1
|
Alouk I, Lv W, Chen W, Miao S, Chen C, Wang Y, Xu D. Encapsulation of Monascus pigments in gel in oil in water (G/O/W) double emulsion system based on sodium caseinate and guar gum. Int J Biol Macromol 2024; 285:138232. [PMID: 39626818 DOI: 10.1016/j.ijbiomac.2024.138232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
In this study, a gel in oil in water (G/O/W) double emulsion system was developed with the objective of effectively encapsulating Monascus pigments and enhancing its stability. To this end, various formulations were prepared using guar gum co-dissolved with Monascus pigments in the internal phase and sodium caseinate as an outer phase surfactant. Different parameters were examined, including emulsion stability, encapsulation efficiency, rheological and tribological properties, as well as the light and thermal stability of the encapsulated Monascus pigments. The results demonstrated that Monascus pigments were effectively encapsulated in the G/O/W, with an encapsulation efficiency exceeding 90 %. The formulated system exhibited a relatively small particle size, which decreased with increasing guar gum and the external emulsifier contents. This resulted in an increase in viscosity accompanied by the formation of a gel-like structure and improved tribological properties, thereby enhancing the system's stability. The system with 1-1.25 % guar gum and 2.5 % sodium caseinate exhibited the highest stability for Monascus pigments, making them more resistant to heat and light. These findings have the potential to expand applications of Monascus pigments by providing a stable and effective encapsulation and delivery system that can also be utilized in the development of healthier food products.
Collapse
Affiliation(s)
- Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenwen Lv
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
| | - Chao Chen
- Tianmeijian Biotechnology (Beijing) Co. Ltd, Beijing 100101, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Zhou Z, Wang D, Luo D, Zhou Z, Liu W, Zeng W, Dinnyés A, Xiong YL, Sun Q. Non-covalent binding of chlorogenic acid to myofibrillar protein improved its bio-functionality properties and metabolic fate. Food Chem 2024; 440:138208. [PMID: 38159322 DOI: 10.1016/j.foodchem.2023.138208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
As natural antioxidants added to meat products, polyphenols can interact with proteins, and the acid-base environment influenced the extent of non-covalent and covalent interactions between them. This study compared the bio-functional characteristics and metabolic outcomes of the myofibrillar protein-chlorogenic acid (MP-CGA) complexes binding in different environments (pH 6.0 and 8.5). The results showed that CGA bound with MP significantly enhanced its antioxidant activity and inhibitory effect on metabolism enzymes. CGA bound deeply into the MP structure hydrophobic cavity at pH 6.0, which reduced its degradation by digestive enzymes, thus increasing its bio-accessibility from 59.5% to 71.6%. The digestion products of the two complexes exhibited significant differences, with the non-covalent MP-CGA complexes formed at pH 6.0 showing significantly higher concentrations of rhetsinine and piplartine, two well-known compounds to modulate diabetes. This study demonstrated that non-covalent binding between protein and polyphenol in the acidic environment held greater promising prospects for improving health.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Dan Wang
- School of Biomedical Sciences and Technology, Chengdu Medical College, Sichuan 610500, PR China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Zhiqiang Zhou
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Wei Liu
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Weicai Zeng
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - András Dinnyés
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China; BioTalentum Ltd., Aulich Lajos str. 26., 2100 Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary.
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
3
|
Huang W, Zhao X, Chai Z, Herrera-Balandrano DD, Li B, Yang Y, Lu S, Tu Z. Improving Blueberry Anthocyanins' Stability Using a Ferritin Nanocarrier. Molecules 2023; 28:5844. [PMID: 37570814 PMCID: PMC10421234 DOI: 10.3390/molecules28155844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Blueberries are fruits known for their high level of anthocyanins, which have high nutritional value and several biological properties. However, the chemical instability of anthocyanins is one of the major limitations of their application. The stability of blueberry anthocyanin extracts (BAEs) encapsulated in a ferritin nanocarrier was investigated in this study for several influencing parameters, including pH, temperature, UV-visible light, redox agents, and various metal ions. The outcomes supported the positive role of protein nanoparticles in enhancing the stability of blueberry anthocyanins by demonstrating that the stability of encapsulated BAE nanoparticles with ferritin carriers was significantly higher than that of free BAEs and a mixture of BAEs and ferritin carriers. This study provides an alternative approach for enhancing blueberry anthocyanin stability using ferritin nanocarrier encapsulation.
Collapse
Affiliation(s)
- Wuyang Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xingyu Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | | | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji 311899, China
| | - Shan Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhigang Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Safaeian Laein S, Katouzian I, Mozafari MR, Farnudiyan-Habibi A, Akbarbaglu Z, Shadan MR, Sarabandi K. Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations. Crit Rev Food Sci Nutr 2023; 64:7728-7747. [PMID: 36950963 DOI: 10.1080/10408398.2023.2191281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Nowadays, the use of lipid-based nanocarriers for the targeted and controlled delivery of a variety of hydrophobic and hydrophilic bioactive-compounds and drugs has increased significantly. However, challenges such as thermodynamic instability, oxidation, and degradation of lipid membranes, as well as the unintended release of loaded compounds, have limited the use of these systems in the food and pharmaceutical industries. Therefore, the present study reviews the latest achievements in evaluating the characteristics, production methods, challenges, functional, and biological stabilization strategies of lipid-based carriers (including changes in formulation composition, structural modification, membrane-rigidity, and finally monolayer or multilayer coating with biopolymers) in different conditions, as well as molecular dynamics simulations. The scientists' findings indicate the effect of natural biopolymers (such as chitosan, calcium alginate, pectin, dextran, xanthan, caseins, gelatin, whey-proteins, zein, and etc.) in modifying the external structure of lipid-based carriers, improving thermodynamic stability and resistance of membranes to physicochemical and mechanical tensions. However, depending on the type of bioactive compound as well as the design and production goals of the delivery-system, selecting the appropriate biopolymer has a significant impact on the stability of vesicles and maintaining the bioaccessibility of the loaded-compounds due to the stresses caused by the storage-conditions, formulation, processing and gastrointestinal tract.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iman Katouzian
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Clayton, Victoria, Australia
| | - Amir Farnudiyan-Habibi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nano-Encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Shadan
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Khashayar Sarabandi
- Department of Food science and technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Li R, Inbaraj BS, Chen BH. Quantification of Xanthone and Anthocyanin in Mangosteen Peel by UPLC-MS/MS and Preparation of Nanoemulsions for Studying Their Inhibition Effects on Liver Cancer Cells. Int J Mol Sci 2023; 24:3934. [PMID: 36835343 PMCID: PMC9965517 DOI: 10.3390/ijms24043934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Mangosteen peel, a waste produced during mangosteen processing, has been reported to be rich in xanthone and anthocyanin, both of which possess vital biological activities such as anti-cancer properties. The objectives of this study were to analyze various xanthones and anthocyanins in mangosteen peel by UPLC-MS/MS for the subsequent preparation of both xanthone and anthocyanin nanoemulsions to study their inhibition effects on liver cancer cells HepG2. Results showed that methanol was the optimal solvent for the extraction of xanthones and anthocyanins, with a total amount of 68,543.39 and 2909.57 μg/g, respectively. A total of seven xanthones, including garcinone C (513.06 μg/g), garcinone D (469.82 μg/g), γ-mangostin (11,100.72 μg/g), 8-desoxygartanin (1490.61 μg/g), gartanin (2398.96 μg/g), α-mangostin (51,062.21 μg/g) and β-mangostin (1508.01 μg/g), as well as two anthocyanins including cyanidin-3-sophoroside (2889.95 μg/g) and cyanidin-3-glucoside (19.72 μg/g), were present in mangosteen peel. The xanthone nanoemulsion was prepared by mixing an appropriate portion of soybean oil, CITREM, Tween 80 and deionized water, while the anthocyanin nanoemulsion composed of soybean oil, ethanol, PEG400, lecithin, Tween 80, glycerol and deionized water was prepared as well. The mean particle size of the xanthone extract and nanoemulsion were, respectively, 22.1 and 14.0 nm as determined by DLS, while the zeta potential was -87.7 and -61.5 mV. Comparatively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells, with the IC50 being 5.78 μg/mL for the former and 6.23 μg/mL for the latter. However, the anthocyanin nanoemulsion failed to inhibit growth of HepG2 cells. Cell cycle analysis revealed that the proportion of the sub-G1 phase followed a dose-dependent increase, while that of the G0/G1 phase showed a dose-dependent decline for both xanthone extracts and nanoemulsions, with the cell cycle being possibly arrested at the S phase. The proportion of late apoptosis cells also followed a dose-dependent rise for both xanthone extracts and nanoemulsions, with the latter resulting in a much higher proportion at the same dose. Similarly, the activities of caspase-3, caspase-8 and caspase-9 followed a dose-dependent increase for both xanthone extracts and nanoemulsions, with the latter exhibiting a higher activity at the same dose. Collectively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells. Further research is needed to study the anti-tumor effect in vivo.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
6
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
7
|
Molina AK, Corrêa RCG, Prieto MA, Pereira C, Barros L. Bioactive Natural Pigments' Extraction, Isolation, and Stability in Food Applications. Molecules 2023; 28:1200. [PMID: 36770869 PMCID: PMC9920834 DOI: 10.3390/molecules28031200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Color in food has multiple effects on consumers, since this parameter is related to the quality of a product, its freshness, and even its nutrient content. Each food has a characteristic color; however, this can be affected by the technological treatments that are applied during its manufacturing process, as well as its storage. Therefore, the development of new food products should take into account consumer preferences, the physical properties of a product, food safety standards, the economy, and applications of technology. With all of this, the use of food additives, such as dyes, is increasingly important due to the interest in the natural coloring of foods, strict regulatory pressure, problems with the toxicity of synthetic food colors, and the need for globally approved colors, in addition to current food market trends that focus on the consumption of healthy, organic, and natural products. It is for this reason that there is a growing demand for natural pigments that drives the food industry to seek or improve extraction techniques, as well as to study different stability processes, considering their interactions with the food matrix, in order to meet the needs and expectations of consumers.
Collapse
Affiliation(s)
- Adriana K. Molina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-390, Brazil
| | - Miguel A. Prieto
- Grupo de Nutrição e Bromatologia, Faculdade de Ciência e Tecnologia de Alimentos, Universidade de Vigo, 36310 Vigo, Spain
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Complexation of anthocyanins, betalains and carotenoids with biopolymers: An approach to complexation techniques and evaluation of binding parameters. Food Res Int 2023; 163:112277. [PMID: 36596187 DOI: 10.1016/j.foodres.2022.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Natural pigments are bioactive compounds that can present health-promoting bioactivities in the human body. Due to their strong coloring properties, these compounds have been widely used as color additives as an alternative to artificial colorants. However, since these pigments are unstable under certain conditions, such as the presence of light, oxygen, and heat, the use of complexation and encapsulation techniques with biopolymers is in demand. Moreover, some functional properties can be achieved by using natural pigments-biopolymers complexes in food matrices. The complexation and encapsulation of natural pigments with biopolymers consist of forming a complex with the aim to make these compounds less susceptible to oxidative and degrading agents, and can also be used to improve their solubility in different media. This review aims to discuss different techniques that have been used over the last years to create natural pigment-biopolymers complexes, as well as the recent advances, limitations, effects, and possible applications of these complexes in foods. Moreover, the understanding of thermodynamic parameters between natural pigments and biopolymers is very important regarding the complex formation and their use in food systems. In this sense, thermodynamic techniques that can be used to determine binding parameters between natural pigments and potential wall materials, as well as their applications, advantages, and limitations are presented in this work. Several studies have shown an improvement in many aspects regarding the use of these complexes, including increased thermal and storage stability. Nonetheless, data regarding the biological effects on the human body and the sensory acceptance of natural pigments-biopolymers complexes in food systems are scarce in the literature.
Collapse
|
9
|
Dadwal V, Gupta M. Recent developments in citrus bioflavonoid encapsulation to reinforce controlled antioxidant delivery and generate therapeutic uses: Review. Crit Rev Food Sci Nutr 2023; 63:1187-1207. [PMID: 34378460 DOI: 10.1080/10408398.2021.1961676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Citrus fruits contain numerous antioxidative biomolecules including phenolic acids, flavonols, flavanones, polymethoxyflavones (PMFs), and their derivatives. Previous in vitro and in vivo studies thoroughly investigated the antioxidant and therapeutic potential of bioflavonoids extracted from different citrus varieties and fruit fractions. Major bioflavonoids such as hesperidin, naringin, naringenin, and PMFs, had restricted their incorporation into food and health products due to their poor solubility, chemical stability and bioavailability. Considering these limitations, modern encapsulation methodologies such as hydrogelation, liposomal interactions, emulsifications, and nanoparticles have been designed to shield bioflavonoids with improved target distribution for therapeutic enhancements. The size, durability, and binding efficiency of bioflavonoid-loaded encapsulates were acquired by the optimized chemical and instrumental parameters such as solubility, gelation, dispersion, extrusion, and drying. Bioflavonoid-enriched encapsulates have been also proven to be effective against cancer, inflammation, neurodegeneration, and various other illnesses. However, in the future, newer natural binding agents with higher binding capacity might accelerate the encapsulating potential, controlled release, and enhanced bioavailability of citrus bioflavonoids. Overall, these modern encapsulation systems are currently leading to a new era of diet-based medicine, as demand for citrus fruit-based nutritional supplements and edibles grows.
Collapse
Affiliation(s)
- Vikas Dadwal
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh Gupta
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Ertek G, Taştan Ö, Baysal T. Combined use of vacuum impregnation and encapsulation technologies for phenolic enrichment of strawberries. Food Chem 2023; 398:133853. [DOI: 10.1016/j.foodchem.2022.133853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/20/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
11
|
Improved Stabilization and In Vitro Digestibility of Mulberry Anthocyanins by Double Emulsion with Pea Protein Isolate and Xanthan Gum. Foods 2022; 12:foods12010151. [PMID: 36613367 PMCID: PMC9818945 DOI: 10.3390/foods12010151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
There is significant evidence that double emulsion has great potential for successfully encapsulating anthocyanins. However, few research studies are currently using a protein-polysaccharide mixture as a stable emulsifier for double emulsion. This study aimed to improve the stability and in vitro digestibility of mulberry anthocyanins (MAs) by employing a double emulsion composed of pea protein isolate (PPI) and xanthan gum (XG). The influence of various XG concentrations (0%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%) and different temperatures (5 °C, 25 °C, 45 °C, 65 °C) on the physical stability and the thermal degradation of MAs from double emulsions were investigated. In addition, the physicochemical properties of double emulsions and the release performance of MAs during in vitro simulated digestion were evaluated. It was determined that the double emulsion possessed the most stable physical characteristics with the 1% XG addition. The PPI-1% XG double emulsion, when compared to the PPI-only double emulsion, expressed higher thermal stability with a retention rate of 83.19 ± 0.67% and a half-life of 78.07 ± 4.72 days. Furthermore, the results of in vitro simulated digestion demonstrated that the MAs in the PPI-1% XG double emulsion were well-protected at oral and gastric with ample release found in the intestine, which was dissimilar to findings for the PPI-only double emulsion. Ultimately, it was concluded that the double emulsion constructed by the protein-polysaccharide system is a quality alternative for improving stability and absorption with applicability to a variety of food and beverage systems.
Collapse
|
12
|
Valorisation of Micro/Nanoencapsulated Bioactive Compounds from Plant Sources for Food Applications Towards Sustainability. Foods 2022; 12:foods12010032. [PMID: 36613248 PMCID: PMC9818261 DOI: 10.3390/foods12010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The micro- and nanoencapsulation of bioactive compounds has resulted in a large improvement in the food, nutraceutical, pharmaceutical, and agriculture industries. These technologies serve, on one side, to protect, among others, vitamins, minerals, essential fatty acids, polyphenols, flavours, antimicrobials, colorants, and antioxidants, and, on the other hand, to control the release and assure the delivery of the bioactive compounds, targeting them to specific cells, tissues, or organs in the human body by improving their absorption/penetration through the gastrointestinal tract. The food industry has been applying nanotechnology in several ways to improve food texture, flavour, taste, nutrient bioavailability, and shelf life using nanostructures. The use of micro- and nanocapsules in food is an actual trend used mainly in the cereal, bakery, dairy, and beverage industries, as well as packaging and coating. The elaboration of bio capsules with high-value compounds from agro-industrial by-products is sustainable for the natural ecosystem and economically interesting from a circular economy perspective. This critical review presents the principal methodologies for performing micro- and nanoencapsulation, classifies them (top-down and/or bottom-up), and discusses the differences and advantages among them; the principal types of encapsulation systems; the natural plant sources, including agro-industrial by-products, of bioactive compounds with interest for the food industry to be encapsulated; the bioavailability of encapsulates; and the main techniques used to analyse micro- and nanocapsules. Research work on the use of encapsulated bioactive compounds, such as lycopene, hydroxytyrosol, and resveratrol, from agro-industrial by-products must be further reinforced, and it plays an important role, as it presents a high potential for the use of their antioxidant and/or antimicrobial activities in food applications and, therefore, in the food industry. The incorporation of these bioactive compounds in food is a challenge and must be evaluated, not only for their nutritional aspect, but also for the chemical safety of the ingredients. The potential use of these products is an available economical alternative towards a circular economy and, as a consequence, sustainability.
Collapse
|
13
|
Sirovec S, Tušek AJ, Benković M, Valinger D, Cvetnić TS, Kljusurić JG, Jurina T. Emulsification of Rosemary and Oregano Aqueous Extracts and Their In Vitro Bioavailability. PLANTS (BASEL, SWITZERLAND) 2022; 11:3372. [PMID: 36501410 PMCID: PMC9736180 DOI: 10.3390/plants11233372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Due to their richness in phenolic compounds, Mediterranean plants such as rosemary and oregano are increasingly recommended for consumption for their numerous health benefits. The pH shift and the presence of digestive enzymes significantly reduce the bioavailability of these biochemicals as they pass through the gastrointestinal tract. To prevent this degradation of phenolic compounds, methods such as emulsification of plant aqueous extracts are used. The aim of this study was to investigate the effects of emulsification conditions on the chemical properties (total polyphenolic content and antioxidant activity) of emulsified rosemary and oregano extracts. Response surface methodology was applied to optimize sunflower oil concentration, rotational speed, and emulsifier concentration (commercial pea protein). The emulsions prepared under optimal conditions were then used in bioavailability studies (in vitro digestion). The antioxidant activity of the emulsified rosemary/oregano extracts, measured by the DPPH method, remained largely stable when simulating in vitro digestion. Analysis of antioxidant activity after in vitro simulation of the gastrointestinal system revealed a higher degree of maintenance (up to 76%) for emulsified plant extracts compared to aqueous plant extracts. This article contributes to our understanding of how plant extracts are prepared to preserve their biological activity and their application in the food industry.
Collapse
|
14
|
Kim YJ, Lee IY, Kim TE, Lee JH, Chun YG, Kim BK, Lee MH. Cholecalciferol- and α-tocopherol-loaded walnut oil emulsions stabilized by whey protein isolate and soy lecithin for food applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5738-5749. [PMID: 35396740 DOI: 10.1002/jsfa.11923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/19/2022] [Accepted: 04/09/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND To overcome the limitations in the use of protein as an emulsifier, soy lecithin, a natural surfactant, was used along with whey protein isolate (WPI) to produce o/w emulsions containing cholecalciferol and α-tocopherol. The physical stability of the emulsions prepared with WPI and varying concentrations of lecithin (0, 1, 2, and 3% w/w) was measured in different heat, pH, and ionic-strength food environmental conditions. RESULTS All emulsions were shown to be less than 250 nm in size and less than 0.3 in polydispersity index (PDI). The morphology of the emulsions was spherical, and the droplets of the emulsion containing lecithin were thicker and larger than those of the emulsion without lecithin (WPI_L0). After autoclaving, WPI_L0 increased in size from 197.8 ± 1.7 nm to 528.5 ± 28.4 nm, and the retention of cholecalciferol and α-tocopherol decreased to 40.83 ± 0.63% and 49.68 ± 1.84%, respectively. At pH 5.5, near the isoelectric point of WPI, WPI_L0 increased in size due to aggregation, but emulsions containing lecithin remained stable at a PDI under 0.3. Turbiscan stability index of the emulsion prepared with WPI and 3% lecithin was the lowest, indicating good storage stability. In addition, it was confirmed that the higher the lecithin content, the higher the viscosity, and the higher the amount of free fatty acids released in the in vitro digestion model. CONCLUSION This study can provide theoretical evidence for enhancing the physical stability of protein emulsions by co-stabilization with lecithin, promoting their application in various foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - In Young Lee
- Food Convergence Infrastructure Team, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae-Eun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
15
|
Kumar A, Kaur R, Kumar V, Kumar S, Gehlot R, Aggarwal P. New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Encapsulated-based films for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
A New Control Strategy for High-Pressure Homogenization to Improve the Safety of Injectable Lipid Emulsions. Pharmaceutics 2022; 14:pharmaceutics14081603. [PMID: 36015229 PMCID: PMC9412542 DOI: 10.3390/pharmaceutics14081603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Intravenous lipid emulsions are biocompatible formulations used as clinical nutrition products and lipid-based delivery systems for sparingly soluble drugs. However, the particle-size distribution is associated with risks of embolism. Accordingly, the mean particle diameter (MPD) and particle-distribution tailing (characterized as the pFAT5 value) are critical quality attributes that ensure patient safety. Compliance with the limits stated in the United States Pharmacopoeia is ensured by high-pressure homogenization, the final step of the manufacturing process. The US Food and Drug Administration’s Quality-by-Design approach requires a control strategy based on deep process understanding to ensure that products have a consistent and predefined quality. Here we investigated the process parameters of a jet-valve high-pressure homogenizer, specifically their effect on the MPD, pFAT5 value and droplet count (determined by microscopy) during the production of a Lipofundin MCT/LCT 20% formulation. We provide deep insight into droplet breakup and coalescence behavior when varying the process pressure, emulsion temperature and number of homogenization cycles. We found that high shear forces are not required to reduce the pFAT5 value of the particle distribution. Finally, we derived a control strategy for a rapid and cost-efficient two-cycle process that ensures patient safety over a large control space.
Collapse
|
18
|
Wang M, Zhang Z, Sun H, He S, Liu S, Zhang T, Wang L, Ma G. Research progress of anthocyanin prebiotic activity: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154145. [PMID: 35567994 DOI: 10.1016/j.phymed.2022.154145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anthocyanins are a kind of flavonoids and natural water-soluble pigments, which endow fruits, vegetables, and plants with multiple colors. They are important source of new products with prebiotic activity. However, there is no systematic review documenting prebiotic activity of anthocyanins and their structural analogues. This study aims to fill this gap in literature. PURPOSE The objective of this review is to summarize and evaluate the prebiotic activity of anthocyanin's, and discuss the physical and molecular modification methods to improve their biological activities. STUDY DESIGN AND METHODS In this review, the databases (PubMed, Google Scholar, Web of Science, Researchgate and Elsevier) were searched profoundly with keywords (anthocyanin's, prebiotics, probiotics, physical embedding and molecular modification). RESULTS A total of 34 articles were considered for reviewing. These studies approved that anthocyanins play an important role in promoting the proliferation of probiotics, inhibiting the growth of harmful bacteria and improving the intestinal environment. In addition, physical embedding and molecular modification have also been proved to be effective methods to improve the prebiotic activity of anthocyanins. Anthocyanins could promote the production of short chain fatty acids, accelerate self degradation and improve microbial related enzyme activities to promote the proliferation of probiotics. They inhibited the growth of harmful bacteria by inhibiting the expression of harmful bacteria genes, interfering with the role of metabolism related enzymes and affecting respiratory metabolism. They promoted the formation of a complete intestinal barrier and regulated the intestinal environment to keep the body healthy. Physical embedding, including microencapsulation and colloidal embedding, greatly improved the stability of anthocyanins. On the other hand, molecular modification, especially enzymatic modification, significantly improved the biological activities (antioxidant, prebiotic activity and so on) of anthocyanins. CONCLUSION All these research results displayed by this review indicate that anthocyanins are a useful tool for developing prebiotic products. The better activities of the new anthocyanins formed by embedding and modification may make them become more effective raw materials. Our review provides a scientific basis for the future research and application of anthocyanins.
Collapse
Affiliation(s)
- Muwen Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Zuoyong Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shuyun Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Tao Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Gang Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
19
|
Rosales TKO, Fabi JP. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids Surf B Biointerfaces 2022; 218:112707. [PMID: 35907354 DOI: 10.1016/j.colsurfb.2022.112707] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Patange SR, Sabikhi L, Shelke PA, Rathod N, Shaik AH, Khetra Y, Kumar M H S. Encapsulation of dipeptidyl peptidase‐IV inhibitory peptides from alpha‐lactalbumin extracted from milk of
Gir
cows – A
Bos indicus
species. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Latha Sabikhi
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Prashant Ashok Shelke
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Nilesh Rathod
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Abdul Hussain Shaik
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Yogesh Khetra
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Sathish Kumar M H
- Dairy Technology Section SRS‐ICAR‐National Dairy Research Institute Bengaluru Karnataka 560 030 India
| |
Collapse
|
22
|
Enhancement of the Stability of Encapsulated Pomegranate (Punica granatum L.) Peel Extract by Double Emulsion with Carboxymethyl Cellulose. CRYSTALS 2022. [DOI: 10.3390/cryst12050622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pomegranate peel enriched with high value of bioactive phenolics with valuable health benefits. However, after extraction of the phenolic compounds, diverse factors can affect their stability. Therefore, we, herein, aimed to prepare W1/O/W2 double nanoemulsions loaded with phenolic-rich extract from pomegranate peel in the W1 phase. Double emulsions were fabricate during a two-step emulsification technique. Furthermore, the influence of sodium carboxymethyl cellulose (CMC) in the outer aqueous phase was also investigated. We found that W1/O/W2 emulsions containing phenolic-rich extract showed good physical stability, especially in the particle size, polydispersity index, zeta potential, and creaming index. Intriguingly, high encapsulation rates of pomegranate polyphenols >95% were achieved; however, emulsion with CMC had the best encapsulation stability during storage. Thus, our study provides helpful information about the double nanoemulsions delivery system for polyphenols generated from pomegranate peel, which may lead to the development of innovative polyphenol-enriched functional foods.
Collapse
|
23
|
Nanotechnology as a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants (Basel) 2022; 11:antiox11030506. [PMID: 35326155 PMCID: PMC8944820 DOI: 10.3390/antiox11030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants. For humans, a regular intake is associated with a reduced risk of several diseases. However, molecular instability reduces the absorption and bioavailability of these compounds. Anthocyanins are degraded by external factors such as the presence of light, oxygen, temperature, and changes in pH ranges. In addition, the digestion process contributes to chemical degradation, mainly through the action of intestinal microbiota. The intestinal microbiota has a fundamental role in the biotransformation and metabolization of several dietary compounds, thus modifying the chemical structure, including anthocyanins. This biotransformation leads to low absorption of intact anthocyanins, and consequently, low bioavailability of these antioxidant compounds. Several studies have been conducted to seek alternatives to improve stability and protect against intestinal microbiota degradation. This comprehensive review aims to discuss the existing knowledge about the structure of anthocyanins while discussing human absorption, distribution, metabolism, and bioavailability after the oral consumption of anthocyanins. This review will highlight the use of nanotechnology systems to overcome anthocyanin biotransformation by the intestinal microbiota, pointing out the safety and effectiveness of nanostructures to maintain molecular stability.
Collapse
|
24
|
Teixeira LG, Rezende S, Fernandes Â, Fernandes IP, Barros L, Barreira JCM, Leimann FV, Ferreira ICFR, Barreiro MF. Water-in-Oil-in-Water Double Emulsions as Protective Carriers for Sambucus nigra L. Coloring Systems. Molecules 2022; 27:552. [PMID: 35056866 PMCID: PMC8781092 DOI: 10.3390/molecules27020552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
The use of natural colorants is needed to overcome consumer concerns regarding synthetic food colorants' safety. However, natural pigments have, in general, poor stability against environmental stresses such as temperature, ionic strength, moisture, light, and pH, among others. In this work, water-in-oil-in-water (W1/O/W2) emulsions were used as protective carriers to improve color stability of a hydrophilic Sambucus nigra L. extract against pH changes. The chemical system comprised water and corn oil as the aqueous and oil phases, respectively, and polyglycerol polyricinoleate (PGPR), Tween 80, and gum Arabic as stabilizers. The primary emulsion was prepared using a W1/O ratio of 40/60 (v/v). For the secondary emulsion, W1/O/W2, different (W1/O)/W2 ratios were tested with the 50/50 (v/v) formulation presenting the best stability, being selected as the coloring system to test in food matrices of different pH: natural yogurt (pH 4.65), rice drink (pH 6.01), cow milk (pH 6.47), and soy drink (pH 7.92). Compared to the direct use of the extract, the double emulsion solution gave rise to higher color stability with pH change and storage time, as corroborated by visual and statistical analysis.
Collapse
Affiliation(s)
- Liandra G. Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.T.); (S.R.); (Â.F.); (I.P.F.); (L.B.); (I.C.F.R.F.)
| | - Stephany Rezende
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.T.); (S.R.); (Â.F.); (I.P.F.); (L.B.); (I.C.F.R.F.)
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.T.); (S.R.); (Â.F.); (I.P.F.); (L.B.); (I.C.F.R.F.)
| | - Isabel P. Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.T.); (S.R.); (Â.F.); (I.P.F.); (L.B.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.T.); (S.R.); (Â.F.); (I.P.F.); (L.B.); (I.C.F.R.F.)
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.T.); (S.R.); (Â.F.); (I.P.F.); (L.B.); (I.C.F.R.F.)
| | - Fernanda V. Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, Via Rosalina Maria dos Santos, 1233, Campo Mourão 87301-899, PR, Brazil;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.T.); (S.R.); (Â.F.); (I.P.F.); (L.B.); (I.C.F.R.F.)
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.T.); (S.R.); (Â.F.); (I.P.F.); (L.B.); (I.C.F.R.F.)
| |
Collapse
|
25
|
Sebben DA, MacWilliams SV, Yu L, Spicer PT, Bulone V, Krasowska M, Beattie DA. Influence of Aqueous Phase Composition on Double Emulsion Stability and Colour Retention of Encapsulated Anthocyanins. Foods 2021; 11:foods11010034. [PMID: 35010160 PMCID: PMC8750255 DOI: 10.3390/foods11010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Water-in-oil-in-water (W1/O/W2) emulsions (double emulsions) have often been used for the encapsulation of bioactive compounds such as anthocyanins. Instability of both anthocyanins and double emulsions creates a need for a tailored composition of the aqueous phase. In this work, double emulsions with a gelled internal water phase were produced and monitored over a 20-day storage period. The effect of the electrolyte phase composition (varying electrolyte components, including adipic acid, citric acid, and varying concentration of potassium chloride (KCl)) on anthocyanin and double emulsion stability was analysed using colour analysis, droplet sizing, and emulsion rheology. The effect of electrolytes on colour retention was shown to differ between the primary W1/O emulsion and the secondary W1/O/W2 emulsion. Furthermore, droplet size analysis and emulsion rheology highlighted significant differences in the stability and structural behaviour of the emulsions as a function of electrolyte composition. In terms of colour retention and emulsion stability, a citrate-buffered system performed best. The results of this study highlight the importance of strict control of aqueous phase constituents to prevent anthocyanin degradation and maximise double emulsion stability. Additional experiments analysed the effect of pectin chemistry on the anthocyanin colour retention and leakage, finding no conclusive difference between the unmodified and amidated pectin.
Collapse
Affiliation(s)
- Damien A. Sebben
- Future Industries Institute, UniSA STEM, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia; (D.A.S.); (S.V.M.)
| | - Stephanie V. MacWilliams
- Future Industries Institute, UniSA STEM, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia; (D.A.S.); (S.V.M.)
| | - Long Yu
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia; (L.Y.); (V.B.)
| | - Patrick T. Spicer
- Complex Fluids Group, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia;
| | - Vincent Bulone
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia; (L.Y.); (V.B.)
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia; (D.A.S.); (S.V.M.)
- Correspondence: (M.K.); (D.A.B.)
| | - David A. Beattie
- Future Industries Institute, UniSA STEM, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia; (D.A.S.); (S.V.M.)
- Correspondence: (M.K.); (D.A.B.)
| |
Collapse
|
26
|
Ozturk OK, Turasan H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Siraj A, Naqash F, Shah MA, Fayaz S, Majid D, Dar BN. Nanoemulsions: formation, stability and an account of dietary polyphenol encapsulation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Arwa Siraj
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| | - Farah Naqash
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| | - Mohammad Ashraf Shah
- Special Laboratory for Multifunctional Nanomaterials (LMN) P.G Department of Physics NIT Srinagar Srinagar Jammu and Kashmir 190006 India
| | - Shemilah Fayaz
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| | - Darakshan Majid
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| | - Basharat Nabi Dar
- Department of Food Technology IUST Awantipora Pulwama Jammu and Kashmir 192122 India
| |
Collapse
|
28
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
29
|
Microencapsulation of Anthocyanins—Critical Review of Techniques and Wall Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093936] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anthocyanins are value-added food ingredients that have health-promoting impacts and biological functionalities. Nevertheless, there are technological barriers to their application in the food industry, mainly because of their poor stability and susceptibility to harsh environmental conditions, such as oxygen, temperature, pH, and light, which could profoundly influence the final food product′s physicochemical properties. Microencapsulation technology is extensively investigated to enhance stability, bioaccessibility, and impart controlled release properties. There are many varieties of microencapsulation methods and diverse types of wall materials. However, choosing a proper approach involves considering the processing parameters, equipment availability, and application purposes. The present review thoroughly scrutinizes anthocyanins′ chemical structure, principles, benefits, and drawbacks of different microencapsulation methods, including spray drying, freeze drying, electrospinning/electrospraying, inclusion complexes, emulsification, liposomal systems, ionic gelation, and coacervation. Furthermore, wall materials applied in different techniques plus parameters that affect the powders′ encapsulation efficiency and physicochemical properties are discussed. Future studies should focus on various processing parameters and the combination of different techniques and applications regarding microencapsulated anthocyanins in functional foods to assess their stability, efficiency, and commercialization potentials.
Collapse
|
30
|
Wu G, Hui X, Gong X, Tran KN, Stipkovits L, Mohan MS, Brennan MA, Brennan CS. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Pateiro M, Gómez B, Munekata PES, Barba FJ, Putnik P, Kovačević DB, Lorenzo JM. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021; 26:1547. [PMID: 33799855 PMCID: PMC7999092 DOI: 10.3390/molecules26061547] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The design of functional foods has grown recently as an answer to rising consumers' concerns and demands for natural, nutritional and healthy food products. Nanoencapsulation is a technique based on enclosing a bioactive compound (BAC) in liquid, solid or gaseous states within a matrix or inert material for preserving the coated substance (food or flavor molecules/ingredients). Nanoencapsulation can improve stability of BACs, improving the regulation of their release at physiologically active sites. Regarding materials for food and nutraceutical applications, the most used are carbohydrate-, protein- or lipid-based alternatives such as chitosan, peptide-chitosan and β-lactoglobulin nanoparticles (NPs) or emulsion biopolymer complexes. On the other hand, the main BACs used in foods for health promoting, including antioxidants, antimicrobials, vitamins, probiotics and prebiotics and others (minerals, enzymes and flavoring compounds). Nanotechnology can also play notable role in the development of programmable food, an original futuristic concept promising the consumers to obtain high quality food of desired nutritive and sensory characteristics.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Belén Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Vigo, Ourense, Spain
| |
Collapse
|
32
|
Tran PH, Tran TT. Blueberry Supplementation in Neuronal Health and Protective Technologies for Efficient Delivery of Blueberry Anthocyanins. Biomolecules 2021; 11:biom11010102. [PMID: 33466731 PMCID: PMC7828789 DOI: 10.3390/biom11010102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Blueberries are consumed as healthy fruits that provide a variety of benefits to the nervous system. Scientists have found that blueberries can be used as a daily edible source for supplementation to prevent and minimize complexities of age-related diseases as well as to improve learning and memory in children. Anthocyanins are the most mentioned compounds among the components in blueberries, as they play a major role in providing the health benefits of this fruit. However, while they are highly active in impeding biological impairment in neuronal functions, they have poor bioavailability. This review focuses on neurological investigations of blueberries from in vitro cell studies to in vivo studies, including animal and human studies, with respect to their positive outcomes of neuroprotection and intervention in neurodegenerative conditions. Readers will also find information on the bioavailability of anthocyanins and the considerable factors affecting them so that they can make informed decisions regarding the daily consumption of blueberries. In this context, the ways in which blueberries or blueberry supplementation forms are consumed and which of these forms is best for maximizing the health benefits of blueberries should be considered important decision-making factors in the consumption of blueberries; all of these aspects are covered in this review. Finally, we discuss recent technologies that have been employed to improve the bioavailability of blueberry anthocyanins in the development of effective delivery vehicles supporting brain health.
Collapse
Affiliation(s)
- Phuong H.L. Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia;
| | - Thao T.D. Tran
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- The Faculty of Pharmacy, Duy Tan University, Danang 550000, Vietnam
- Correspondence:
| |
Collapse
|
33
|
Giaconia MA, Ramos SDP, Pereira CF, Lemes AC, De Rosso VV, Braga ARC. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Wang J, Martínez-Hernández A, de Lamo-Castellví S, Romero MP, Kaade W, Ferrando M, Güell C. Low-energy membrane-based processes to concentrate and encapsulate polyphenols from carob pulp. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Mesa J, Hinestroza-Córdoba LI, Barrera C, Seguí L, Betoret E, Betoret N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020; 25:E3305. [PMID: 32708208 PMCID: PMC7397014 DOI: 10.3390/molecules25143305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade.
Collapse
Affiliation(s)
- José Mesa
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Leidy Indira Hinestroza-Córdoba
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
- Grupo de Valoración y Aprovechamiento de la Biodiversidad, Universidad Tecnológica del Chocó. AA.292, Calle 22 No. 18B-10, Quibdó-Chocó CP 270001, Colombia
| | - Cristina Barrera
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Lucía Seguí
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain
| | - Noelia Betoret
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| |
Collapse
|
36
|
Nanocellulose for Stabilization of Pickering Emulsions and Delivery of Nutraceuticals and Its Interfacial Adsorption Mechanism. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02481-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Sharif N, Khoshnoudi-Nia S, Jafari SM. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int 2020; 132:109077. [DOI: 10.1016/j.foodres.2020.109077] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
|
38
|
Keršienė M, Jasutienė I, Eisinaitė V, Venskutonis PR, Leskauskaitė D. Designing multiple bioactives loaded emulsions for the formulations for diets of elderly. Food Funct 2020; 11:2195-2207. [DOI: 10.1039/d0fo00021c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, a stable double emulsion loaded with essential bioactives for the elderly was prepared using a two-step mechanical emulsification process.
Collapse
Affiliation(s)
- Milda Keršienė
- Department of Food Science and Technology
- Kaunas University of technology
- Kaunas
- Lithuania
| | - Ina Jasutienė
- Department of Food Science and Technology
- Kaunas University of technology
- Kaunas
- Lithuania
| | - Viktorija Eisinaitė
- Department of Food Science and Technology
- Kaunas University of technology
- Kaunas
- Lithuania
| | | | - Daiva Leskauskaitė
- Department of Food Science and Technology
- Kaunas University of technology
- Kaunas
- Lithuania
| |
Collapse
|
39
|
Lappa IK, Papadaki A, Kachrimanidou V, Terpou A, Koulougliotis D, Eriotou E, Kopsahelis N. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods 2019; 8:E347. [PMID: 31443236 PMCID: PMC6723228 DOI: 10.3390/foods8080347] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/27/2022] Open
Abstract
Cheese whey constitutes one of the most polluting by-products of the food industry, due to its high organic load. Thus, in order to mitigate the environmental concerns, a large number of valorization approaches have been reported; mainly targeting the recovery of whey proteins and whey lactose from cheese whey for further exploitation as renewable resources. Most studies are predominantly focused on the separate implementation, either of whey protein or lactose, to configure processes that will formulate value-added products. Likewise, approaches for cheese whey valorization, so far, do not exploit the full potential of cheese whey, particularly with respect to food applications. Nonetheless, within the concept of integrated biorefinery design and the transition to circular economy, it is imperative to develop consolidated bioprocesses that will foster a holistic exploitation of cheese whey. Therefore, the aim of this article is to elaborate on the recent advances regarding the conversion of whey to high value-added products, focusing on food applications. Moreover, novel integrated biorefining concepts are proposed, to inaugurate the complete exploitation of cheese whey to formulate novel products with diversified end applications. Within the context of circular economy, it is envisaged that high value-added products will be reintroduced in the food supply chain, thereby enhancing sustainability and creating "zero waste" processes.
Collapse
Affiliation(s)
- Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
- Department of Food and Nutritional Sciences, University of Reading, Berkshire RG6 6AP, UK.
| | - Antonia Terpou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | | | - Effimia Eriotou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
40
|
Physicochemical mechanisms of different biopolymers' (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. Int J Biol Macromol 2019; 138:473-482. [PMID: 31325502 DOI: 10.1016/j.ijbiomac.2019.07.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 01/25/2023]
Abstract
Having various domains of applicability, liposomes have been the issue of many studies since 1960s. Kinetically stable nature of liposomes required incorporation of other substituents to gain storage stability and interaction of liposomes with polymers, electrolytes, proteins or lipids still requires further investigation to explain the underlying mechanism. In this study, polyphenol-rich green tea extract was encapsulated into liposomes by means of microfluidization in two different aqueous media (pH = 3.8 acetate buffer and pH = 6.5 distilled water). Antioxidant loaded vesicles were further mixed with anionic biopolymers (gum arabic, whey protein) and cationic biopolymers (lysozyme, chitosan) separately. The physical and chemical interactions between liposomes and biopolymers were rationalized by particle size, zeta potential, transmission electron microscopy, total phenolic content and antioxidant activity measurements during 28-days storage at 4 °C. Experimental results indicated that the biopolymer incorporated liposomes showed better stability compared to control liposomes during storage, developing resistance against changes in particle size and zeta potential. On the other hand, biopolymer interaction mechanisms were shown to be different for different biopolymers. As was also proved by transmission electron microscopy, lysozyme was absorbed into the liposomes while gum arabic, whey protein and chitosan were adsorbed on the vesicle surface to shield green tea extract loaded liposomes.
Collapse
|
41
|
Chen BH, Stephen Inbaraj B. Nanoemulsion and Nanoliposome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients 2019; 11:1052. [PMID: 31083417 PMCID: PMC6566753 DOI: 10.3390/nu11051052] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anthocyanins, a flavonoid class of water-soluble pigments, are reported to possess several biological activities, including antioxidant, anti-inflammatory, and anti-cancer. However, anthocyanins are highly susceptible to degradation in high pH, light, heat, and oxygen during processing and storage. Conventional microencapsulation techniques fail to provide stability to anthocyanins under physiological environments mainly because of their large particle size as well as low zeta potential and encapsulation efficiency. METHODS Nanotechnology provides novel strategies for preparing nanoformulations to enhance the physicochemical stability of anthocyanins. Nanoemulsion and nanoliposome are the two most commonly used nanosystems in pharmaceutical and food-related fields. In this review, an overview of various nanoemulsion and nanoliposome systems reported recently for enhancing stability, bioavailability, and bioactivity of anthocyanins is presented. RESULTS Anthocyanin nanoemulsions with different oil, water, surfactant, and cosurfactant ratios were prepared from extracts of mangosteen peel, purple sweet potato, cranberry, red cabbage, blueberry, jaboticaba peel, and acai berry and evaluated for their antioxidant activity, enhancement of physicochemical stability, topical skin application, and urinary tract infection. Likewise, unilamellar and multilamellar nanoliposomes were prepared using different types and levels of lecithin without or with cholesterol from anthocyanin standards and extracts of Hibiscus sabdariffa, mulberry, elderberry, black carrot, and pistachio green hull for the evaluation of physicochemical and oxidative stability, in vitro bioaccessibility, and melanogenic activity, as well as protective effects against diabetes mellitus and cataract. CONCLUSION This review provides an insight into the current nanotechnology updates on enhancement of anthocyanin stability and biological activity.
Collapse
Affiliation(s)
- Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | | |
Collapse
|