused smaller inhibition (IC50 = 88.9 ± 5.2 μM). Selectivity indexes of >13, 6, 11 and 1 were obtained for ART, ATM, ATS and DHA, respectively. In addition, the potential effect of ART and ATS was also demonstrated in the murine model, causing a significant reduction (p < 0.05) of the lesion size and parasite load regarding untreated animals and treated with vehicle. Effects of both artemisinins were comparable (p > 0.05) with Glucantime® and ascaridole-treated mice. In particular, artemisinin is recommended to further studies, which could be an advantage over the ascaridole endoperoxide and could be useful in endemic areas of parasite resistance to antimonials.
Collapse
Affiliation(s)
- Laura Machín
- Department of Pharmacy, Institute of Pharmacy and Foods Sciences, University of Havana, Street 222, e/ 23 y 29, # 2317, La Coronela. La Lisa, Havana, Cuba
| | - Rachel Nápoles
- Department of Pharmacy, Institute of Pharmacy and Foods Sciences, University of Havana, Street 222, e/ 23 y 29, # 2317, La Coronela. La Lisa, Havana, Cuba
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", Autopista Novia del Mediodía Km 6 1/2. La Lisa, Havana, Cuba.
| |
Collapse
|
9
|
Ortalli M, Varani S, Rosso C, Quintavalla A, Lombardo M, Trombini C. Evaluation of synthetic substituted 1,2-dioxanes as novel agents against human leishmaniasis. Eur J Med Chem 2019; 170:126-140. [PMID: 30878827 DOI: 10.1016/j.ejmech.2019.02.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 01/28/2023]
Abstract
The treatment of human leishmaniasis is currently based on few compounds that are highly toxic, expensive and have a high rate of treatment failure. A number of recent studies on new drugs focuses on natural or semi-synthetic compounds. Among them, the endoperoxide artemisinin, extracted from Artemisia annua, and some of its derivatives have shown leishmanicidal activity. In the present work, a series of structurally simple, fully synthetic 1,2-dioxanes were evaluated for in vitro antileishmanial activity against promastigotes of Leishmania donovani; the cytotoxicity for mammalian cells was also assessed. The six most promising compounds in terms of activity and selectivity were further investigated for their antileishmanial activity on the promastigote forms of L. tropica, L. major and L. infantum and against L. donovani amastigotes. The good performance in terms of potency and selectivity makes these six hits promising candidates for a preliminary lead optimization as antileishmanial agents.
Collapse
Affiliation(s)
- M Ortalli
- Alma Mater Studiorum - University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via Massarenti 9, 40138, Bologna, Italy
| | - S Varani
- Alma Mater Studiorum - University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via Massarenti 9, 40138, Bologna, Italy; Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - C Rosso
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| | - A Quintavalla
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - M Lombardo
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| | - C Trombini
- Alma Mater Studiorum - University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
10
|
Fudickar W, Linker T. Release of Singlet Oxygen from Aromatic Endoperoxides by Chemical Triggers. Angew Chem Int Ed Engl 2018; 57:12971-12975. [PMID: 30070421 DOI: 10.1002/anie.201806881] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Indexed: 01/14/2023]
Abstract
The generation of reactive singlet oxygen under mild conditions is of current interest in chemistry, biology, and medicine. We were able to release oxygen from dipyridylanthracene endoperoxides (EPOs) by using a simple chemical trigger at low temperature. Protonation and methylation of such EPOs strongly accelerated these reactions. Furthermore, the methyl pyridinium derivatives are water soluble and therefore serve as oxygen carriers in aqueous media. Methylation of the EPO of the ortho isomer affords the parent form directly without increasing the temperature under very mild conditions. This exceptional behavior is ascribed to the close contact between the nitrogen atom and the peroxo group. Singlet oxygen is released upon this reaction, and can be used to oxygenate an acceptor such as tetramethylethylene in the dark with no heating. Thus, a new chemical source of singlet oxygen has been found, which is triggered by a simple stimulus.
Collapse
Affiliation(s)
- Werner Fudickar
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Torsten Linker
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
11
|
Fudickar W, Linker T. Chemisch induzierte Freisetzung von Singulettsauerstoff aus aromatischen Endoperoxiden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Werner Fudickar
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Deutschland
| | - Torsten Linker
- Institut für Chemie; Universität Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Deutschland
| |
Collapse
|