1
|
Felician F, Antonopoulou MN, Truong NP, Kroeger AA, Coote ML, Jones GR, Anastasaki A. Unravelling the effect of side chain on RAFT depolymerization; identifying the rate determining step. Polym Chem 2025; 16:1822-1828. [PMID: 40160482 PMCID: PMC11938419 DOI: 10.1039/d5py00212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) depolymerization represents an attractive and low-temperature chemical recycling methodology enabling the near-quantitative regeneration of pristine monomer. Yet, several mechanistic aspects of the process remain elusive. Herein, we shine a light on the RAFT depolymerization mechanism by elucidating the effect of pendant side chains on the depolymerization kinetics. A systematic increase of the number of carbons on the side chain, or the number of ethylene glycol units, revealed a significant rate acceleration. Notably, radical initiator addition during the depolymerization of poly(methyl methacrylate) and poly(hexyl methacrylate) resulted in rate equilibration, indicating that chain activation is the rate-determining step in RAFT depolymerization. Moreover, incorporation of a low DP of hexyl monomer as the second block of poly(methyl methacrylate) led to comparable rates with poly(hexyl methacrylate) homopolymer, confirming the rate determining step. Computational investigations further corroborate this finding, revealing that chain-end fragmentation is energetically more favorable in longer-side-chain methacrylates, which accounts for the experimentally observed rate acceleration. These insights not only deepen our understanding of depolymerization but also pave the way for developing more efficient and customizable depolymerization systems.
Collapse
Affiliation(s)
- Francesco Felician
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Maria-Nefeli Antonopoulou
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Nghia P Truong
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Asja A Kroeger
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Glen R Jones
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Athina Anastasaki
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
2
|
Jones GR, Antonopoulou MN, Truong NP, Anastasaki A. Initiators for Continuous Activator Regeneration (ICAR) Depolymerization. J Am Chem Soc 2024; 146:35023-35028. [PMID: 39663797 DOI: 10.1021/jacs.4c13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemical recycling of polymers synthesized by atom transfer radical polymerization (ATRP) typically requires high temperatures (i.e., 170 °C) to operate effectively, not only consuming unnecessary energy but also compromising depolymerization yields due to unavoidable end-group deterioration. To overcome this, the concept of initiators for continuous activator regeneration (ICAR) depolymerization is introduced herein as a broadly applicable approach to significantly reduce reaction temperatures for ATRP depolymerizations. Addition of commercially available free radical initiators enables the on-demand increase of depolymerization efficiency from <1% to 96%, achieving monomer generation at 120 °C, with conversions on par with thermal reversible addition-fragmentation chain transfer (RAFT) depolymerizations. Incubation studies confirm the elimination of deleterious side reactions at the milder temperatures employed, while the methodology can be scaled up to 1 g. The robustness and versatility of ICAR depolymerization is further demonstrated by the possibility to effectively depolymerize both chlorine and bromine terminated polymers and its compatibility with both copper and iron catalysts.
Collapse
Affiliation(s)
- Glen R Jones
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Maria-Nefeli Antonopoulou
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Liu K, Zhang P, Müller-Buschbaum P, Zhong Q. Enhanced UV protection in silk fibroin based electrospun fabrics realized via orientation induced high efficiency of azobenzene isomerization. Int J Biol Macromol 2024; 268:131638. [PMID: 38670180 DOI: 10.1016/j.ijbiomac.2024.131638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Due to the poor UV protection capability, natural silk fabrics not only suffer from easy damage by sunshine but also induce possible sunburn in the human body. Efficient azobenzene isomerization and enhanced UV shielding are realized by replacing the natural silk with natural protein silk fibroin (SF) and electrospinning together with light-responsive copolymer P(MEO2-co-OEG300-co-AHMA). Compared to a solution cast film, the absorption peak intensity at 355 nm is 60 % higher in UV-Vis spectra of the electropsun SF/P(MEO2-co-OEG300-co-AHMA) fabrics. This improvement is related to the highly oriented chains, inducing more space and higher efficiency for azobenzene isomerization. Only exposure to visible light for 20 min, the absorption peak corresponding to the trans- state at 355 nm recovers to 92.5 % in the electrospun fabrics, which is at least 100 % faster than that in the solution cast film (50 min). It is related to the zip effect of the isomerization in the oriented chain structure. Thus, not only the absorption of UV radiation, but also the isomerization rate is enhanced. Based on these unique absorption and recovery capabilities, the SF based electrospun fabrics can be used to replace the natural silk fabrics for UV shielding in summer, especially for cyclic use.
Collapse
Affiliation(s)
- Kang Liu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Panpan Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany; Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
4
|
Parkatzidis K, Truong NP, Matyjaszewski K, Anastasaki A. Photocatalytic ATRP Depolymerization: Temporal Control at Low ppm of Catalyst Concentration. J Am Chem Soc 2023; 145:21146-21151. [PMID: 37737835 PMCID: PMC10557129 DOI: 10.1021/jacs.3c05632] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 09/23/2023]
Abstract
A photocatalytic ATRP depolymerization is introduced that significantly suppresses the reaction temperature from 170 to 100 °C while enabling temporal regulation. In the presence of low-toxicity iron-based catalysts and under visible light irradiation, near-quantitative monomer recovery could be achieved (up to 90%), albeit with minimal temporal control. By employing ppm concentrations of either FeCl2 or FeCl3, the depolymerization during the dark periods could be completely eliminated, thus enabling temporal control and the possibility to modulate the rate by simply turning the light "on" and "off". Notably, our approach allowed preservation of the end-group fidelity throughout the reaction, could be carried out at high polymer loadings (up to 2M), and was compatible with various polymers and light sources. This methodology provides a facile, environmentally friendly, and temporally regulated route to chemically recycle ATRP-synthesized polymers, thus opening the door for further opportunities.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| |
Collapse
|
5
|
Stellmach KA, Paul MK, Xu M, Su YL, Fu L, Toland AR, Tran H, Chen L, Ramprasad R, Gutekunst WR. Modulating Polymerization Thermodynamics of Thiolactones Through Substituent and Heteroatom Incorporation. ACS Macro Lett 2022; 11:895-901. [PMID: 35786872 DOI: 10.1021/acsmacrolett.2c00319] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A central challenge in the development of next-generation sustainable materials is to design polymers that can easily revert back to their monomeric starting material through chemical recycling to monomer (CRM). An emerging monomer class that displays efficient CRM are thiolactones, which exhibit rapid rates of polymerization and depolymerization. This report details the polymerization thermodynamics for a series of thiolactone monomers through systematic changes to substitution patterns and sulfur heteroatom incorporation. Additionally, computational studies highlight the importance of conformation in modulating the enthalpy of polymerization, leading to monomers that display high conversions to polymer at near-ambient temperatures, while maintaining low ceiling temperatures (Tc). Specifically, the combination of a highly negative enthalpy (-19.3 kJ/mol) and entropy (-58.4 J/(mol·K)) of polymerization allows for a monomer whose equilibrium polymerization conversion is very sensitive to temperature.
Collapse
Affiliation(s)
- Kellie A Stellmach
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - McKinley K Paul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Mizhi Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Yong-Liang Su
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Liangbing Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Aubrey R Toland
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Huan Tran
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Lihua Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Chazovachii PT, Somers MJ, Robo MT, Collias DI, James MI, Marsh ENG, Zimmerman PM, Alfaro JF, McNeil AJ. Giving superabsorbent polymers a second life as pressure-sensitive adhesives. Nat Commun 2021; 12:4524. [PMID: 34312375 PMCID: PMC8313680 DOI: 10.1038/s41467-021-24488-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
An estimated 6.3 billion metric tons of post-consumer polymer waste has been produced, with the majority (79%) in landfills or the environment. Recycling methods that utilize these waste polymers could attenuate their environmental impact. For many polymers, recycling via mechanical processes is not feasible and these materials are destined for landfills or incineration. One salient example is the superabsorbent material used in diapers and feminine hygiene products, which contain crosslinked sodium polyacrylates. Here we report an open-loop recycling method for these materials that involves (i) decrosslinking via hydrolysis, (ii) an optional chain-shortening via sonication, and (iii) functionalizing via Fischer esterification. The resulting materials exhibit low-to-medium storage and loss moduli, and as such, are applicable as general-purpose adhesives. A life cycle assessment demonstrates that the adhesives synthesized via this approach outcompete the same materials derived from petroleum feedstocks on nearly every metric, including carbon dioxide emissions and cumulative energy demand.
Collapse
Affiliation(s)
| | - Madeline J Somers
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Michael T Robo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Dimitris I Collias
- Materials Science Innovation-Corporate R&D, The Procter & Gamble Co., West Chester, OH, USA
| | - Martin I James
- Materials Science Innovation-Corporate R&D, The Procter & Gamble Co., West Chester, OH, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jose F Alfaro
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Anne J McNeil
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
A review of smart electrospun fibers toward textiles. COMPOSITES COMMUNICATIONS 2020; 22:100506. [PMCID: PMC7497400 DOI: 10.1016/j.coco.2020.100506] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Electrospinning as a versatile technology has attracted a large amount of attention in the past few decades due to the facile way to produce micro- and nano-scale fibers featuring flexibility, large specific surface area and high porosity. Stimuli-responsive polymers are a class of smart materials that are capable of sensing surround environment and interacting with them. Therefore, the combination of electrospinning and smart materials could have a great deal of benefits over the development of smart fibers. In this review, it offers a comprehensive understanding of smart electrospun fibers toward textile applications. Firstly, the definition of smart fibers and the differences between interactive fibers and passive interactive fibers are briefly introduced. Then some interactive fibers made from temperature-, pH-, light-, electric field/electricity-, magnetic field-, multi-responsive polymers, as well as some polymers featuring piezoelectric and triboelectric effect which are suitable flexible electrics, are emphasized with their applications in the form of electrospun fibers. Afterwards, some passive and hybrid smart electrospun fibers are introduced. Finally, associated challenges and perspectives are summarized and discussed. Understanding of passive smart electrospun fibers and interactive smart electrospun fibers. The recent progress in flexible electronics from electrospun fibers. The recent progress in stimuli-responsive polymers applied in interactive smart electrospun fibers.
Collapse
|
8
|
|
9
|
Sreejith KR, Gorgannezhad L, Jin J, Ooi CH, Takei T, Hayase G, Stratton H, Lamb K, Shiddiky M, Dao DV, Nguyen NT. Core-Shell Beads Made by Composite Liquid Marble Technology as A Versatile Microreactor for Polymerase Chain Reaction. MICROMACHINES 2020; 11:E242. [PMID: 32111025 PMCID: PMC7142426 DOI: 10.3390/mi11030242] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023]
Abstract
Over the last three decades, the protocols and procedures of the DNA amplification technique, polymerase chain reaction (PCR), have been optimized and well developed. However, there have been no significant innovations in processes for sample dispersion for PCR that have reduced the amount of single-use or unrecyclable plastic waste produced. To address the issue of plastic waste, this paper reports the synthesis and successful use of a core-shell bead microreactor using photopolymerization of a composite liquid marble as a dispersion process. This platform uses the core-shell bead as a simple and effective sample dispersion medium that significantly reduces plastic waste generated compared to conventional PCR processes. Other improvements over conventional PCR processes of the novel dispersion platform include increasing the throughput capability, enhancing the performance and portability of the thermal cycler, and allowing for the contamination-free storage of samples after thermal cycling.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Jing Jin
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
| | - Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan;
| | - Gen Hayase
- Frontier Research Institute for Interdisciplinary Science, Tohoku University, 6-3 Aramaki aza Aoba-ku, Sendai, Miyagi 980-8578, Japan;
| | - Helen Stratton
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Krystina Lamb
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
| | - Muhammad Shiddiky
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (K.R.S.); (L.G.); (J.J.); (C.H.O.); (H.S.); (K.L.); (M.S.); (D.V.D.)
| |
Collapse
|
10
|
Special Issue: "Smart and Functional Polymers". Molecules 2019; 24:molecules24162976. [PMID: 31426353 PMCID: PMC6719975 DOI: 10.3390/molecules24162976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Key Words
- functional polymers for diagnosis, imaging, drug delivery, and tissue engineering
- functional polymers used in food science
- polymer-based medical devices
- polymer-based supramolecular chemistry
- polymerization or post-polymerization modification methods
- polymers for fabrication
- polymers for industrial catalysis
- polymers for information storage, electronics, and energy conversion
- polymers for sensing, separation, and purification
- polymers for water or effluent treatment
- polymers with biological activity (e.g., antitumor, antidiabetic, and antimicrobial activity)
- renewable polymer materials used for agriculture
- self-healing polymers
- shape memory polymers
- stimuli-responsive polymers
Collapse
|
11
|
Reversible Addition-Fragmentation Chain Transfer Polymerization of 2-Chloroethyl Methacrylate and Post-Polymerization Modification. Macromol Res 2019. [DOI: 10.1007/s13233-019-7118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Maupu A, Kanawati Y, Métafiot A, Maric M. Ethylene Glycol Dicyclopentenyl (Meth)Acrylate Homo and Block Copolymers via Nitroxide Mediated Polymerization. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1547. [PMID: 31083510 PMCID: PMC6539251 DOI: 10.3390/ma12091547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Nitroxide-mediated polymerization (NMP), (homo and block copolymerization with styrene (S) and butyl methacrylate/S) of ethylene glycol dicyclopentenyl ether (meth)acrylates (EGDEA and EGDEMA) was studied using BlocBuilder alkoxyamines. EGDEA homopolymerization was not well-controlled, independent of temperature (90-120 °C), or additional free nitroxide (0-10 mol%) used. Number average molecular weights (Mn) achieved for poly(EGDEA) were 4.0-9.5 kg mol-1 and were accompanied by high dispersity (Ð = Mw/Mn = 1.62-2.09). Re-initiation and chain extension of the poly(EGDEA) chains with styrene (S) indicated some block copolymer formation, but a high fraction of chains were terminated irreversibly. EGDEA-stat-S statistical copolymerizations with a low mol fraction S in initial feed, fS,0 = 0.05, were slightly better controlled compared to poly(EGDEA) homopolymerizations (Ð was reduced to 1.44 compared to 1.62 at similar conditions). EGDEMA, in contrast, was successfully polymerized using a small fraction of S (fS,0 ~ 10 mol%) to high conversion (72%) to form well-defined EGDEMA-rich random copolymer (molar composition = FEGDEMA = 0.87) of Mn = 14.3 kg mol-1 and Ð = 1.38. EGDEMA-rich compositions were also polymerized with the unimolecular succinimidyl ester form of BlocBuilder initiator, NHS-BlocBuilder with similar results, although Ðs were higher ~1.6. Chain extensions resulted in monomodal shifts to higher molecular weights, indicating good chain end fidelity.
Collapse
Affiliation(s)
- Alexandre Maupu
- Department of Chemical Engineering, Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), McGill Institute of Advanced Materials (MIAM), McGill University, Montreal, QC H3A 0C5, Canada.
| | - Yara Kanawati
- Department of Chemical Engineering, Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), McGill Institute of Advanced Materials (MIAM), McGill University, Montreal, QC H3A 0C5, Canada.
| | - Adrien Métafiot
- Department of Chemical Engineering, Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), McGill Institute of Advanced Materials (MIAM), McGill University, Montreal, QC H3A 0C5, Canada.
| | - Milan Maric
- Department of Chemical Engineering, Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Centre de recherche sur les systèmes polymères et composites à haute performance (CREPEC), McGill Institute of Advanced Materials (MIAM), McGill University, Montreal, QC H3A 0C5, Canada.
| |
Collapse
|
13
|
Edeleva M, Audran G, Marque S, Bagryanskaya E. Smart Control of Nitroxide-Mediated Polymerization Initiators' Reactivity by pH, Complexation with Metals, and Chemical Transformations. MATERIALS 2019; 12:ma12050688. [PMID: 30813542 PMCID: PMC6427375 DOI: 10.3390/ma12050688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
Because alkoxyamines are employed in a number of important applications, such as nitroxide-mediated polymerization, radical chemistry, redox chemistry, and catalysis, research into their reactivity is especially important. Typically, the rate of alkoxyamine homolysis is strongly dependent on temperature. Nonetheless, thermal regulation of such reactions is not always optimal. This review describes various ways to reversibly change the rate of C–ON bond homolysis of alkoxyamines at constant temperature. The major methods influencing C–ON bond homolysis without alteration of temperature are protonation of functional groups in an alkoxyamine, formation of metal–alkoxyamine complexes, and chemical transformation of alkoxyamines. Depending on the structure of an alkoxyamine, these approaches can have a significant effect on the homolysis rate constant, by a factor of up to 30, and can shorten the half-lifetime from days to seconds. These methods open new prospects for the application of alkoxyamines in biology and increase the safety of (and control over) the nitroxide-mediated polymerization method.
Collapse
Affiliation(s)
- Mariya Edeleva
- N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.
- National Research University-Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Gerard Audran
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille CEDEX 20, France.
| | - Sylvain Marque
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille CEDEX 20, France.
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.
- National Research University-Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
14
|
Salač J, Šerá J, Jurča M, Verney V, Marek AA, Koutný M. Photodegradation and Biodegradation of Poly(Lactic) Acid Containing Orotic Acid as a Nucleation Agent. MATERIALS 2019; 12:ma12030481. [PMID: 30720761 PMCID: PMC6384750 DOI: 10.3390/ma12030481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/31/2022]
Abstract
Orotic acid is a natural heterocyclic compound that acts as a nucleation agent in poly(lactic acid) (PLA). PLA materials with increasing orotic acid content were prepared and characterized. It was found that crystallinity of about 28% was reached with 0.3% content of the agent. Further enhancement in the content of the agent did not provoke any additional significant increase of crystallinity. Subsequently, it was investigated whether the orotic acid content affected photodegradation of PLA and, in the next phase, its biodegradation. The results of rheological measurements showed that the compound slightly accelerates photodegradation of the material, which was accompanied by the cleavage of PLA chains. Previous photodegradation was shown to accelerate the subsequent biodegradation by shortening the lag phase of the process, where the explanation is probably in the reduction of the polymer molecular weight during the photodegradation. Moreover, the presence of orotic acid in both initial and photodegraded samples was found to influence biodegradation positively by shortening the lag phase and increasing the observed maximal rate of the biodegradation.
Collapse
Affiliation(s)
- Jan Salač
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University, Vavrečkova 275, 760 01 Zlín, Czech Republic.
| | - Jana Šerá
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University, Vavrečkova 275, 760 01 Zlín, Czech Republic.
| | - Martin Jurča
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University, Vavrečkova 275, 760 01 Zlín, Czech Republic.
| | - Vincent Verney
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, F-63000 Clermont⁻Ferrand, France.
| | - Adam A Marek
- Department of Organic Chemical Technology and Petrochemistry, Silesian University of Technology, 44100 Gliwice, Poland.
| | - Marek Koutný
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University, Vavrečkova 275, 760 01 Zlín, Czech Republic.
| |
Collapse
|
15
|
Tang H, Zhao W, Yu J, Li Y, Zhao C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules 2018; 24:E4. [PMID: 30577475 PMCID: PMC6337262 DOI: 10.3390/molecules24010004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer remains a leading cause of death worldwide with more than 10 million new cases every year. Tumor-targeted nanomedicines have shown substantial improvements of the therapeutic index of anticancer agents, addressing the deficiencies of conventional chemotherapy, and have had a tremendous growth over past several decades. Due to the pathophysiological characteristics that almost all tumor tissues have lower pH in comparison to normal healthy tissues, among various tumor-targeted nanomaterials, pH-responsive polymeric materials have been one of the most prevalent approaches for cancer diagnosis and treatment. In this review, we summarized the types of pH-responsive polymers, describing their chemical structures and pH-response mechanisms; we illustrated the structure-property relationships of pH-responsive polymers and introduced the approaches to regulating their pH-responsive behaviors; we also highlighted the most representative applications of pH-responsive polymers in cancer imaging and therapy. This review article aims to provide general guidelines for the rational design of more effective pH-responsive nanomaterials for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Houliang Tang
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275, USA.
| | - Weilong Zhao
- Global Research IT, Merck & Co., Inc., Boston, MA 02210, USA.
| | - Jinming Yu
- Department of Chemical and Biological Engineering, the University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Yang Li
- Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Chao Zhao
- Department of Chemical and Biological Engineering, the University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|