1
|
Ni C, Yue L, Ran M, Wang L, Huang F, Yang S, Lai J, Jiang N, Huang X, Qin D, Li H, Zhou J, Zeng J, Wu A, Wu J. Identification of octyl gallate, a novel apoptosis-inducing compound for colon cancer therapy, from Sanguisorba officinalis L. by cell membrane chromatography and UHPLC-(Q)TOF-MS/MS. Heliyon 2024; 10:e32230. [PMID: 38933948 PMCID: PMC11200347 DOI: 10.1016/j.heliyon.2024.e32230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.
Collapse
Affiliation(s)
- Chengyang Ni
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Liang Yue
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacy, Deyang People's Hospital, Deyang, 618000, China
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
2
|
Shen X, Wang Z, Li W, Mei S, Ma S, Wang X, Wen C, Chen F, Zheng G. Pharmacokinetics of Ziyuglycoside I and Ziyuglycoside II in Rat Plasma by UPLC-MS/MS. Int J Anal Chem 2024; 2024:7971021. [PMID: 38463657 PMCID: PMC10923622 DOI: 10.1155/2024/7971021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Ziyuglycoside I and ziyuglycoside II are important active components of Sanguisorba officinalis L., which have excellent pharmacological effects, such as antioxidant and anticancer effects. However, the bioavailability of ziyuglycoside I and ziyuglycoside II has not been reported. This work aims to establish a UPLC-MS/MS method to study the pharmacokinetics of ziyuglycoside I and ziyuglycoside II in rats under different administration routes (intragastric and intravenous administration) and to calculate the bioavailability. The concentration of ziyuglycoside I and ziyuglycoside II in rat plasma in the range of 2-2000 ng/mL showed a good linear relationship (r > 0.99). The intra-day accuracies of ziyuglycoside I and ziyuglycoside II ranged from 87% to 110%, and the inter-day accuracies ranged from 97% to 109%. The intra-day precision was less than 15% and the inter-day precision was less than 14%. The matrix effects ranged from 88% to 113%. The recoveries were all above 84%. The developed UPLC-MS/MS method for the determination of ziyuglycoside I and ziyuglycoside II in rat plasma was applied to pharmacokinetics. The bioavailability of ziyuglycoside I and ziyuglycoside II was measured at 2.6% and 4.6%, respectively.
Collapse
Affiliation(s)
- Xiuwei Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyue Wang
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Wenting Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shenshen Mei
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Shunjun Ma
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Xianqin Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Fan Chen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guojun Zheng
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Wei Y, Yang C, Jiang S, Wang Z. Pharmacokinetics of four tannin compounds from Sanguisorba officinalis L. before and after processing by ultra-high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2300803. [PMID: 38403460 DOI: 10.1002/jssc.202300803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Sanguisorba officinalis L. possesses detoxifying, analgesic, and hemostatic properties. After charred processing, S. officinalis exhibits significantly enhanced medicinal effects. Currently, most pharmacokinetic studies focus on the chemical constituents of unprocessed S. officinalis. There is limited research on the comparison of chemical constituents before and after processing. This study established a pharmacokinetic method using ultra-high-performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) to simultaneously determine the levels of four tannin compounds in rat plasma. In negative ion mode, MS/MS detection was performed using an electrospray ionization source. Chromatographic separation was performed using WATERS ACQUITY HSS T3 column (2.1 × 100 mm, 1.8 µm) with a gradient elution of water and acetonitrile as the mobile phase. The pharmacokinetic results indicate that all four compounds reached peak concentrations within 2 h, demonstrating rapid absorption into the bloodstream within the gastrointestinal tract. Notably, the absorption was generally faster in the charred compound of S. officinalis after processing. These four compounds exhibited slower elimination in rat plasma, while in S. officinalis charcoal, the compounds were eliminated more rapidly. The pharmacokinetic results have revealed the pharmacokinetic characteristics of the four analytes in rat plasma which provides valuable reference information for further investigating the in vivo absorption process of S. officinalis after processing.
Collapse
Affiliation(s)
- Yuxin Wei
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Wang Z, Borjigin G, Zhang M, Yang C, Wang Z, Kuang H. Simultaneous determination and pharmacokinetics study of three triterpenoid saponins in rat plasma by ultra-high-performance liquid chromatography tandem mass-spectrometry after oral administration of Astragalus Membranaceus leaf extract. J Sep Sci 2023; 46:e2300282. [PMID: 37863814 DOI: 10.1002/jssc.202300282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 10/22/2023]
Abstract
A selective and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the determination of three triterpenoid saponins isolated from Astragalus membranaceus leaf extract. In this article, a method for simultaneous determination of Huangqiyenin A, Huangqiyenin E, and Huangqiyenin K was established for the first time. The method was successfully applied to the pharmacokinetic study of Astragalus membranaceus leaf extract after oral administration. Liquid-liquid extraction was applied to plasma sample preparation. Multiple reaction monitoring mode with an electrospray ion source in positive electrospray ionization was chosen to quantify the analytes. Chromatographic separation was performed on a Waters HSS T3 column, using gradient elution with a mobile phase composed of acetonitrile and 5 mM ammonium acetate/water. The pharmacokinetic results showed that all three compounds had the characteristics of rapid absorption-slow metabolism trend. The time of maximum plasma concentration of Huangqiyenin A is higher than Huangqiyenin E and Huangqiyenin K. And the maximum plasma concentration of Huangqiyenin A is higher as well. The pharmacokinetic results revealed the pharmacokinetic characteristics of the three analytes in rat plasma, which could provide a helpful reference for the further study of Astragalus membranaceus leaf extract.
Collapse
Affiliation(s)
- Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Gilwa Borjigin
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Mingyu Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Zhenyue Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| |
Collapse
|
5
|
Variation of Saponins in Sanguisorba officinalis L. before and after Processing ( Paozhi) and Its Effects on Colon Cancer Cells In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249046. [PMID: 36558181 PMCID: PMC9785891 DOI: 10.3390/molecules27249046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The incidence of colon cancer is increasing year over year, seriously affecting human health and quality of life in recent years. However, traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. S. officinalis Saponins (S-Saponins), the potential compound of TCM, displays multiple biological activities in colon cancer treatment. In our study, ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) combined with multivariate statistical analysis were performed to analyze and identify raw and processed saponins. Then, MTT and cell migration assays were used to preliminarily explore the effects of saponins in vitro on colon cancer cells. The results showed that 29 differential saponins compounds under Paozhi were identified by UHPLC-MS/MS. Moreover, in vitro validation showed that Sprocessed better inhibited the proliferation and migration of colon cancer cells than Sraw. This study provides a basis for the determination of the chemical fundamentals of the efficacy changes during Paozhi through inferring the changes in saponin components and its possible transformation mechanisms before and after processing S. officinalis. Meanwhile, it also provides new insights into potential bioactive ingredients for the treatment of colon cancer.
Collapse
|
6
|
Wei F, Yang C, Wu L, Sun J, Wang Z, Wang Z. Simultaneous Determination and Pharmacokinetics Study of Three Triterpenes from Sanguisorba officinalis L. in Rats by UHPLC–MS/MS. Molecules 2022; 27:molecules27175412. [PMID: 36080179 PMCID: PMC9458004 DOI: 10.3390/molecules27175412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
A selective and rapid ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was established and validated for the determination of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, and pomolic acid in rats after the oral administration of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, pomolic acid, and Sanguisorba officinalis L. extract. The separation was carried out on an ACQUITY UPLC®HSS T3 column (2.1 mm × 100 mm, 1.8 μm), using methanol and 5 mmol/L ammonium acetate water as the mobile phase. The three compounds were quantified using the multiple reaction monitoring mode with the electrospray ion source in both the positive and negative mode. Liquid-liquid extraction was applied to the plasma sample preparation. Bifendate was selected as the internal standard. The intra-day and inter-day precision and the accuracy of the method were all within receivable ranges. The lower limit of quantification of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, and pomolic acid were 6.50, 5.75, and 2.63 ng/mL, respectively. The extraction recoveries of analytes in rat plasma ranged from 83 to 94%. The three components could be rapidly absorbed into the blood (Tmax, 1.4–1.6 h) both in the single-administration group or S. officinalis extract group, but the first peak of PA occurred at 0.5 h and the second peak at 4–5 h in the S. officinalis extract. Three compounds were eliminated relatively slowly (t1/2, 7.3–11 h). The research was to establish a rapid, sensible, and sensitive UHPLC–MS/MS method using the multi-ion mode for multi-channel simultaneous mensuration pharmacokinetics parameters of three compounds in rats after oral administration of S. officinalis extract. This study found, for the first time, differences in the pharmacokinetic parameters of the three compounds in the monomer compounds and S. officinalis extract administration, which preliminarily revealed the transformation and metabolism of the three compounds in vivo.
Collapse
Affiliation(s)
- Fanshu Wei
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Lihong Wu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhenyue Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Correspondence:
| |
Collapse
|
7
|
Jiang S, Yang X, Wang Z, Gan C, Huang J, Sun J, Peng H, Wei F, Wang Z, Yang C. Biotransformation and pharmacokinetic studies of four alkaloids from Uncaria rhynchophylla in rat plasma by ultra-performance liquid chromatography with tandem mass spectrometry. J Pharm Biomed Anal 2022; 218:114858. [DOI: 10.1016/j.jpba.2022.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
8
|
Ramabulana T, Ndlovu M, Mosa RA, Sonopo MS, Selepe MA. Phytochemical Profiling and Isolation of Bioactive Compounds from Leucosidea sericea (Rosaceae). ACS OMEGA 2022; 7:11964-11972. [PMID: 35449904 PMCID: PMC9016878 DOI: 10.1021/acsomega.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In the study, ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis of Leucosidea sericea leaf and stem extracts led to the identification of various classes of compounds. Further chromatographic purifications resulted in the isolation of 22 compounds that consisted of a new triterpenoid named leucosidic acid A (1), an acetophenone derivative 2, a phloroglucinol derivative 3, three chromones 4-6, seven pentacyclic triterpenoids 7-13, a phytosterol glucoside 14, a flavonoid 15, and seven flavonoid glycosides 16-22. Nineteen of these compounds including the previously undescribed triterpenoid 1 are isolated for the first time from L. sericea. The structures of the isolated compounds were assigned based on their high-resolution mass spectrometry and nuclear magnetic resonance data. Some of the isolated triterpenoids were evaluated for inhibitory activity against α-amylase, α-glucosidase, and pancreatic lipase. Of the tested compounds, 1-hydroxy-2-oxopomolic acid (7) and pomolic acid (13) showed higher potency on α-glucosidase than acarbose, which is used as a positive control in this study. The two compounds inhibited α-glucosidase with IC50 values of 192.1 ± 13.81 and 85.5 ± 6.87 μM, respectively.
Collapse
Affiliation(s)
- Tshifhiwa Ramabulana
- Department
of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Musawenkosi Ndlovu
- Department
of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Rebamang A. Mosa
- Department
of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Molahlehi S. Sonopo
- Radiochemistry, South African Nuclear Energy Corporation Limited, Pelindaba, Brits 0240, South Africa
| | - Mamoalosi A. Selepe
- Department
of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| |
Collapse
|
9
|
Sun J, Gan C, Huang J, Wang Z, Wu C, Jiang S, Yang X, Peng H, Wei F, Yang C. Determination of Triterpenoids and Phenolic Acids from Sanguisorba officinalis L. by HPLC-ELSD and Its Application. Molecules 2021; 26:molecules26154505. [PMID: 34361658 PMCID: PMC8348980 DOI: 10.3390/molecules26154505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
A novel analytical method involving high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for simultaneous determination of 11 phenolic acids and 12 triterpenes in Sanguisorba officinalis L. Chromatographic separation was conducted with gradient elution mode by using a DiamonsilTM C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.1% acetic acid water (A) and methanol (B). The drift tube temperature of ELSD was set at 70 °C and the nitrogen cumulative flow rate was 1.6 L/min. The method was fully validated to be linear over a wide concentration range (R2 ≥ 0.9991). The precisions (RSD) were less than 3.0% and the recoveries were between 97.7% and 101.4% for all compounds. The results indicated that this method is accurate and effective for the determination of 23 functional components in Sanguisorba officinalis L. and could also be successfully applied to study the influence of processing method on those functional components in Sanguisorba officinalis L.
Collapse
Affiliation(s)
- Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Chunli Gan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China;
| | - Jing Huang
- Department of Inorganic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China;
| | - Zhenyue Wang
- Department of Resources and Development of Chinese Materia Medica, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Chengcui Wu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Xinrong Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Hesong Peng
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Fanshu Wei
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China; (J.S.); (C.W.); (S.J.); (X.Y.); (H.P.); (F.W.)
- Correspondence:
| |
Collapse
|
10
|
A Bioactive Compound from Sanguisorba officinalis L. Inhibits Cell Proliferation and Induces Cell Death in 5-Fluorouracil-Sensitive/Resistant Colorectal Cancer Cells. Molecules 2021; 26:molecules26133843. [PMID: 34202548 PMCID: PMC8270258 DOI: 10.3390/molecules26133843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer in the world. The first line chemotherapeutic agent, 5-fluorouracil (5-FU), plays a predominant role in the clinical treatment of CRC. However, with the wide use of 5-FU, more and more CRC patients have been obtaining drug resistance to 5-FU, which leads to a large amount of treatment failures. One of the effective strategies to overcome this obstacle is to find bioactive natural products from traditional medicine. In our previous work, Sanguisorba officinalis L. was found to exert a strong anti-proliferative activity against 5-FU-senstive/resistant CRC cells. Therefore, several compounds were isolated from this herb and screened for their anti-CRC effects to find promising compounds. Among them, a triterpenoid compound named 3β-[(α-l-arabinopyranosyl) oxy]-urs-12,18(19)-dien-28-oic acid β-d-glucopyranosyl ester (AGE), showed strong activity against both 5-FU-senstive and resistant CRC cells. In order to further study the mechanism of AGE on CRC cells, flow cytometer analysis, mitochondrial membrane potential (MMP) measurement, Western blotting, and RT-PCR assays were performed. Results demonstrated that AGE induced cell death by apoptosis pathway and autophagy, and inhibited cell proliferation via cell cycle arrest in G0-G1 phase mediated by Wnt signaling pathway. Therefore, AGE may be a potential bioactive compound for CRC treatment in clinic.
Collapse
|
11
|
Wang S, Luo J, Liu XQ, Kang OH, Kwon DY. Antibacterial activity and synergy of antibiotics with sanguisorbigenin isolated from Sanguisorba officinalis L. against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2021; 72:238-244. [PMID: 33064844 PMCID: PMC7986612 DOI: 10.1111/lam.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022]
Abstract
The present study evaluated the antibacterial activity and the synergy of the sanguisorbigenin (SGB) from the dried root of Sanguisorba officinalis L. combined with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. A total of six strains of reference strain and clinical isolates were used to determine the antibacterial activity using a broth microdilution assay, and the synergistic effects were determined using a checkerboard assay. To analyse the mechanism of synergy, we conducted the level of penicillin-binding protein 2a by western blot. In addition, quantitative RT-PCR was performed to analyse the mecA gene expression. The minimal inhibitory concentration values of SGB against six strains of S. aureus were in the range of 12·5-50 μg ml-1 , and there were synergy, or partial synergy effects when SGB was combined with antibiotics. Furthermore, when treated with SGB, the level of penicillin-binding protein 2a and the expression of the mecA gene was reduced significantly. In conclusion, this study demonstrated that SGB is a potential natural antibacterial agent against methicillin-resistant S. aureus that represents a considerable burden on the healthcare system worldwide, and may an exceptionally modulator of β-lactam antibiotics.
Collapse
Affiliation(s)
- S Wang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| | - J Luo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - X-Q Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - O-H Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| | - D-Y Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| |
Collapse
|
12
|
Wang M, Kuang HX, Wang ZB, Ma Y, Liu H, Bi YJ. Simultaneous determination and pharmacokinetics of tetrandrine, fangchinoline, and cyclanoline in rat plasma by ultra-high performance liquid chromatography-mass spectrometry after oral administration of stephaniae tetrandrae radix extract. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_73_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Fan L, Wang X, Huang J, Gan C, Jiang S, Yang X, Yang C, Yao M. Comparison of the pharmacokinetic profiles of 13 phenolic acids and 6 triterpenes in normal and leukopenia rats after oral administration of Sanguisorba officinalis L. extract by LC-MS/MS. J Sep Sci 2020; 43:4103-4122. [PMID: 32909652 DOI: 10.1002/jssc.202000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
A selective, accurate, and efficient liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of 13 phenolic acids. Additionally, for more comprehensively determining the chemical constituents in Sanguisorba officinalis L. extract, a previously developed method was employed for the simultaneous determination of six triterpenes. Thus, two methods were used to ensure the comprehensiveness and reliability of this study. Based on these methods, the pharmacokinetic profiles of the 13 phenolic acids and 6 triterpenes in normal and leukopenia rats after oral administration of S. officinalis L. extract were compared for the first time in the present study. Quantitative detection of the 13 phenolic acids and 6 triterpenes was performed using the multiple reaction monitoring mode with the electrospray ion source in negative and positive electrospray ionization, respectively. Chromatographic separation was performed on an Agilent Eclipse Plus C18 RRHD column (50 × 2.1 mm, 1.8 µm) using gradient elution with a mobile phase composed of methanol-0.1% aqueous formic acid. The pharmacokinetic results demonstrated that the pharmacokinetic characteristics of the 19 analytes in leukopenia rats differed significantly from those determined in normal rats, which could provide a helpful reference for the clinical application of S. officinalis L. in the prevention and treatment of leucopenia.
Collapse
Affiliation(s)
- Linzi Fan
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Jing Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chunli Gan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xinrong Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Meicun Yao
- Department of Pharmaceutical Analysis and Quality Assessment, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
14
|
Cheng SS, Yang GJ, Wang W, Leung CH, Ma DL. The design and development of covalent protein-protein interaction inhibitors for cancer treatment. J Hematol Oncol 2020; 13:26. [PMID: 32228680 PMCID: PMC7106679 DOI: 10.1186/s13045-020-00850-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are central to a variety of biological processes, and their dysfunction is implicated in the pathogenesis of a range of human diseases, including cancer. Hence, the inhibition of PPIs has attracted significant attention in drug discovery. Covalent inhibitors have been reported to achieve high efficiency through forming covalent bonds with cysteine or other nucleophilic residues in the target protein. Evidence suggests that there is a reduced risk for the development of drug resistance against covalent drugs, which is a major challenge in areas such as oncology and infectious diseases. Recent improvements in structural biology and chemical reactivity have enabled the design and development of potent and selective covalent PPI inhibitors. In this review, we will highlight the design and development of therapeutic agents targeting PPIs for cancer therapy.
Collapse
Affiliation(s)
- Sha-Sha Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Guan-Jun Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
15
|
Zhu LJ, Chen L, Bai CF, Wu AG, Liang SC, Huang FH, Cao SS, Yang L, Zou WJ, Wu JM. A rapid and sensitive UHPLC-MS/MS method for the determination of ziyuglycoside I and its application in a preliminary pharmacokinetic study in healthy and leukopenic rats. Biomed Pharmacother 2020; 123:109756. [DOI: 10.1016/j.biopha.2019.109756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
|
16
|
Liu Q, Wang Y. Determination of rosamultin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2019; 34:e4728. [PMID: 31657468 DOI: 10.1002/bmc.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 11/08/2022]
Abstract
A specific and reliable LC-MS/MS method for the determination of rosamultin in rat plasma was validated. Plasma samples were prepared with protein precipitation method, and chromatographic separation was performed on a Thermo C18 analytical column (4.6 mm × 50 mm, 3.0 μm). The mass spectrometry (MS) analysis was conducted in positive SRM mode for the transitions of m/z 673.2 → 511.1 for rosamultin and m/z 601.1 → 330.9 for IS. The method validation was conducted over the calibration range of 1.0-500 ng/mL with the precision ≤11.03% and accuracy within ±14.64%. The assay was applied to the pharmacokinetic study after oral administration of rosamultin at a dose of 20 mg/kg in rats.
Collapse
Affiliation(s)
- Qiang Liu
- Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Yan Wang
- Jiaozhou People's Hospital, Qingdao, China
| |
Collapse
|