1
|
Gorai M, Franzen JH, Rotering P, Rüffer T, Dielmann F, Teichert JF. Broadly Applicable Copper(I)-Catalyzed Alkyne Semihydrogenation and Hydrogenation of α,β-Unsaturated Amides Enabled by Bifunctional Iminopyridine Ligands. J Am Chem Soc 2025; 147:14481-14490. [PMID: 40239054 DOI: 10.1021/jacs.5c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A highly active bifunctional catalyst consisting of a copper(I)/N-heterocyclic carbene complex and a basic 2-iminopyridine subunit allows for copper hydride chemistry under low H2 pressure, achieving efficient catalysis reaching 1 bar (balloon pressure). The bifunctional catalyst tolerates a remarkable variety of functional groups in catalytic alkyne semihydrogenations. Furthermore, this catalyst design gives rise to a high reactivity that allows for the catalytic hydrogenation of α,β-unsaturated amides (a substrate class hitherto unreactive in copper hydride catalysis) at a low H2 pressure for the first time. In this manner, late-stage modification and isotope labeling of α,β-unsaturated amides, common subunits in biologically active compounds, can be realized through catalytic hydrogenation using a first-row transition metal catalyst based on abundant copper. Preliminary mechanistic experiments indicate that the bifunctional catalyst operates via an iminopyridine-mediated proximity effect. We hypothesize that the coordination of an alcohol as a proton source on the copper(I) complex facilitates the overall reactions through a rapid proto-decupration step.
Collapse
Affiliation(s)
- Mahadeb Gorai
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Jonas H Franzen
- Department of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Philipp Rotering
- Department of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Tobias Rüffer
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Fabian Dielmann
- Department of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes F Teichert
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
2
|
Tai P, Chen X, Jia G, Chen G, Gong L, Cheng Y, Li Z, Wang H, Chen A, Zhang G, Zhu Y, Xiao M, Wang Z, Liu Y, Shan D, He D, Li M, Zhan T, Khan A, Li X, Zeng X, Li C, Ouyang D, Ai K, Chen X, Liu D, Liu Z, Wei D, Cao K. WGX50 mitigates doxorubicin-induced cardiotoxicity through inhibition of mitochondrial ROS and ferroptosis. J Transl Med 2023; 21:823. [PMID: 37978379 PMCID: PMC10655295 DOI: 10.1186/s12967-023-04715-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a major impediment to its clinical application. It is indispensable to explore alternative treatment molecules or drugs for mitigating DIC. WGX50, an organic extract derived from Zanthoxylum bungeanum Maxim, has anti-inflammatory and antioxidant biological activity, however, its function and mechanism in DIC remain unclear. METHODS We established DOX-induced cardiotoxicity models both in vitro and in vivo. Echocardiography and histological analyses were used to determine the severity of cardiac injury in mice. The myocardial damage markers cTnT, CK-MB, ANP, BNP, and ferroptosis associated indicators Fe2+, MDA, and GPX4 were measured using ELISA, RT-qPCR, and western blot assays. The morphology of mitochondria was investigated with a transmission electron microscope. The levels of mitochondrial membrane potential, mitochondrial ROS, and lipid ROS were detected using JC-1, MitoSOX™, and C11-BODIPY 581/591 probes. RESULTS Our findings demonstrate that WGX50 protects DOX-induced cardiotoxicity via restraining mitochondrial ROS and ferroptosis. In vivo, WGX50 effectively relieves doxorubicin-induced cardiac dysfunction, cardiac injury, fibrosis, mitochondrial damage, and redox imbalance. In vitro, WGX50 preserves mitochondrial function by reducing the level of mitochondrial membrane potential and increasing mitochondrial ATP production. Furthermore, WGX50 reduces iron accumulation and mitochondrial ROS, increases GPX4 expression, and regulates lipid metabolism to inhibit DOX-induced ferroptosis. CONCLUSION Taken together, WGX50 protects DOX-induced cardiotoxicity via mitochondrial ROS and the ferroptosis pathway, which provides novel insights for WGX50 as a promising drug candidate for cardioprotection.
Collapse
Affiliation(s)
- Panpan Tai
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guihua Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanjun Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhuan Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, China
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, 410013, China
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Heng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunqing Liu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongyong Shan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Staff Hospital of Central South University, Central South University, Changsha, China
| | - Moying Li
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Abbas Khan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China
| | - Dongsheng Ouyang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xuan Chen
- College of Horticulture, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, China
- National Research Center of Engineering Technology for Utilization Ingredients From Botanicals, Changsha, China
| | - Dongbo Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, China
- National Research Center of Engineering Technology for Utilization Ingredients From Botanicals, Changsha, China
| | - Zhonghua Liu
- National Research Center of Engineering Technology for Utilization Ingredients From Botanicals, Changsha, China
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic Acid Phenethyl Ester (CAPE): Biosynthesis, Derivatives and Formulations with Neuroprotective Activities. Antioxidants (Basel) 2023; 12:1500. [PMID: 37627495 PMCID: PMC10451560 DOI: 10.3390/antiox12081500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders are characterized by a progressive process of degeneration and neuronal death, where oxidative stress and neuroinflammation are key factors that contribute to the progression of these diseases. Therefore, two major pathways involved in these pathologies have been proposed as relevant therapeutic targets: The nuclear transcription factor erythroid 2 (Nrf2), which responds to oxidative stress with cytoprotecting activity; and the nuclear factor NF-κB pathway, which is highly related to the neuroinflammatory process by promoting cytokine expression. Caffeic acid phenethyl ester (CAPE) is a phenylpropanoid naturally found in propolis that shows important biological activities, including neuroprotective activity by modulating the Nrf2 and NF-κB pathways, promoting antioxidant enzyme expression and inhibition of proinflammatory cytokine expression. Its simple chemical structure has inspired the synthesis of many derivatives, with aliphatic and/or aromatic moieties, some of which have improved the biological properties. Moreover, new drug delivery systems increase the bioavailability of these compounds in vivo, allowing its transcytosis through the blood-brain barrier, thus protecting brain cells from the increased inflammatory status associated to neurodegenerative and psychiatric disorders. This review summarizes the biosynthesis and chemical synthesis of CAPE derivatives, their miscellaneous activities, and relevant studies (from 2010 to 2023), addressing their neuroprotective activity in vitro and in vivo.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidad de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
| | - Ursula Wyneke
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110566, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| |
Collapse
|
4
|
Antioxidant Compounds in the Treatment of Alzheimer's Disease: Natural, Hybrid, and Synthetic Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:8056462. [PMID: 36865743 PMCID: PMC9974281 DOI: 10.1155/2023/8056462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Alzheimer's disease (AD) which is associated with cognitive dysfunction and memory lapse has become a health concern. Various targets and pathways have been involved in AD's progress, such as deficit of acetylcholine (ACh), oxidative stress, inflammation, β-amyloid (Aβ) deposits, and biometal dyshomeostasis. Multiple pieces of evidence indicate that stress oxidative participation in an early stage of AD and the generated ROS could enable neurodegenerative disease leading to neuronal cell death. Hence, antioxidant therapies are applied in treating AD as a beneficial strategy. This review refers to the development and use of antioxidant compounds based on natural products, hybrid designs, and synthetic compounds. The results of using these antioxidant compounds were discussed with the given examples, and future directions for the development of antioxidants were evaluated.
Collapse
|
5
|
Deng H, Xu Q, Guo HY, Huang X, Chen F, Jin L, Quan ZS, Shen QK. Application of cinnamic acid in the structural modification of natural products: A review. PHYTOCHEMISTRY 2023; 206:113532. [PMID: 36470328 DOI: 10.1016/j.phytochem.2022.113532] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Natural products can generally exhibit a variety of biological activities, but most show mediocre performance in preliminary activity evaluation. Natural products often require structural modification to obtain promising lead compounds. Cinnamic acid (CA) is readily available and has diverse biological activities and low cytotoxicity. Introducing CA into natural products may improve their performance, enhance biological activity, and reduce toxic side effect. Herein, we aimed to discuss related applications of CA in the structural modification of natural products and provide a theoretical basis for future derivatization and drug development of natural products. Published articles, web databases (PubMed, Science Direct, SCI Finder, and CNKI), and clinical trial websites (https://clinicaltrials.gov/) related to natural products and CA derivatives were included in the discussion. Based on the inclusion criteria, 128 studies were selected and discussed herein. Screening natural products of CA derivatives allowed for classification by their biological activities. The full text is organized according to the biological activities of the derivatives, with the following categories: anti-tumor, neuroprotective, anti-diabetic, anti-microbial, anti-parasitic, anti-oxidative, anti-inflammatory, and other activities. The biological activity of each CA derivative is discussed in detail. Notably, most derivatives exhibited enhanced biological activity and reduced cytotoxicity compared with the lead compound. CA has various advantages and can be widely used in the synthesis of natural product derivatives to enhance the properties of drug candidates or lead compounds.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
6
|
Singh JV, Thakur S, Kumar N, Singh H, Mithu VS, Singh H, Bhagat K, Gulati HK, Sharma A, Singh H, Sharma S, Bedi PMS. Donepezil-Inspired Multitargeting Indanone Derivatives as Effective Anti-Alzheimer's Agents. ACS Chem Neurosci 2022; 13:733-750. [PMID: 35195392 DOI: 10.1021/acschemneuro.1c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In continuous efforts to develop anti-Alzheimer's agents, we rationally designed and synthesized a series of multitargeting molecules by incorporating the essential molecular features of the standard drug donepezil. Among the series, compound 4b showed multitargeting properties to act as an anti-Alzheimer's agent, which is better tolerable in vivo than donepezil. Acetylcholinesterase (AChE) inhibition data showed that compound 4b inhibits the enzyme with a half-maximal inhibitory concentration (IC50) value of 0.78 μM and also showed DNA protection, which was confirmed through the DNA nicking assay, suggesting the protective effect of 4b against oxidative DNA damage. Compound 4b also showed 53.04% inhibition against Aβ1-42 aggregations, which was found comparable to that of the standard compound curcumin. Molecular dynamics simulations were performed to check the stability of compound 4b with the enzyme AChE, which showed that the enzyme-ligand complex is stable enough to block the hydrolysis of acetylcholine in the brain. Its higher LD50 cutoff value (50 mg/kg) in comparison to donepezil (LD50: 25 mg/kg) made it safer, suggesting that it can be used in further clinical experiments. To evaluate its anti-Alzheimer property, a mice model with melamine-induced cognitive dysfunction was used, and Morris water maze and Rotarod tests were performed. A significant improvement in memory was observed after the treatment with compound 4b and donepezil. The study postulated that the introduction of important structural features of donepezil (dimethoxyindanone moiety as ring-A) embarked with terminal aromatic ether (ring-B and ring-C) made 4b a multitargeting molecule that offers a way for developing alternative therapeutics in the future against Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Venus Singh Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harpreet Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
7
|
Chai T, Zhang WH, Jiao H, Qiang Y. Hydroxycinnamic Acid Amide Dimers from Goji Berry and Their Potential Anti-AD Activity. Chem Biodivers 2021; 18:e2100436. [PMID: 34664781 DOI: 10.1002/cbdv.202100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
Three undescribed hydroxycinnamic acid amide dimers 1-3 were isolated and identified from an extract of Goji berry. Their molecular structures were elucidated based on NMR, MS, and IR spectra analysis. Compounds 1-3 were hydroxycinnamic acid amide dimers, which possess a cyclic butane moiety formed by head-to-head connection. These compounds at 25 μM showed the disaggregation potency on the copper-mediated Aβ1-42 aggregation ranging from 27.3±3.2 to 31.0±2.9 %. This study provides new information on the antiaging traditional usage of goji berry.
Collapse
Affiliation(s)
- Tian Chai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wen-Han Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hui Jiao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
8
|
Wang XQ, Zhou LY, Tan RX, Liang GP, Fang SX, Li W, Xie M, Wen YH, Wu JQ, Chen YP. Design, Synthesis, and Evaluation of Chalcone Derivatives as Multifunctional Agents against Alzheimer's Disease. Chem Biodivers 2021; 18:e2100341. [PMID: 34510699 DOI: 10.1002/cbdv.202100341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
Fifteen chalcone derivatives 3a-3o were synthesized, and evaluated as multifunctional agents against Alzheimer's disease. In vitro studies revealed that these compounds inhibited self-induced Aβ1-42 aggregation effectively ranged from 45.9-94.5 % at 20 μM, and acted as potential antioxidants. Their structure-activity relationships were summarized. In particular, (2E)-3-[4-(dimethylamino)phenyl]-1-(pyridin-2-yl)prop-2-en-1-one (3g) exhibited an excellent inhibitory activity of 94.5 % at 20 μM, and it could disassemble the self-induced Aβ1-42 aggregation fibrils with ratio of 57.1 % at 20 μM concentration. In addition, compound 3g displayed good chelating ability for Cu2+ , and could effectively inhibit and disaggregate Cu2+ -induced Aβ aggregation. Moreover, compound 3g exerted low cytotoxicity, significantly reversed Aβ1-42 -induced SH-SY5Y cell damage. More importantly, compound 3g remarkably ameliorated scopolamine-induced memory impairment in mice. In summary, all the results revealed compound 3g was a potential multifunctional agent for AD therapy.
Collapse
Affiliation(s)
- Xiao-Qin Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Lu-Yi Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Ren-Xian Tan
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Guo-Peng Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Si-Xian Fang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Wei Li
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Mei Xie
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yu-Hao Wen
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Yi-Ping Chen
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| |
Collapse
|
9
|
Wang J, Meng XH, Chai T, Yang JL, Shi YP. Diterpenoid Alkaloids and One Lignan from the Roots of Aconitum pendulum Busch. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:419-423. [PMID: 31728851 PMCID: PMC6872700 DOI: 10.1007/s13659-019-00227-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 05/19/2023]
Abstract
Diterpenoid alkaloids have neroprotective activity. Herein, three napelline-type diterpenoid alkaloids 1-3, two aconitine-type diterpenoid alkaloids 4-5, and one isoquinline-type alkaloid 6, as well as one lignan glycoside 7, have been isolated from the roots of Aconitum pendulum Busch. Compounds 1 and 7 were new compounds, and their chemical structures were determined on the basis of nuclear magnetic resonance (NMR) spectra and mass spectrometry analysis. A ThT assay revealed that compound 2 showed significant disaggregation potency on the Aβ1-42 aggregates.
Collapse
Affiliation(s)
- Jun Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|