1
|
Al-Obaidi JR, Lau SE, Liew YJM, Tan BC, Rahmad N. Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications. Protein J 2024; 43:1083-1103. [PMID: 39487361 DOI: 10.1007/s10930-024-10240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Seeds are essential for plant reproduction, ensuring species survival and dispersal while adapting to diverse environments throughout a plant's life. Proteomics has emerged as a powerful tool for deciphering the complexities of seed growth, germination, and stress responses. Advanced proteomic technologies enable the analysis of protein changes during germination, dormancy, and ageing, enhancing our understanding of seed lifespan and vitality. Recent studies have revealed detailed insights into metabolic processes and storage protein profiles across various plant species. This knowledge is crucial for improving seed storage, conserving quality, and maintaining viability. Additionally, it contributes to sustainable agriculture by identifying stress-responsive proteins and signalling pathways that can mitigate stress and enhance farming practices. This review highlights significant advancements in seed proteomics over the past decade, discussing critical discoveries related to storage proteins, protein interactions, and proteome modifications due to stress. It illustrates how these insights transform seed biology, boosting productivity, food security, and environmentally friendly practices. The review also identifies existing knowledge gaps and provides direction for future research, underscoring the need for continued interdisciplinary collaboration in this dynamic field.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, 35900, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yvonne Jing Mei Liew
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- University of Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
2
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 PMCID: PMC11993266 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Bojórquez-Velázquez E, Zamora-Briseño JA, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Comparative Proteomic Analysis of Wild and Cultivated Amaranth Species Seeds by 2-DE and ESI-MS/MS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2728. [PMID: 39409597 PMCID: PMC11478449 DOI: 10.3390/plants13192728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Amaranth is a promising staple food that produces seeds with excellent nutritional quality. Although cultivated species intended for grain production have interesting agronomic traits, relatively little is known about wild species, which can prosper in diverse environments and could be a rich genetic source for crop improvement. This work focuses on the proteomic comparison between the seeds of wild and cultivated amaranth species using polarity-based protein extraction and two-dimensional gel electrophoresis. Differentially accumulated proteins (DAPs) showed changes in granule-bound starch synthases and a wide range of 11S globulin isoforms. The electrophoretic profile of these proteins suggests that they may contain significant phosphorylation as post-translational modifications (PTMs), which were confirmed via immunodetection. These PTMs may impact the physicochemical functionality of storage proteins, with potential implications for seed agronomic traits and food system applications. Low-abundant DAPs with highly variable accumulation patterns are also discussed; these were involved in diverse molecular processes, such as genic regulation, lipid storage, and stress response.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Xalapa 91073, Mexico;
| | | | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | | | - Ana Paulina Barba de la Rosa
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| |
Collapse
|
4
|
Maslennikova D, Knyazeva I, Vershinina O, Titenkov A, Lastochkina O. Contribution of Antioxidant System Components to the Long-Term Physiological and Protective Effect of Salicylic Acid on Wheat under Salinity Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1569. [PMID: 38891377 PMCID: PMC11174383 DOI: 10.3390/plants13111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) plays a crucial role in regulating plant growth and development and mitigating the negative effects of various stresses, including salinity. In this study, the effect of 50 μM SA on the physiological and biochemical parameters of wheat plants under normal and stress conditions was investigated. The results showed that on the 28th day of the growing season, SA pretreatment continued to stimulate the growth of wheat plants. This was evident through an increase in shoot length and leaf area, with the regulation of leaf blade width playing a significant role in this effect. Additionally, SA improved photosynthesis by increasing the content of chlorophyll a (Chl a) and carotenoids (Car), resulting in an increased TAP (total amount of pigments) index in the leaves. Furthermore, SA treatment led to a balanced increase in the levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) in the leaves, accompanied by a slight but significant accumulation of ascorbic acid (ASA), hydrogen peroxide (H2O2), proline, and the activation of glutathione reductase (GR) and ascorbate peroxidase (APX). Exposure to salt stress for 28 days resulted in a reduction in length and leaf area, photosynthetic pigments, and GSH and ASA content in wheat leaves. It also led to the accumulation of H2O2 and proline and significant activation of GR and APX. However, SA pretreatment exhibited a long-term growth-stimulating and protective effect under stress conditions. It significantly mitigated the negative impacts of salinity on leaf area, photosynthetic pigments, proline accumulation, lipid peroxidation, and H2O2. Furthermore, SA reduced the salinity-induced depletion of GSH and ASA levels, which was associated with the modulation of GR and APX activities. In small-scale field experiments conducted under natural growing conditions, pre-sowing seed treatment with 50 μM SA improved the main indicators of grain yield and increased the content of essential amino acids in wheat grains. Thus, SA pretreatment can be considered an effective approach for providing prolonged protection to wheat plants under salinity and improving grain yield and quality.
Collapse
Affiliation(s)
- Dilara Maslennikova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, 450054 Ufa, Russia;
| | - Inna Knyazeva
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Oksana Vershinina
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Andrey Titenkov
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Oksana Lastochkina
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, 450054 Ufa, Russia;
| |
Collapse
|
5
|
Padilla-Chacón D, Campos-Patiño L, Peña-Valdivia CB, García-Esteva A, Jiménez-Galindo JC, Pizeno-García JL. Proteomic profile of tepary bean seed storage proteins in germination with low water potential. Proteome Sci 2024; 22:1. [PMID: 38195472 PMCID: PMC10775562 DOI: 10.1186/s12953-023-00225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Tepary bean (Phaseolus acutifolius A. Gray) is one of the five species domesticated from the genus Phaseolus with genetic resistance to biotic and abiotic stress. To understand the mechanisms underlying drought responses in seed storage proteins germinated on water and polyethylene glycol (PEG-6000) at -0.49 MPa, we used a proteomics approach to identify potential molecular target proteins associated with the low water potential stress response. METHODS Storage proteins from cotyledons of Tepary bean seeds germinated at 24, 48 and 72 h on water and PEG-6000 at -0.49 MPa were analyzed by one-dimensional electrophoresis (DE) with 2-DE analysis and shotgun mass spectrometry. Using computational database searching and bioinformatics analyses, we performed Gene Ontology (GO) and protein interactome (functional protein association network) String analyses. RESULTS Comparative analysis showed that the effect of PEG-6000 on root growth was parallel to that on germination. Based on the SDS‒PAGE protein banding patterns and 2-DE analysis, ten differentially abundant seed storage proteins showed changes in storage proteins, principally in the phaseolin and lectin fractions. We found many proteins that are recognized as drought stress-responsive proteins, and several of them are predicted to be intrinsically related to abiotic stress. The shotgun analysis searched against UniProt's legume database, and Gene Ontology (GO) analysis indicated that most of the seed proteins were cytosolic, with catalytic activity and associated with carbohydrate metabolism. The protein‒protein interaction networks from functional enrichment analysis showed that phytohemagglutinin interacts with proteins associated with the degradation of storage proteins in the cotyledons of common bean during germination. CONCLUSION These findings suggest that Tepary bean seed proteins provide valuable information with the potential to be used in genetic improvement and are part of the drought stress response, making our approach a potentially useful strategy for discovering novel drought-responsive proteins in other plant models.
Collapse
Affiliation(s)
- Daniel Padilla-Chacón
- Colegio de Postgraduados, CONAHCYT-Programa de Posgrado en Botánica, Carretera México- Texcoco, km 36.5, Montecillo, 56264, México.
| | - Laura Campos-Patiño
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56264, México
| | - Cecilia B Peña-Valdivia
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56264, México
| | - Antonio García-Esteva
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56264, México
| | | | - Jorge Luis Pizeno-García
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56264, México
| |
Collapse
|
6
|
Sougrakpam Y, Babuta P, Deswal R. Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2051-2065. [PMID: 38222283 PMCID: PMC10784255 DOI: 10.1007/s12298-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
7
|
Hegedus D, Coutu C, Gjetvaj B, Hannoufa A, Harrington M, Martin S, Parkin IAP, Perera S, Wanasundara J. Genetic variation and structural diversity in major seed proteins among and within Camelina species. PLANTA 2022; 256:93. [PMID: 36201059 PMCID: PMC9537204 DOI: 10.1007/s00425-022-03998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Genetic variation in seed protein composition, seed protein gene expression and predictions of seed protein physiochemical properties were documented in C. sativa and other Camelina species. Seed protein diversity was examined in six Camelina species (C. hispida, C. laxa, C. microcarpa, C. neglecta, C. rumelica and C. sativa). Differences were observed in seed protein electrophoretic profiles, total seed protein content and amino acid composition between the species. Genes encoding major seed proteins (cruciferins, napins, oleosins and vicilins) were catalogued for C. sativa and RNA-Seq analysis established the expression patterns of these and other genes in developing seed from anthesis through to maturation. Examination of 187 C. sativa accessions revealed limited variation in seed protein electrophoretic profiles, though sufficient to group the majority into classes based on high MW protein profiles corresponding to the cruciferin region. C. sativa possessed four distinct types of cruciferins, named CsCRA, CsCRB, CsCRC and CsCRD, which corresponded to orthologues in Arabidopsis thaliana with members of each type encoded by homeologous genes on the three C. sativa sub-genomes. Total protein content and amino acid composition varied only slightly; however, RNA-Seq analysis revealed that CsCRA and CsCRB genes contributed > 95% of the cruciferin transcripts in most lines, whereas CsCRC genes were the most highly expressed cruciferin genes in others, including the type cultivar DH55. This was confirmed by proteomics analyses. Cruciferin is the most abundant seed protein and contributes the most to functionality. Modelling of the C. sativa cruciferins indicated that each type possesses different physiochemical attributes that were predicted to impart unique functional properties. As such, opportunities exist to create C. sativa cultivars with seed protein profiles tailored to specific technical applications.
Collapse
Affiliation(s)
- Dwayne Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Branimir Gjetvaj
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | | | - Myrtle Harrington
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Sara Martin
- Agriculture and Agri-Food Canada, London, ON, Canada
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Suneru Perera
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Janitha Wanasundara
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Comparative Proteomics of Potato Cultivars with a Variable Dormancy Period. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196621. [PMID: 36235158 PMCID: PMC9573702 DOI: 10.3390/molecules27196621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
The control of the duration of the dormancy phase is a significant challenge in the potato industry and for seed producers. However, the proteome landscape involved in the regulation of the length of the dormancy period over potato cultivars remains largely unexplored. In this study, we performed for the first time a comparative proteome profiling of potato cultivars with differential duration of tuber dormancy. More specifically, the proteome profiling of Agata, Kennebec and Agria commercial potato varieties with short, medium and medium-long dormancy, respectively, was assessed at the endodormancy stage using high-resolution two-dimensional electrophoresis (2-DE) coupled to reversed-phase liquid chromatography–tandem mass spectrometry (LC-TripleTOF MS/MS). A total of 11 proteins/isoforms with statistically significant differential abundance among cultivars were detected on 2-DE gels and confidently identified by LC-TripleTOF MS/MS. Identified proteins have known functions related to tuber development, sprouting and the oxylipins biosynthesis pathway. Fructokinase, a mitochondrial ADP/ATP carrier, catalase isozyme 2 and heat shock 70 kDa were the proteins with the strongest response to dormancy variations. To the best of our knowledge, this study reports the first candidate proteins underlying variable dormancy length in potato cultivars.
Collapse
|
9
|
Mangena P. Pleiotropic effects of recombinant protease inhibitors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994710. [PMID: 36119571 PMCID: PMC9478479 DOI: 10.3389/fpls.2022.994710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Recombinant gene encoded protease inhibitors have been identified as some of the most effective antidigestive molecules to guard against proteolysis of essential proteins and plant attacking proteases from herbivorous pests and pathogenic microorganisms. Protease inhibitors (PIs) can be over expressed in transgenic plants to complement internal host defense systems, Bt toxins in genetically modified pest resistance and abiotic stress tolerance achieved through cystatins expression. Although the understanding of the role of proteolytic enzymes and their inhibitors encoded by both endogenous and transgenes expressed in crop plants has significantly advanced, their implication in biological systems still requires further elucidations. This paper, therefore, succinctly reviewed most recently published literature on recombinant proteases inhibitors (RPIs), focusing mainly on their unintended consequences in plants, other living organisms, and the environment. The review discusses major negative and unintended effects of RPIs involving the inhibitors' non-specificity on protease enzymes, non-target organisms and ubiquitous versatility in their mechanism of inhibition. The paper also discusses some direct and indirect effects of RPIs such as degradation by distinct classes of proteases, reduced functionality due to plant exposure to severe environmental stress and any other potential negative influences exerted on both the host plant as well as the environment. These pleiotropic effects must be decisively monitored to eliminate and prevent any potential adverse effects that transgenic plants carrying recombinant inhibitor genes may have on non-target organisms and biodiversity.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Polokwane, Limpopo, South Africa
| |
Collapse
|
10
|
Colombari LF, Chamma L, da Silva GF, Zanetti WAL, Putti FF, Cardoso AII. Maturation and Post-Harvest Resting of Fruits Affect the Macronutrients and Protein Content in Sweet Pepper Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:2084. [PMID: 36015388 PMCID: PMC9412345 DOI: 10.3390/plants11162084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
There are few studies about the influence of fruit maturation and post-harvest resting on seed composition, which can be necessary for seedling development and future establishment. Thus, the objective of this study was to evaluate the effect of maturation and post-harvest resting of fruits on the macronutrient and protein content of sweet pepper seeds. The experimental design was a randomized block, with eight treatments, in a 4 × 2 factorial arrangement. The first factor was fruit maturation stages (35, 50, 65 and 80 days after anthesis), and the second, with and without post-harvest resting of the fruits for 7 days. The characteristics evaluated in seeds were the dry weight of one thousand seeds, macronutrient content, and content of albumin, globulin, prolamin and glutelin proteins. There were reductions in K, Ca and Mg content, and an increase in seed content of albumin, globulin and prolamins as a function of the fruit maturation stage. Post-harvest resting of the fruits provided higher Ca content and protein albumin in seeds. The decreasing order of macronutrients and protein content in seeds, independent of fruit maturation and resting stage of the fruits, was N > K > P > Mg > S > Ca, and albumin > globulin ≈ glutelin > prolamine, respectively.
Collapse
Affiliation(s)
- Lidiane Fernandes Colombari
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Larissa Chamma
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Gustavo Ferreira da Silva
- Department of Crop Science, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Willian Aparecido Leoti Zanetti
- Department of Biosystems Engineering, School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, Brazil
| | - Fernando Ferrari Putti
- Department of Biosystems Engineering, School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, Brazil
| | | |
Collapse
|
11
|
Avezum L, Rondet E, Mestres C, Achir N, Madode Y, Gibert O, Lefevre C, Hemery Y, Verdeil JL, Rajjou L. Improving the nutritional quality of pulses via germination. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2063329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luiza Avezum
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Eric Rondet
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Christian Mestres
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Nawel Achir
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Yann Madode
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi (LSA/FSA/UAC), Cotonou, Benin
| | - Olivier Gibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Charlotte Lefevre
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Youna Hemery
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Jean-Luc Verdeil
- AGAP, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
12
|
Cheng H, Jin S, Huang S, Hu T, Zhao M, Li D, Wu B. Serum Proteomic Analysis by Tandem Mass Tag-Based Quantitative Proteomics in Pediatric Obstructive Sleep Apnea. Front Mol Biosci 2022; 9:762336. [PMID: 35480887 PMCID: PMC9035643 DOI: 10.3389/fmolb.2022.762336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Pediatric obstructive sleep apnea (OSA) is a frequent respiratory disorder with an estimated prevalence of 3–6% in the general population. However, the underlying pathophysiology of OSA remains unclear. Recently, proteomic analysis using high-resolution and high-throughput mass spectrometry has been widely used in the field of medical sciences. In the present study, tandem mass tag (TMT)-based proteomic analysis was performed in the serum of patients with OSA. The proteomic analysis revealed a set of differentially expressed proteins that may be associated with the pathophysiology of OSA. The differentially expressed proteins in patients with OSA were enriched in pathways including phagosome and glycan synthesis/degradation, immune response, and the hedgehog signaling pathway, indicating that such functions are key targets of OSA. Moreover, the experimental validation studies revealed that four proteins including ANTXR1, COLEC10, NCAM1, and VNN1 were reduced in the serum from patients with moderate and severe OSA, while MAN1A1 and CSPG4 protein levels were elevated in the serum from patients with severe OSA. The protein levels of ANTXR1, COLEC10, NCAM1, and VNN1 were inversely correlated with apnea-hypopnea index (AHI) in the recruited subjects, while the protein level of MAN1A1 was positively correlated with AHI, and no significant correlation was detected between CSPG4 protein and AHI. In summary, the present study for the first time identified differentially expressed proteins in the serum from OSA patients with different severities by using TMT-based proteomic analysis. The functional enrichment studies suggested that several signaling pathways may be associated with the pathophysiology of OSA. The experimental validation results indicated that six proteins including ANTXR1, COLEC10, NCAM1, VNN1, CGPG4, and MAN1A1 may play important roles in the pathophysiology of OSA, which requires further mechanistic investigation.
Collapse
Affiliation(s)
- Hanrong Cheng
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Shoumei Jin
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Simin Huang
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Tianyong Hu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Miao Zhao
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Dongcai Li
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
- *Correspondence: Dongcai Li, ; Benqing Wu,
| | - Benqing Wu
- Department of Neonatology, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Dongcai Li, ; Benqing Wu,
| |
Collapse
|
13
|
Choi HG, Park DY, Kang NJ. The Fruit Proteome Response to the Ripening Stages in Three Tomato Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040553. [PMID: 35214885 PMCID: PMC8877657 DOI: 10.3390/plants11040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 05/21/2023]
Abstract
The tomato is a horticultural crop that appears in various colors as it ripens. Differences in the proteome expression abundance of a tomato depend on its genotype and ripening stage. Thus, this study aimed to confirm the differences in changes in the proteome according to four ripening stages (green, breaker, turning, and mature) of three tomato genotypes, i.e., yellow, black, and red tomatoes, using a gel-based proteomic technique. The number of protein spots shown as two-dimensional electrophoresis (2-DE) gels differed according to tomato genotype and ripening stage. A total of 286 variant proteins were determined using matrix-assisted laser desorption-time of flight (MALDI-TOF) mass spectrometry (MS) analysis, confirming 233 identified protein functions. In three tomato genotypes in each ripening stage, grouping according to the Munich Information Center for Protein Sequences (MIPS) functional categories confirmed the variant proteins involved in the following: energy processes (21%); metabolism (20%); protein fate (15%); protein synthesis (10%); a protein with a binding function or cofactor requirement (8%); cell rescue, defense, and virulence (8%); cellular transport, transport facilitation, and transport routes (6%); the biogenesis of cellular components (5%); cell cycle and DNA processing (2%); others (5%). Among the identified protein spots in the function category, two proteins related to metabolism, four related to energy, four related to protein synthesis, and two related to interaction with the cellular environment showed significantly different changes according to the fruit color by the ripening stage. This study reveals the physiological changes in different types of tomatoes according to their ripening stage and provides information on the proteome for further improvement.
Collapse
Affiliation(s)
- Hyo-Gil Choi
- Department of Horticulture, Kongju National University, Yesan 32439, Korea;
| | - Dong-Young Park
- Department of Horticulture, Gyeongsang National University, Jinju 52828, Korea;
| | - Nam-Jun Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence:
| |
Collapse
|
14
|
Sudharson S, Kalic T, Hafner C, Breiteneder H. Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019-03/2021. Allergy 2021; 76:3359-3373. [PMID: 34310736 PMCID: PMC9290965 DOI: 10.1111/all.15021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
The WHO/IUIS Allergen Nomenclature Database (http://allergen.org) provides up‐to‐date expert‐reviewed data on newly discovered allergens and their unambiguous nomenclature to allergen researchers worldwide. This review discusses the 106 allergens that were accepted by the Allergen Nomenclature Sub‐Committee between 01/2019 and 03/2021. Information about protein family membership, patient cohorts, and assays used for allergen characterization is summarized. A first allergenic fungal triosephosphate isomerase, Asp t 36, was discovered in Aspergillus terreus. Plant allergens contained 1 contact, 38 respiratory, and 16 food allergens. Can s 4 from Indian hemp was identified as the first allergenic oxygen‐evolving enhancer protein 2 and Cic a 1 from chickpeas as the first allergenic group 4 late embryogenesis abundant protein. Among the animal allergens were 19 respiratory, 28 food, and 3 venom allergens. Important discoveries include Rap v 2, an allergenic paramyosin in molluscs, and Sal s 4 and Pan h 4, allergenic fish tropomyosins. Paramyosins and tropomyosins were previously known mainly as arthropod allergens. Collagens from barramundi, Lat c 6, and salmon, Sal s 6, were the first members from the collagen superfamily added to the database. In summary, the addition of 106 new allergens to the previously listed 930 allergens reflects the continuous linear growth of the allergen database. In addition, 17 newly described allergen sources were included.
Collapse
Affiliation(s)
- Srinidhi Sudharson
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tanja Kalic
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Christine Hafner
- Department of Dermatology University Hospital St. Poelten Karl Landsteiner University of Health Sciences St. Poelten Austria
| | - Heimo Breiteneder
- Division of Medical Biotechnology Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
15
|
Khairy AM, Tohamy MRA, Zayed MA, Ali MAS. Detecting pathogenic bacterial wilt disease of potato using biochemical markers and evaluate resistant in some cultivars. Saudi J Biol Sci 2021; 28:5193-5203. [PMID: 34466097 PMCID: PMC8381064 DOI: 10.1016/j.sjbs.2021.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial wilt caused by Ralstonia solanacearum (Smith), is one of the chief severe diseases of potato in warm temperate regions, tropics and subtropics of the world. The study was conducted to isolate and identify bacterial pathogens and select the most resistant cultivars and avoid the decrease in the total value of Egyptian potato exports to the European Union (EU) due to the quarantine restrictions imposed by the EU on potato tubers exported from Egypt affected by bacterial wilt. The results of traditional identification through morphological and serological studies showed that the five isolates were isolated and identified as Ralstonia solanacearum. Furthermore, the results illustrated that RS5 isolate showed the lowest percentage of disease incidence reduction on the three tested potatoes cultivar Bellini, Spunta and Mondial recorded 9.64%, 15.41% and 34.12%, respectively. While, RS8 isolate exhibited the highest effective one the percentage of disease reduction on all tested potato cultivars. This isolate reduced disease incidence 60.60%, 63.21% and 71.66%, compering to the healthy control treatment. The result of molecular identification represent that the probe used in Taq-man (PCR) was of the type (B2) capable to detect only biovar 2 of R. solanacearum bacterial wilt. Furthermore, primer and probe are specific for detection of the race 3 biovar 2 strain. Positive results were obtained in all assays used including IFAS, protein content and SDS-PAGE with all five isolates. So the isolate (RS5) was the most virulence one, followed by RS1, RS3, RS2 and RS8, registered that the tested isolates were R. solanacearum race 3, biovar 2. Also, studies focused on the form of genetic distances and similarities based on pathogenic and plant growth parameters. The results illustrate that the highest genetic similarity (0.998) was found between Bellini and Spunta cultivars as the closest but the lowest value (0.946) was found between Mondial and Bellini as most distant. These results were similarity with genetic distances and SDS-PAGE profile of the three tested potato cultivars.
Collapse
Affiliation(s)
- Ahmed M Khairy
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| | | | - Mohamed A Zayed
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| | - Mohamed A S Ali
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| |
Collapse
|
16
|
He W, Li S, He K, Sun F, Mu L, Li Q, Yi J, He Z, Liu Z, Wu X. Identification of potential allergens in larva, pupa, moth, silk, slough and feces of domestic silkworm (Bombyx mori). Food Chem 2021; 362:130231. [PMID: 34237653 DOI: 10.1016/j.foodchem.2021.130231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022]
Abstract
The silkworm (Bombyx mori) is an important economic insect that can be used as food in many countries in Asia. However, silkworms and their metabolites are an important source of allergens, which can induce severe allergic reactions. So far, there are no systematic studies on the potential allergens in silkworm and its metabolites. These studies have important guiding significance for the prevention, diagnosis, and treatment of silkworm allergy. The aim of this study was to identify the potential allergens from larva, pupa, moth, silk, slough and feces of silkworm and analyze the sequence homology of silkworm allergens with other allergens identified in the Allergenonline database. We have found 45 potential allergens in silkworm. The results of the homology comparison suggested that silkworm allergens likely cross-react with those of Dermatophagoides farinae, Aedes aegypti, Tyrophagus putrescentiae, Triticum aestivum and Malassezia furfur.
Collapse
Affiliation(s)
- Weiyi He
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, Guangdong Province, PR China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Shuiming Li
- College of Life Science, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Kan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Fan Sun
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Lixia Mu
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong Province, PR China
| | - Qingrong Li
- Sericulture and Agro-Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, Guangdong Province, PR China
| | - Jiang Yi
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Zhendan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China
| | - Zhigang Liu
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, Guangdong Province, PR China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, PR China.
| |
Collapse
|
17
|
Mei M, Wei J, Ai W, Zhang L, Lu XJ. Integrated RNA and miRNA sequencing analysis reveals a complex regulatory network of Magnolia sieboldii seed germination. Sci Rep 2021; 11:10842. [PMID: 34035372 PMCID: PMC8149418 DOI: 10.1038/s41598-021-90270-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Magnolia sieboldii K. Koch (M. sieboldii) is a deciduous Chinese tree species of the Magnoliaceae family with high ornamental, medicinal, and economic benefits. The germination of M. sieboldii seeds under natural conditions is extremely difficult, thereby hindering the cultivation and breeding of this important species. The molecular mechanisms underlying M. sieboldii seed germination remain unclear due to the lack of genomic and transcriptomic resources. Here, we integrated both mRNA and miRNA sequencing to identify the genes and pathways related to M. sieboldii germination. A comprehensive full-length transcriptome containing 158,083 high-quality unigenes was obtained by single-molecule real-time (SMRT) sequencing technology. We identified a total of 13,877 genes that were differentially expressed between non-germinated and germinated seeds. These genes were mainly involved in plant hormone signal transduction and diverse metabolic pathways such as those involving lipids, sugars, and amino acids. Our results also identified a complex regulatory network between miRNAs and their target genes. Taken together, we present the first transcriptome of M. sieboldii and provide key genes and pathways associated with seed germination for further characterization. Future studies of the molecular basis of seed germination will facilitate the genetic improvement M. sieboldii.
Collapse
Affiliation(s)
- Mei Mei
- grid.412557.00000 0000 9886 8131Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jun Wei
- grid.9227.e0000000119573309Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wanfeng Ai
- grid.412557.00000 0000 9886 8131Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Lijie Zhang
- grid.412557.00000 0000 9886 8131Department of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xiu-jun Lu
- grid.412557.00000 0000 9886 8131Department of Forestry, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
18
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
20
|
Ali HBM, Osman SA. Genetic relationship study of some Vicia species by FISH and total seed storage protein patterns. J Genet Eng Biotechnol 2020; 18:37. [PMID: 32737692 PMCID: PMC7394970 DOI: 10.1186/s43141-020-00054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genus Vicia is a member of family Fabaceae and comprises 180 to 210 species. The most important species is faba bean (Vicia faba) which is still one of the most favourable grain legumes over all the world. The genus contains some additional food crops and a number of forage plants and some other weedy strains such as Vicia angustifolia and Vicia cordata. The aim of the present investigation is to elucidate the phylogenetic relationships among four Vicia species, two species (Vicia angustifolia L. ssp. Angustifolia (2n = 12) and Vicia cordata wulfen ex Hoppe (2n = 10)) belong to section Vicia, Vicia dalmatica A. Kern (2n = 12, section Cracca), and Vicia johannis tamamsch (2n = 14, section Faba). RESULTS Two tools have been applied to identify the genetic relationships among the examined species, double fluorescence in situ hybridization (FISH) has been used to localize the sites of 5S and 45S rDNA, and sodium dodecyl sulfate-poly acrylamide gel electrophoretic (SDS-PAGE) patterns of total seed storage protein fractions. Double FISH experiment has not shown any variation in the loci number, but the positions along the chromosomes were different; both Vicia johannis and Vicia dalmatica exhibited the same interstitial 45S rRNA gene loci, while Vicia angustifolia and Vicia cordata have shown single large stretched 45S rRNA loci almost at the terminal region of the shortest chromosome. It could be concluded from the similarity matrix among the Vicia species as computed according to Jaccard coefficient from the SDS-PAGE, that V. cordata is similar to V. angustifolia and V. dalmatica by a percentage of 73 and 69%, respectively, and the most related species to V. johannis is V. dalmatica (~ 64%). CONCLUSION FISH and SDS-PAGE of the total seed storage proteins together reflected the similar genetic relationship among the studied species as fellows, V. angustifolia is more related to V. cordata then comes V. dalmatica and then V. johannis which is at a distal position from the other species.
Collapse
Affiliation(s)
- Hoda B M Ali
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, P.O, Giza, 12622, Egypt.
| | - Samira A Osman
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, P.O, Giza, 12622, Egypt
| |
Collapse
|
21
|
Natural Variation of Hazelnut Allergenicity: Is There Any Potential for Selecting Hypoallergenic Varieties? Nutrients 2020; 12:nu12072100. [PMID: 32708541 PMCID: PMC7400875 DOI: 10.3390/nu12072100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Hazelnuts (Corylus avellana L.) have an important role in human nutrition and health. However, they are a common cause of food allergy. Due to hazelnut varietal diversity, variety-dependent differences in the IgE-binding properties may be suspected, which could allow therapeutic strategies based on the use of hypoallergenic varieties to induce desensitization. In a proteogenomic approach, we aimed to evaluate the allergenic potential of a genetically diverse set of hazelnuts (n = 13 varieties). Minor differences were found at the level of genes encoding important allergens, namely Cor a 8, Cor a 9, and Cor a 14. Nevertheless, IgE-reactivity was similar for all varieties using sera from seven allergic individuals. The predominant IgE-reactive proteins were Cor a 9 (100%) and Cor a 1.04 (60%), with the former being the most frequently identified by a two-dimensional gel electrophoresis (2-DE)-based proteomic approach. Therefore, it seems that the conventional exclusion diet will hold its ground for the time being.
Collapse
|
22
|
Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox Quercus ilex Species Based on Protein Signatures as Revealed by 2-DE Coupled to MALDI-TOF/TOF Proteomics Strategy. Int J Mol Sci 2020; 21:ijms21144870. [PMID: 32660160 PMCID: PMC7402289 DOI: 10.3390/ijms21144870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Unlike orthodox species, seed recalcitrance is poorly understood, especially at the molecular level. In this regard, seed maturation and germination were studied in the non-orthodox Quercus ilex by using a proteomics strategy based on two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization/time of flight (2-DE-MALDI-TOF).Cotyledons and embryo/radicle were sampled at different developmental stages, including early (M1–M3), middle (M4–M7), and late (M8–M9) seed maturation, and early (G1–G3) and late (G4–G5) germination. Samples corresponding to non-germinating, inviable, seeds were also included. Protein extracts were subjected to 2-dimensional gel electrophoresis (2-DE) and changes in the protein profiles were analyzed. Identified variable proteins were grouped according to their function, being the energy, carbohydrate, lipid, and amino acid metabolisms, together with protein fate, redox homeostasis, and response to stress are the most represented groups. Beyond the visual aspect, morphometry, weight, and water content, each stage had a specific protein signature. Clear tendencies for the different protein groups throughout the maturation and germination stages were observed for, respectively, cotyledon and the embryo axis. Proteins related to metabolism, translation, legumins, proteases, proteasome, and those stress related were less abundant in non-germinating seeds, it related to the loss of viability. Cotyledons were enriched with reserve proteins and protein-degrading enzymes, while the embryo axis was enriched with proteins of cell defense and rescue, including heat-shock proteins (HSPs) and antioxidants. The peaks of enzyme proteins occurred at the middle stages (M6–M7) in cotyledons and at late ones (M8–M9) in the embryo axis. Unlike orthodox seeds, proteins associated with glycolysis, tricarboxylic acid cycle, carbohydrate, amino acid and lipid metabolism are present at high levels in the mature seed and were maintained throughout the germination stages. The lack of desiccation tolerance in Q. ilex seeds may be associated with the repression of some genes, late embryogenesis abundant proteins being one of the candidates.
Collapse
|
23
|
Antonets KS, Belousov MV, Sulatskaya AI, Belousova ME, Kosolapova AO, Sulatsky MI, Andreeva EA, Zykin PA, Malovichko YV, Shtark OY, Lykholay AN, Volkov KV, Kuznetsova IM, Turoverov KK, Kochetkova EY, Bobylev AG, Usachev KS, Demidov ON, Tikhonovich IA, Nizhnikov AA. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biol 2020; 18:e3000564. [PMID: 32701952 PMCID: PMC7377382 DOI: 10.1371/journal.pbio.3000564] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 06/19/2020] [Indexed: 02/04/2023] Open
Abstract
Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved β-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.
Collapse
Affiliation(s)
- Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maria E. Belousova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - Yury V. Malovichko
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | | | | | | | | | | | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Konstantin S. Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Oleg. N. Demidov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- INSERM UMR1231, UBFC, Dijon, France
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
24
|
Freire JEC, Moreno FBMB, Monteiro-Júnior JE, Sousa AJS, Vasconcelos IM, Oliveira JTA, Monteiro-Moreira ACO, Rocha BAM, Grangeiro TB. Mo-CBP 3, a 2S albumin from Moringa oleifera, is a complex mixture of isoforms that arise from different post-translational modifications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:68-77. [PMID: 31085448 DOI: 10.1016/j.plaphy.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Mo-CBP3 is a chitin-binding 2S albumin from Moringa oleifera. This seed storage protein is resistant to thermal denaturation and shows biological activities that might be of practical use, such as antifungal properties against Candida sp., a pathogen that causes candidiasis, and against Fusarium solani, a soil fungus that can cause diseases in plants and humans. Previous work has demonstrated that Mo-CBP3 is a mixture of isoforms encoded by members of a small multigene family. Mature Mo-CBP3 is a small protein (∼14 kDa), constituted by a small chain of approximately 4 kDa and a large chain of 8 kDa, which are held together by disulfide bridges. However, a more comprehensive picture on the spectrum of Mo-CBP3 isoforms which are found in mature seeds, is still lacking. In this work, genomic DNA fragments were obtained from M. oleifera leaves, cloned and completely sequenced, thus revealing new genes encoding Mo-CBP3. Moreover, mass spectrometry analysis showed that the mature protein is a complex mixture of isoforms with a remarkable number of molecular mass variants. Using computational predictions and calculations, most (∼86%) of the experimentally determined masses were assigned to amino acid sequences deduced from DNA fragments. The results suggested that the complex mixture of Mo-CBP3 isoforms originates from proteins encoded by closely related genes, whose products undergo different combinations of distinct post-translational modifications, including cleavage at the N- and C-terminal ends of both subunits, cyclization of N-terminal Gln, as well as Pro hydroxylation, Ser/Thr phosphorylation, and Met oxidation.
Collapse
Affiliation(s)
- José E C Freire
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Frederico B M B Moreno
- Núcleo de Biologia Experimental, Centro de Ciências da Saúde, Universidade de Fortaleza, Fortaleza, CE, 60810-431, Brazil
| | | | - Antônio J S Sousa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Ilka M Vasconcelos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - José T A Oliveira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Ana C O Monteiro-Moreira
- Núcleo de Biologia Experimental, Centro de Ciências da Saúde, Universidade de Fortaleza, Fortaleza, CE, 60810-431, Brazil
| | - Bruno A M Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | | |
Collapse
|
25
|
Bernal J, Mouzo D, López-Pedrouso M, Franco D, García L, Zapata C. The Major Storage Protein in Potato Tuber Is Mobilized by a Mechanism Dependent on Its Phosphorylation Status. Int J Mol Sci 2019; 20:ijms20081889. [PMID: 30999555 PMCID: PMC6514604 DOI: 10.3390/ijms20081889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
The role of the protein phosphorylation mechanism in the mobilization of vegetative storage proteins (VSPs) is totally unknown. Patatin is the major VSP of the potato (Solanum tuberosum L.) tuber that encompasses multiple differentially phosphorylated isoforms. In this study, temporal changes in the phosphorylation status of patatin isoforms and their involvement in patatin mobilization are investigated using phosphoproteomic methods based on targeted two-dimensional electrophoresis (2-DE). High-resolution 2-DE profiles of patatin isoforms were obtained in four sequential tuber life cycle stages of Kennebec cultivar: endodormancy, bud break, sprouting and plant growth. In-gel multiplex identification of phosphorylated isoforms with Pro-Q Diamond phosphoprotein-specific stain revealed an increase in the number of phosphorylated isoforms after the tuber endodormancy stage. In addition, we found that the phosphorylation status of patatin isoforms significantly changed throughout the tuber life cycle (P < 0.05) using the chemical method of protein dephosphorylation with hydrogen fluoride-pyridine (HF-P) coupled to 2-DE. More specifically, patatin phosphorylation increased by 32% from endodormancy to the tuber sprouting stage and subsequently decreased together with patatin degradation. Patatin isoforms were not randomly mobilized because highly phosphorylated Kuras-isoforms were preferably degraded in comparison to less phosphorylated non-Kuras isoforms. These results lead us to conclude that patatin is mobilized by a mechanism dependent on the phosphorylation status of specific isoforms.
Collapse
Affiliation(s)
- Javier Bernal
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Daniel Mouzo
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Daniel Franco
- Meat Technology Center of Galicia, 32900 San Cibrao das Viñas, Ourense, Spain.
| | - Lucio García
- Meat Technology Center of Galicia, 32900 San Cibrao das Viñas, Ourense, Spain.
| | - Carlos Zapata
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Bojórquez-Velázquez E, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species. BMC PLANT BIOLOGY 2019; 19:59. [PMID: 30727945 PMCID: PMC6366027 DOI: 10.1186/s12870-019-1656-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Amaranth is a plant naturally resistant to various types of stresses that produces seeds of excellent nutritional quality, so amaranth is a promising system for food production. Amaranth wild relatives have survived climate changes and grow under harsh conditions, however no studies about morphological and molecular characteristics of their seeds are known. Therefore, we carried out a detailed morphological and molecular characterization of wild species A. powellii and A. hybridus, and compared them with the cultivated amaranth species A. hypochondriacus (waxy and non-waxy seeds) and A. cruentus. RESULTS Seed proteins were fractionated according to their polarity properties and were analysed in one-dimensional gel electrophoresis (1-DE) followed by nano-liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS). A total of 34 differentially accumulated protein bands were detected and 105 proteins were successfully identified. Late embryogenesis abundant proteins were detected as species-specific. Oleosins and oil bodies associated proteins were observed preferentially in A. cruentus. Different isoforms of the granule-bound starch synthase I, and several paralogs of 7S and 11S globulins were also identified. The in silico structural analysis from different isoforms of 11S globulins was carried out, including new types of 11S globulin not reported so far. CONCLUSIONS The results provide novel information about 11S globulins and proteins related in seed protection, which could play important roles in the nutritional value and adaptive tolerance to stress in amaranth species.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, 56250 Texcoco, Estado de México Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, 36821 Guanajuato, Mexico
| | | |
Collapse
|