1
|
Hou J, Li Y, Zhang Y, Yang N, Chen B, Ma G, Zhu N. Integrated network pharmacology reveals the mechanism of action of Xianlinggubao prescription for inflammation in osteoarthritis. BMC Complement Med Ther 2025; 25:190. [PMID: 40426157 PMCID: PMC12108044 DOI: 10.1186/s12906-025-04928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), a leading cause of disability worldwide, is characterized by complex interactions between cartilage degradation and synovial inflammation. While NSAIDs are the primary treatment, their prolonged use exacerbates gastrointestinal risks and does not alter disease progression. Xianlinggubao (XLGB), an approved Chinese herbal remedy for osteoporosis, has demonstrated promising anti-osteoarthritic effects in preliminary studies. However, its multi-component mechanisms targeting OA-related inflammation require further clarification. This study integrates network pharmacology with experimental validation to investigate XLGB's anti-inflammatory mechanisms in OA. METHODS Bioactive compounds of XLGB and their respective targets were sourced from the TCMSP, ETCM, SymMap, and ChEMBL databases. Targets linked to OA-related inflammation were identified through differential expression analysis and by querying OMIM, GeneCards, and PubMed Gene databases. Network pharmacology and bioinformatics approaches were employed to construct compound-target and protein-protein interaction (PPI) networks, enabling the identification of pivotal therapeutic targets. Functional enrichment of these targets was performed using the ClusterProfiler package in R. The binding affinity of compounds to anti-inflammatory OA targets was assessed through molecular docking, dynamics simulations, RT-PCR, and immunofluorescence assays. RESULTS Fifty-five bioactive compounds corresponding to 475 XLGB targets and 125 genes involved in OA-related inflammation were identified. PPI network analysis revealed that XLGB may alleviate OA inflammation by modulating key genes, including COX-2, IL-1β, TNF, IL-6, and MMP-9. Molecular simulations indicated strong binding affinities between bioactive compounds in XLGB and these critical targets. Functional enrichment analysis suggested that XLGB's anti-inflammatory action in OA may involve regulation of pathways such as IL-17, TNF, and NF-κB. In vitro experiments further confirmed that XLGB mitigates OA inflammation by modulating these genes, proteins, and signaling pathways. CONCLUSIONS Through network pharmacology, this study elucidated the mechanisms of XLGB in OA inflammation, highlighting its modulation of IL-6, IL-1β, TNF-α, PTGS2, MMP-9, and the NF-κB pathway. These findings provide strong support for the clinical application of XLGB in managing OA-related inflammation.
Collapse
Affiliation(s)
- Jingyi Hou
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yubo Li
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, No.36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Yu Zhang
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, No.36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Ning Yang
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, No.36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Bin Chen
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, No.36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Guiyun Ma
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, No.36 Nanyingzi Street, Chengde, Hebei, 067000, China.
| | - Naiqiang Zhu
- Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Chengde Medical University, No.36 Nanyingzi Street, Chengde, Hebei, 067000, China.
- Hebei Key Laboratory of Panvascular Diseases, Chengde, Hebei, China.
| |
Collapse
|
2
|
Tan S, Wu W, Chen Y, Gao H. High glucose induces senescence in synovial mesenchymal stem cells through mitochondrial dysfunction. BMC Oral Health 2025; 25:569. [PMID: 40234847 PMCID: PMC11998213 DOI: 10.1186/s12903-025-05938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
PURPOSE To investigate the impact of high glucose on the senescence of synovial mesenchymal stem cells (SMSCs) and to elucidate the role of mitochondrial dysfunction in this process. METHODS SMSCs were treated with medium containing high glucose (25 mmol/L) or low glucose (5.5 mmol/L) concentrations. The effects of high glucose concentrations on the proliferation, senescence, mitochondrial reactive oxygen species (ROS) levels, mitochondrial fission, and mitophagy of SMSCs were investigated. First, the impact of 24-hour high glucose treatment on SMSCs was investigated. After this initial 24-hour exposure, the medium was subsequently changed to low glucose, and the cells were cultivated for an additional 24 h; this was then compared with the effects of continuous 48-hour high-glucose exposure and continuous 48-hour low-glucose exposure. RESULTS High glucose concentrations did not promote the proliferation of SMSCs but rather accelerated their senescence by upregulating the mRNA expression of senescence-associated secretory phenotype (SASP) genes and increasing the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells. Additionally, high glucose concentrations elevated ROS levels in mitochondria and facilitated mitochondrial fission; they also inhibited the mitophagy of SMSCs by suppressing the expression of mitophagy-related proteins (PINK1, PARKIN, and LC3B). High glucose-induced suppression of mRNA (Il-6, Cxcl1, Dnm1, Pink1, Prkn, Lc3b) and protein (P21) expression, along with increased SA-β-gal-positive cell numbers and elevated MitoSOX intensity, can be reversed by terminating the high glucose treatment. CONCLUSION High glucose concentrations induce senescence in SMSCs via mitochondrial dysfunction, manifested as ROS accumulation, excessive fission, and mitophagy suppression. Glucose normalization reversed senescence phenotypes, accompanied by restored mitophagy and reduced oxidative stress. Mitochondrial dysfunction may be one of the key mechanisms underlying high glucose-induced senescence in SMSCs.
Collapse
Affiliation(s)
- Shuyi Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Wangxi Wu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yifan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Hai Gao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Zhang Y, Shen Y, Kou D, Yu T. Identification and experimental verification of biomarkers related to butyrate metabolism in osteoarthritis. Sci Rep 2025; 15:11884. [PMID: 40195426 PMCID: PMC11977226 DOI: 10.1038/s41598-025-97346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Butyrate plays a crucial role in osteoarthritis (OA) development. However, the relationship between butyrate metabolism-related genes (BMRGs) and OA remains unclear. This study investigates the potential correlation between BMRGs and OA using OA-related datasets (GSE55235, GSE12021 and GSE143514). Differential expression analysis identified 38 differentially expressed butyrate metabolism-related genes (DE-BMRGs) from the overlap of 782 OA-related differentially expressed genes (DEGs) and 385 BMRGs in GSE55235. Enrichment analysis indicated that these DE-BMRGs were tightly associated with cell proliferation, differentiation, and apoptosis, which are key processes in OA pathogenesis. Six candidate biomarkers (IL1B, IGF1, CXCL8, PTGS2, SERPINE1, MMP9) were identified through two machine-learning algorithms. IL1B, CXCL8, and PTGS2 were upregulated in controls, exhibiting consistent patterns across validation datasets. Gene set enrichment analysis (GSEA) revealed that dysregulated expression of these biomarkers lead to abnormal cell proliferation and differentiation, contributing to OA progression. Furthermore, significant differences in immune cell infiltration-particularly activated and resting mast cells-along with correlations to immune regulatory factors (CD86, CXCL12, TNFSF9, IL6), highlighted potential therapeutic targets. Quantitative RT-PCR further confirmed elevated expression of IL1B, CXCL8 and PTGS2 in control group. This study identifies IL1B, CXCL8 and PTGS2 as OA-related biomarkers linked to butyrate metabolism, offering a theoretical foundation and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, QingDao, 266003, China
- Traumatic Orthopedics Institute of Shandong, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youliang Shen
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, QingDao, China
| | - Dewei Kou
- Department of Pain Management, Affiliated Hospital of Qingdao University, QingDao, China
| | - Tengbo Yu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, QingDao, 266003, China.
- Department of Orthopedics, Qingdao Municipal Hospital, QingDao, China.
| |
Collapse
|
4
|
Yamashita R, Nozawa I, Hasegawa S, Nakagawa Y, Miyatake K, Katagiri H, Nakamura T, Koga H, Sekiya I, Yoshii T, Tsuji K. C-type natriuretic peptide suppresses VEGFa gene expression by attenuating IL6-STAT3 signal pathway in primary synovial fibroblasts from rat knee. Biochem Biophys Res Commun 2025; 749:151290. [PMID: 39855042 DOI: 10.1016/j.bbrc.2025.151290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
C-type natriuretic peptide (CNP) can be a new disease-modifying anti-osteoarthritis drug (DMOAD) candidate because intraarticular injection of CNP attenuates both articular cartilage degradation and persistent pain in a rat knee arthritis model. This study aimed to elucidate the underlying molecular mechanisms by which CNP protects the knee joint from osteoarthritic changes. Gene expression analyses indicated that CNP did not interfere with the expression of IL1β -responsive genes in rat primary synovial fibroblasts or the monocytic cell line, RAW264.7 cells. In contrast, total RNA sequence analyses indicated that CNP negatively regulated the IL6-STAT3 signaling pathway and VEGFa gene expression in rat synovial fibroblasts. As previously indicated, IL6 induced phosphorylation of 705Tyr residue of STAT3 and its nuclear translocation to activate VEGFa gene expression; however, in this study, we showed that CNP induced phosphorylation of 727Ser residue and inhibited IL6-induced nuclear translocation of STAT3. Since the IL6 pathway has been shown to accelerate articular cartilage degradation and induce knee pain, our data suggest that CNP can act as a DMOAD by negatively regulating IL6-mediated proinflammatory signals in the knee joint.
Collapse
Affiliation(s)
- Riko Yamashita
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iori Nozawa
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoichi Hasegawa
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomasa Nakamura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshitaka Yoshii
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
5
|
Hao G, Han S, Xiao Z, Shen J, Zhao Y, Hao Q. Synovial mast cells and osteoarthritis: Current understandings and future perspectives. Heliyon 2024; 10:e41003. [PMID: 39720069 PMCID: PMC11665477 DOI: 10.1016/j.heliyon.2024.e41003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease worldwide that significantly impacts the quality of life of individuals, particularly those in middle-aged and elderly populations. OA was initially considered as non-inflammatory arthritis, but recent studies have identified a substantial number of immune responses in OA, leading to the recognition of inflammation as a key factor in its pathogenesis. An increasing number of studies have found that mast cell (MC) and MC-secreted inflammatory mediators and cytokines are notably increased in the synovial fluid of OA patients, indicating a potential association between MCs and the onset and progression of synovial inflammation. The present review aims to summarize the significance and mechanism of MCs in the pathogenesis of OA. Meanwhile, we also discuss the clinical potential of using MCs as therapeutic target for OA therapy. Modulating the activities of MCs or the mediators of MCs in the synovial fluid inflammatory microenvironment will be promising new options for the treatment of OA.
Collapse
Affiliation(s)
- Guanghui Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shanqian Han
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qi Hao
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Third People's Hospital of Longmatan District, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Gupta N, Arora A, Kanwar N, Khatri K, Kanwal A. Serum Sirt6 as a Potential Biomarker for Osteoarthritis and its Correlation with IL-6 Alterations. Indian J Orthop 2024; 58:1254-1260. [PMID: 39170662 PMCID: PMC11333401 DOI: 10.1007/s43465-024-01223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 08/23/2024]
Abstract
Objective The study aimed to assess Sirt6 levels in serum of knee osteoarthritis (OA) patients compared to healthy individuals to evaluate its correlation with OA and to understand how Sirt6 is linked with the change in IL-6 levels. Methods The cross-sectional study involved 50 knee OA patients clinically diagnosed as per the American College of Rheumatology guidelines and 50 healthy controls. Radiological examination as per Kellgren-Lawrence (KL) criteria was done to determine the disease severity. Peripheral blood samples were collected from each participant, and serum Sirt6 and IL-6 levels were measured using ELISA. Results The serum Sirt6 levels in knee OA patients were significantly lower as compared to healthy controls (p = 0.023). Patients with knee OA of KL grade 4 had significantly lower Sirt6 levels as compared to those with KL grade 2 OA (p = 0.031). Individuals of younger age group had higher Sirt6 levels compared to older age group. IL-6 levels in knee OA patients were significantly higher as compared to controls (p = 0.007). A negative correlation was observed between serum Sirt6 and IL-6 levels (r = - 0.407; p = 0.035). Conclusion The study concludes that serum Sirt6 levels are inversely associated with knee OA and may serve as a potential biomarker for the disease. Moreover, a negative correlation between Sirt6 and IL-6 levels was observed in this study. Further investigations are necessary to confirm these findings and to explore the mechanisms by which Sirt6 and IL-6 are involved in OA.
Collapse
Affiliation(s)
- Nikhil Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab 151001 India
| | - Anchal Arora
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab 151001 India
| | - Navjot Kanwar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab 151001 India
| | - Kavin Khatri
- Department of Orthopedics, All India Institute of Medical Sciences, Bathinda, Punjab 151001 India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab 151001 India
| |
Collapse
|
7
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Zhou R, Zhao L, Wang Q, Cheng Y, Song M, Huang C. Plasma microRNA-320c as a Potential Biomarker for the Severity of Knee Osteoarthritis and Regulates cAMP Responsive Element Binding Protein 5 (CREB5) in Chondrocytes. DISEASE MARKERS 2024; 2024:9936295. [PMID: 38549717 PMCID: PMC10973101 DOI: 10.1155/2024/9936295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Objective Osteoarthritis (OA) is a commonly known prevalent joint disease, with limited therapeutic methods. This study aimed to investigate the expression of plasma microRNA-320c (miR-320c) in patients with knee OA and to explore the clinical value and potential mechanism of miR-320c in knee OA. Methods Forty knee OA patients and 20 healthy controls were enrolled. The levels of plasma miR-320c and plasma inflammatory cytokines were measured by real-time PCR or ELISA. Correlations of Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and cytokine levels with the miR-320c expression level were evaluated by Pearson correlation analysis. Then, a receiver operating characteristic (ROC) curve was drawn to analyse the diagnostic value of miR-320c in OA. Finally, the interaction of miR-320c and cAMP responsive element binding protein 5 (CREB5) was determined using a luciferase reporter assay, and the effect of CREB5 on the cAMP pathway was assessed. Results The expression level of plasma miR-320c was significantly higher in OA patients than in healthy controls (p < 0.05). The increased plasma miR-320c level was positively correlated with the WOMAC score (r = 0.796, p < 0.001) and the plasma interleukin (IL)-1β (r = 0.814, p < 0.001) and IL-6 (r = 0.695, p < 0.001) levels in patients with OA. ROC curve analysis demonstrated the relatively high diagnostic accuracy of plasma miR-320c for OA. Furthermore, the luciferase reporter assay results showed that miR-320c regulates CREB5 expression by binding to the CREB5 3'-untranslated region. Moreover, suppression of CREB5 significantly reduced the expression levels of c-fos and c-jun. Conclusion Our results indicate that plasma miR-320c may serve as a potential novel predictor of the severity of knee OA and that miR-320c may play an important role in the pathogenesis of OA through inhibiting the cAMP pathway by targeting CREB5.
Collapse
Affiliation(s)
- Rongwei Zhou
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Like Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yongjing Cheng
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Song
- Department of Emergency Medicine, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Cibo Huang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
9
|
Gomes JM, Marques CF, Rodrigues LC, Silva TH, Silva SS, Reis RL. 3D bioactive ionic liquid-based architectures: An anti-inflammatory approach for early-stage osteoarthritis. Acta Biomater 2024; 173:298-313. [PMID: 37979636 DOI: 10.1016/j.actbio.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
3D bioprinting enables the fabrication of biomimetic cell-laden constructs for cartilage regeneration, offering exclusive strategies for precise pharmacological screenings in osteoarthritis (OA). Synovial inflammation plays a crucial role in OA's early stage and progression, characterized by the increased of the synovial pro-inflammatory mediators and cytokines and chondrocyte apoptosis. Therefore, there is an urgent need to develop solutions for effectively managing the primary events associated with OA. To address these issues, a phenolic-based biocompatible ionic liquid approach, combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), was used to produce easily printable bioinks. Through the use of this strategy 3D constructs with good printing resolution and high structural integrity were obtained. The encapsulation of chondrocytes like ATDC5 cells provided structures with good cell distribution, viability, and growth, for up to 14 days. The co-culture of the constructs with THP-1 macrophages proved their ability to block pro-inflammatory cytokines (TNF-α and IL-6) and mediators (GM-CSF), released by the cultured cells. Moreover, incorporating the biocompatible ionic liquid into the system significantly improved its bioactive performance without compromising its physicochemical features. These findings demonstrate that ALG/ACE/Ch[Caffeate] bioinks have great potential for bioengineering cartilage tissue analogs. Besides, the developed ALG/ACE/Ch[Caffeate] bioinks protected encapsulated chondrocyte-like cells from the effect of the inflammation, assessed by a co-culture system with THP-1 macrophages. These results support the increasing use of Bio-ILs in the biomedical field, particularly for developing 3D bioprinting-based constructs to manage inflammatory-based changes in OA. STATEMENT OF SIGNIFICANCE: Combining natural resources with active biocompatible ionic liquids (Bio-IL) for 3D printing is herein presented as an approach for the development of tools to manage inflammatory osteoarthritis (OA). We propose combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), a phenolic-based Bio-IL with anti-inflammatory and antioxidant features, to produce bioinks that allow to obtain 3D constructs with good printing resolution, structural integrity, and that provide encapsulated chondrocyte-like cells good viability. The establishment of a co-culture system using the printed constructs and THP-1-activated macrophages allowed us to study the encapsulated chondrocyte-like cells behaviour within an inflammatory scenario, a typical event in early-stage OA. The obtained outcomes support the beneficial use of Bio-ILs in the biomedical field, particularly for the development of 3D bioprinting-based models that allow the monitoring of inflammatory-based events in OA.
Collapse
Affiliation(s)
- Joana M Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina F Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
10
|
Gomes JM, Silva SS, Rodrigues LLC, Reis RL. Alginate/acemannan-based beads loaded with a biocompatible ionic liquid as a bioactive delivery system. Int J Biol Macromol 2023:125026. [PMID: 37244345 DOI: 10.1016/j.ijbiomac.2023.125026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Combining biomacromolecules with green chemistry principles and clean technologies has proven to be an effective approach for drug delivery, providing a prolonged and sustained release of the encapsulated material. The current study investigates the potential of cholinium caffeate (Ch[Caffeate]), a phenolic-based biocompatible ionic liquid (Bio-IL) entrapped in alginate/acemannan beads, as a drug delivery system able to reduce local joint inflammation on osteoarthritis (OA) treatment. The synthesized Bio-IL has antioxidant and anti-inflammatory actions that, combined with biopolymers as 3D architectures, promote the entrapment and sustainable release of the bioactive molecules over time. The physicochemical and morphological characterization of the beads (ALC, ALAC0,5, ALAC1, and ALAC3, containing 0, 0.5, 1, and 3 %(w/v) of Ch[Caffeate], respectively) revealed a porous and interconnected structure, with medium pore sizes ranging from 209.16 to 221.30 μm, with a high swelling ability (up 2400 %). Ch[Caffeate] significantly improved the antioxidant activities of the constructs by 95 % and 97 % for ALAC1 and ALAC3, respectively, when compared to ALA (56 %). Besides, the structures provided the environment for ATDC5 cell proliferation, and cartilage-like ECM formation, supported by the increased GAGs in ALAC1 and ALAC3 formulations after 21 days. Further, the ability to block the secretion of pro-inflammatory cytokines (TNF-α and IL-6), from differentiated THP-1 was evidenced by ChAL-Ch[Caffeate] beads. These outcomes suggest that the established strategy based on using natural and bioactive macromolecules to develop 3D constructs has great potential to be used as therapeutic tools for patients with OA.
Collapse
Affiliation(s)
- Joana M Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Simone S Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Luísa L C Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
11
|
Lu R, Wang YG, Qu Y, Wang SX, Peng C, You H, Zhu W, Chen A. Dihydrocaffeic acid improves IL-1β-induced inflammation and cartilage degradation via inhibiting NF-κB and MAPK signalling pathways. Bone Joint Res 2023; 12:259-273. [PMID: 37492935 PMCID: PMC10076109 DOI: 10.1302/2046-3758.124.bjr-2022-0384.r1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Aims Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism. Methods In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage. Results DHCA prevented iNOS and IL-6 from being upregulated by IL-1β. Moreover, the IL-1β-induced upregulation of MMPs could be inhibited by DHCA. Additionally, the administration of DHCA counteracted IL-1β-induced downregulation of aggrecan, collagen II, and SOX9. DHCA protected articular cartilage by blocking the NF-κB and MAPK pathways. Furthermore, DHCA mitigated the destruction of articular cartilage in vivo. Conclusion We present evidence that DHCA alleviates inflammation and cartilage degradation in OA chondrocytes via suppressing the NF-κB and MAPK pathways, indicating that DHCA may be a potential agent for OA treatment.
Collapse
Affiliation(s)
- Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Guang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Xi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Osteopontin: A Bone-Derived Protein Involved in Rheumatoid Arthritis and Osteoarthritis Immunopathology. Biomolecules 2023; 13:biom13030502. [PMID: 36979437 PMCID: PMC10046882 DOI: 10.3390/biom13030502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Osteopontin (OPN) is a bone-derived phosphoglycoprotein related to physiological and pathological mechanisms that nowadays has gained relevance due to its role in the immune system response to chronic degenerative diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). OPN is an extracellular matrix (ECM) glycoprotein that plays a critical role in bone remodeling. Therefore, it is an effector molecule that promotes joint and cartilage destruction observed in clinical studies, in vitro assays, and animal models of RA and OA. Since OPN undergoes multiple modifications, including posttranslational changes, proteolytic cleavage, and binding to a wide range of receptors, the mechanisms by which it produces its effects, in some cases, remain unclear. Although there is strong evidence that OPN contributes significantly to the immunopathology of RA and OA when considering it as a common denominator molecule, some experimental trial results argue for its protective role in rheumatic diseases. Elucidating in detail OPN involvement in bone and cartilage degeneration is of interest to the field of rheumatology. This review aims to provide evidence of the OPN’s multifaceted role in promoting joint and cartilage destruction and propose it as a common denominator of AR and OA immunopathology.
Collapse
|
13
|
Huang Z, Song S, Zhang D, Bian Z, Han J. Protective effects of Tripterygium glycoside on IL-1β-induced inflammation and apoptosis of rat chondrocytes via microRNA-216a-5p/TLR4/NF-κB axis. Immunopharmacol Immunotoxicol 2023; 45:61-72. [PMID: 36052873 DOI: 10.1080/08923973.2022.2115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND This study is designed to fill the research gap concerning the efficacy of Tripterygium glycoside (TG) on Interleukin-1β (IL-1β)-induced inflammation and injury in chondrocytes. METHODS Chondrocytes were isolated from Sprague-Dawley rats. After the treatment with IL-1β and TG and transfection, the viability and apoptosis of chondrocytes were determined via Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-8 were determined by enzyme-linked immunosorbent assay (ELISA). Relative expression levels of potential microRNAs (miRNAs, miRs) that may target toll-like receptor 4 (TLR4), as well as apoptosis- and TLR4/nuclear factor-κB (TLR4/NF-κB) pathway-associated factors were quantified using quantitative real-time (qRT) PCR and western blot. The targeting relationship between miR-216a-5p and TLR4 was predicted by TargetScan and further confirmed by dual-luciferase reporter assay. RESULTS The viability was reduced yet the apoptosis and inflammation were promoted in IL-1β-treated chondrocytes, where upregulation of Bax, Cleaved caspase 3, TLR4, Myeloid differentiation factor 88 (MyD88), phosphorylation of P65 and IκBα yet downregulation of Bcl-2 and IκBα were evidenced. Strikingly, the above changes were reversed by TG. TG also offset the effects of IL-1β on repressing the expression of miR-216a-5p, the miRNA targeting TLR4. Additionally, TLR4 overexpression neutralized the impacts of TG upon viability, apoptosis, and TLR4 expression in IL-1β-treated chondrocytes, while all these effects induced by TLR4 overexpression could be restored by miR-216a-5p. CONCLUSIONS TG protects chondrocytes against IL-1β-induced inflammation and apoptosis via miR-216a-5p/TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Zhen Huang
- Acupuncture and Massage Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Shuanglin Song
- Acupuncture and Massage Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Di Zhang
- Acupuncture and Massage Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Zhenyu Bian
- Orthopedics Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Jinsheng Han
- Massage Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
14
|
Gugjoo MB, Dar ER, Farooq F, Ahmad SM, Sofi AH, Shah SA, Bhat MH, Khan TA, Shah RA, Parrah JUD. Cryopreserved allogeneic bone marrow mesenchymal stem cells show better osteochondral defect repair potential than adipose tissue mesenchymal stem cells. Curr Res Transl Med 2023; 71:103364. [PMID: 36436354 DOI: 10.1016/j.retram.2022.103364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) due to their characteristic properties have a potential to treat osteoarthritis, one of the major growing joint problems. MSCs show differential ex vivo chondrogenic potential on the basis of source that remains to be validated under in vivo environment. This study compared chondrogenic potential of MSCs derived from two common sources, adipose tissue (AD) and bone marrow (BM) under ex vivo and in vivo environments. The randomized placebo controlled osteochondral defect (OCD) study divided n = 72 rabbits equally into Control, AD-MSCs and BM-MSCs groups. Ex vivo chondrogenic induction resulted in an increased aggrecan fold expression in BM-MSCs and AD-MSCs. The former cell type had significantly (p<0.05) higher fold expression as compared to the latter. The cell treated OCDs had significantly reduced gene expression for inflammatory markers (IL-6, IL-8 and TNF-α) as compared to the control. In OCD study, radiography, MRI, gross observation, histopathology and SEM revealed that the cell treated defects were early filled by the tissue that had better surface architecture and matrices as compared to the control. BM-MSCs treated defects had better scores especially for gross and histopathology than the AD-MSCs. Gene expression for osteochondral regulation and cartilaginous matrices was higher in BM-MSCs group while only for matrices including the Col I in AD-MSCs as compared to the control. It was concluded that OCD in the cell treated groups are filled early with mostly a fibrocartilaginous to hyaline tissue. BM-MSCs may have an edge over AD-MSCs in OCD repair.
Collapse
Affiliation(s)
| | - Ejaz Rasool Dar
- Division of Surgery and Radiology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Fajar Farooq
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Asif Hassan Sofi
- Division of Livestock Products and Technology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Showkat Ahmad Shah
- Division of Veterinary Pathology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | | | | | - Riaz Ahmad Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| | - Jalal-Ud-Din Parrah
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST-K, Shuhama, Alusteng
| |
Collapse
|
15
|
Sun Z, Gu X, Hao T, Liu J, Gao R, Li Y, Yu B, Xu H. Intra-articular injection PLGA blends sustained-release microspheres loaded with meloxicam: preparation, optimization, evaluation in vitro and in vivo. Drug Deliv 2022; 29:3317-3327. [DOI: 10.1080/10717544.2022.2144545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Xuejing Gu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Teng Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Jiali Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Rongrong Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Bin Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
16
|
Wang Z, Efferth T, Hua X, Zhang XA. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154347. [PMID: 35914361 DOI: 10.1016/j.phymed.2022.154347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA. PURPOSE This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA. METHODS Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint." RESULTS According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1β, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/β-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis. CONCLUSION The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xin Hua
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Xin-An Zhang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China.
| |
Collapse
|
17
|
Moore L, Pan Z, Brotto M. RNAseq of Osteoarthritic Synovial Tissues: Systematic Literary Review. FRONTIERS IN AGING 2022; 3:836791. [PMID: 35821799 PMCID: PMC9261452 DOI: 10.3389/fragi.2022.836791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022]
Abstract
Osteoarthritis (OA) is one of the most common causes of disability in aged people, and it is defined as a degenerative arthropathy, characterized by the disruption in joint tissue. The synovium plays a vital role in maintaining the health of the joint by supplying the nutrients to the surrounding tissues and the lubrication for joint movement. While it is well known that all the joint tissues are communicating and working together to provide a functioning joint, most studies on OA have been focused on bone and cartilage but much less about synovium have been reported. The purpose of this review was to investigate the current literature focused on RNA sequencing (RNAseq) of osteoarthritic synovial tissues to further understand the dynamic transcriptome changes occurring in this pivotal joint tissue. A total of 3 electronic databases (PubMed, CINHAL Complete, and Academic Complete) were systematically searched following PRISMA guidelines. The following criteria was used for inclusion: English language, free full text, between the period 2011–2022, size of sample (n > 10), study design being either retrospective or prospective, and RNAseq data of synovial tissue from OA subjects. From the initial search, 174 articles, 5 met all of our criteria and were selected for this review. The RNAseq analysis revealed several differentially expressed genes (DEGs) in synovial tissue. These genes are related to the inflammatory pathway and regulation of the extracellular matrix. The MMP family, particularly MMP13 was identified by three of the studies, indicating its important role in OA. IL6, a key contributor in the inflammation pathway, was also identified in 3 studies. There was a total of 8 DEGs, MMP13, MMP1, MMP2, APOD, IL6, TNFAIP6, FCER1G, and IGF1 that overlapped in 4 out of the 5 studies. One study focused on microbial RNA in the synovial tissue found that the microbes were differentially expressed in OA subjects too. These differentially expressed microbes have also been linked to the inflammatory pathway. Further investigation with more clinical gene profiling in synovial tissue of OA subjects is required to reveal the causation and progression, as well as aid in the development of new treatments.
Collapse
|
18
|
Mihailova A. Interleukin 6 Concentration in Synovial Fluid of Patients with Inflammatory and Degenerative Arthritis. Curr Rheumatol Rev 2022; 18:230-233. [PMID: 35088674 DOI: 10.2174/1874471015666220128113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
AIM The present study aims to compare interleukin 6 (IL-6) concentration in synovial fluid in patients with known types of arthritis. BACKGROUND Persistent synovitis without known markers such as Rheumatoid Factor (RF), Anti-Citrullinated Protein Antibodies (ACPA), and genetic markers as HLA-B27 is not uncommon. It is valuable to determine the presence of chronic inflammation and put it in correlation with age-related changes, which are especially relevant for middle-aged patients with mono- or oligoarthritis, when the dilemma to start disease-modifying drugs for inflammatory disease often is present. INTERLEUKIN 6 (IL-6) plays a significant role in chronic inflammation. OBJECTIVES IL-6 concentration in synovial fluid reflects the presence and activity of joint inflammation. METHODS Synovial fluid was obtained from 101 patients with chronic synovitis. IL-6 concentration was determined by the immunochemical luminescence method. RESULTS The median IL-6 concentration in synovial fluid in patients with osteoarthritis (OA) was 138.0 pg/ml (interquartile range [IQR] 43.4 to 296.0); in patients with rheumatoid arthritis was 2516.5 pg/ml, (IQR 1136.0 to 25058.0); in reactive arthritis 2281.0 pg/ml (IQR 1392.0 to 8652.0); psoriatic arthritis 1964.0 pg/ml (IQR 754.0 to 7300.0); ankylosing spondylitis 2776.0 pg/ml (IQR 514.7, 3944.0); in a group with negative RF, ACPA and HLA-B27 inflammatory arthritis 2163.0 pg/ml (IQR 822.0 to 7875.0). There is statistically significant difference of IL-6 concentration comparing OA and each inflammatory arthritis group, p<0.0001. CONCLUSION IL-6 detection in the synovial fluid is helpful in arthritis evaluation. The results show that an IL-6 level over 1000 pg/ml suggests the diagnosis of inflammatory arthritis.
Collapse
Affiliation(s)
- Anna Mihailova
- Riga Stradins University, Faculty of Medicine, Riga, Latvia Orto clinic, Riga, Latvia
| |
Collapse
|
19
|
Wang R, Li R, Liu R. An intron SNP rs2069837 in IL-6 is associated with osteonecrosis of the femoral head development. BMC Med Genomics 2022; 15:5. [PMID: 34986839 PMCID: PMC8734317 DOI: 10.1186/s12920-021-01142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genetic polymorphisms play a crucial role in the development of osteonecrosis of the femoral head (ONFH). This study mainly explored the association of IL-6 variants and ONFH susceptibility among the Chinese Han population. Methods Two variants (rs2069837, and rs13306435) in the IL-6 gene were identified and genotyped from 566 patients with ONFH and 566 healthy controls. The associations between IL-6 polymorphisms and ONFH susceptibility were assessed using odds ratio (OR) and 95% confidence interval (95% CI) via logistic regression. The potential function of these two variants was predicted by the HaploReg online database. Results The results of the overall analysis revealed that IL-6 rs2069837 was correlated with decreased risk of ONFH among the Chinese Han population (p < 0.05). In stratified analysis, rs2069837 also reduced the susceptibility to ONFH in older people (> 51 years), males, nonsmokers, and nondrinkers (p < 0.05). However, no associations between rs13306435 and ONFH susceptibility were observed (p > 0.05). Conclusions To sum up, we suggested that rs2069837 G>A polymorphism in the IL-6 gene was significantly associated with a decreased risk of ONFH among the Chinese Hans. These findings underscored the crucial role of IL-6 rs2069837 in the occurrence of ONFH. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01142-3.
Collapse
Affiliation(s)
- Ruisong Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.,Department of orthopedics, Xi'an Fifth Hospital, Xi'an, 710082, China
| | - Rui Li
- Department of rheumatology, Xi'an Fifth Hospital, Xi'an, 710082, China
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
20
|
Identification of the Resveratrol Potential Targets in the Treatment of Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9911286. [PMID: 34917160 PMCID: PMC8670923 DOI: 10.1155/2021/9911286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/13/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022]
Abstract
Objectives Osteoarthritis (OA) is a chronic joint degenerative disease and has become an important health problem for the elderly. However, there is still a lack of effective drugs for the treatment of OA. Our research combines bioinformatics and experimental strategies to determine the target of resveratrol for OA treatment. Methods First, the differentially expressed genes (DEGs) of OA joint tissues were obtained from the related microarray gene expression data. Second, resveratrol, a natural polyphenol compound, was used to screen the drug treatment target genes. Third, the drug-disease network was established, and the resveratrol target genes for OA treatment were obtained and verified through experimental verification. Results A total of 300 differentially expressed genes with 246 upregulated and 54 downregulated were found in OA joint tissues, and 310 resveratrol potential target genes were obtained. Finally, six genes, namely, CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2, were selected to validate the treatment effects of the resveratrol. The results showed that all six genes in human OA chondrocytes were significantly increased. In addition, in these chondrocytes, CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2 were reduced considerably, but HIF1A was significantly increased after resveratrol treatment. Conclusions Our data indicates that CXCL1, HIF1A, IL-6, MMP3, NOX4, and PTGS2 are all targets of resveratrol therapy. Our findings may provide valuable information for the mechanism and therapeutic of OA.
Collapse
|
21
|
Zhuang SZ, Chen PJ, Han J, Xiao WH. Beneficial Effects and Potential Mechanisms of Tai Chi on Lower Limb Osteoarthritis: A Biopsychosocial Perspective. Chin J Integr Med 2021; 29:368-376. [PMID: 34921649 DOI: 10.1007/s11655-021-3529-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 01/15/2023]
Abstract
Lower limb osteoarthritis (OA) is a chronic, multifactorial disease characterized by impaired physical function, chronic pain, compromised psychological health and decreased social functioning. Chronic inflammation plays a critical role in the pathophysiology of OA. Tai Chi is a type of classical mind-body exercise derived from ancient Chinese martial arts. Evidence supports that Tai Chi has significant benefits for relieving lower limb OA symptoms. Using a biopsychosocial framework, this review aims to elucidate the beneficial effects of Tai Chi in lower limb OA and disentangle its potential mechanisms from the perspective of biology, psychology, and social factors. Complex biomechanical, biochemical, neurological, psychological, and social mechanisms, including strengthening of muscles, proprioception improvement, joint mechanical stress reduction, change of brain activation and sensitization, attenuation of inflammation, emotion modulation and social support, are discussed.
Collapse
Affiliation(s)
- Shu-Zhao Zhuang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Pei-Jie Chen
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Jia Han
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Wei-Hua Xiao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
22
|
Zhi L, Zhao J, Zhao H, Qing Z, Liu H, Ma J. Downregulation of LncRNA OIP5-AS1 Induced by IL-1β Aggravates Osteoarthritis via Regulating miR-29b-3p/PGRN. Cartilage 2021; 13:1345S-1355S. [PMID: 32037864 PMCID: PMC8804817 DOI: 10.1177/1947603519900801] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) is an oncogenic lncRNA; however, its role in osteoarthritis (OA) pathology still remains unknown. MATERIALS AND METHODS qRT-PCR was performed to measure the expressions of OIP5-AS1, miR-29b-3p and progranulin (PGRN) mRNA in OA cartilage tissues and normal cartilage tissues. Chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to induce the inflammatory response. Overexpression plasmids, microRNA mimics, microRNA inhibitors and small interfering RNAs were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 assay was used for determining the cell viability and Transwell assay was used for monitoring cell migration. Western blot was applied to measure the expressions of apoptosis-related proteins. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. StarBase and TargetScan were used to predict the binding sites between OIP5-AS1 and miR-29b-3p, miR-29b-3p and 3'-UTR of PGRN respectively, which were verified by dual luciferase reporter assay. RESULTS OIP5-AS1 and PGRN mRNA were downregulated while miR-29b-3p was upregulated in OA tissues and models. The up-regulated OIP5-AS1 facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while ameliorated the apoptosis and inflammatory response. However, miR-29b-3p had opposite effects. PGRN was identified as a target gene of miR-29b-3p, which could be indirectly suppressed by OIP5-AS1 knockdown. CONCLUSION Downregulation of OIP5-AS1 induced by IL-1β could inhibit the proliferation and migration abilities of CHON-001 and ATDC5 cells and facilitate the apoptosis and inflammation response via regulating miR-29b-3p/PGRN axis.
Collapse
Affiliation(s)
- Liqiang Zhi
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianwu Zhao
- Department of Microsurgery, Yulin First
Hospital, Second Affiliated Hospital of Yan-an University, Yulin, Shaanxi,
China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery,
Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhong Qing
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongliang Liu
- Department of Trauma Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Jianbing Ma, Department of Joint Surgery,
Honghui Hospital, Xi’an Jiaotong University, Youyi East Road No. 555, Xi’an,
Shaanxi 710054, China.
| |
Collapse
|
23
|
Prediction of Rhizoma Drynariae Targets in the Treatment of Osteoarthritis Based on Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5233462. [PMID: 34840589 PMCID: PMC8616695 DOI: 10.1155/2021/5233462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
Rhizoma Drynariae has been widely used for the treatment of osteoarthritis (OA), but its potential targets and molecular mechanisms remain to be further explored. Targets of Rhizoma Drynariae and OA were predicted by relevant databases, and a protein-protein interaction (PPI) network was constructed to identify key targets. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to obtain related pathways and then select significant pathways associated with OA. The OA chondrocyte model was established by inflammatory factor-induced SW1353 chondrocytes, and molecular docking was conducted to verify the above theoretical prediction. The results showed that a total of 86 Rhizoma Drynariae-OA interaction targets were identified, among which IL-6 and AKT1 were the key targets in the PPI network. Luteolin was the most critical component of Rhizoma Drynariae. KEGG results indicated that the effects of Rhizoma Drynariae on OA are associated with the PI3K/AKT, TNF, IL-17, apoptosis, and HIF-1 signaling pathway. The PI3K/AKT pathway can activate the downstream NF-κB pathway and further regulate the transcription and expression of downstream IL-6, IL-17, HIF-1α, Bax, and TNF, suggesting that the PI3K/AKT/NF-κB pathway is the critical pathway in the treatment of OA with Rhizoma Drynariae. Active components of Rhizoma Drynariae and key proteins of the PI3K/AKT/NF-κB signaling pathway were subjected to molecular docking, whose results showed that luteolin and IKK-α played a critical role. In vitro experiments indicated that both aqueous extracts of Rhizoma Drynariae (AERD) and luteolin inhibited the expression of IL-6 and HIF-1α and suppressed the activation of PI3K/AKT/NF-κB, IL-17, and TNF pathways. The measurement of mitochondrial membrane potential (Δψm) indicated that AERD and luteolin can decrease the LPS-induced early apoptotic cells. Luteolin had a more prominent inhibitory effect than AERD in the abovementioned in vitro experiments. In conclusion, the therapeutic mechanism of Rhizoma Drynariae against OA may be closely related to the inhibition of the PI3K/AKT/NF-κB pathway and downstream pathways, and luteolin plays a vital role in the treatment.
Collapse
|
24
|
Abusharkh HA, Reynolds OM, Mendenhall J, Gozen BA, Tingstad E, Idone V, Abu-Lail NI, Van Wie BJ. Combining stretching and gallic acid to decrease inflammation indices and promote extracellular matrix production in osteoarthritic human articular chondrocytes. Exp Cell Res 2021; 408:112841. [PMID: 34563516 DOI: 10.1016/j.yexcr.2021.112841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Osteoarthritis (OA) patients undergo cartilage degradation and experience painful joint swelling. OA symptoms are caused by inflammatory molecules and the upregulation of catabolic genes leading to the breakdown of cartilage extracellular matrix (ECM). Here, we investigate the effects of gallic acid (GA) and mechanical stretching on the expression of anabolic and catabolic genes and restoring ECM production by osteoarthritic human articular chondrocytes (hAChs) cultured in monolayers. hAChs were seeded onto conventional plates or silicone chambers with or without 100 μM GA. A 5% cyclic tensile strain (CTS) was applied to the silicone chambers and the deposition of collagen and glycosaminoglycan, and gene expressions of collagen types II (COL2A1), XI (COL11A2), I (COL1A1), and X (COL10A1), and matrix metalloproteinases (MMP-1 and MMP-13) as inflammation markers, were quantified. CTS and GA acted synergistically to promote the deposition of collagen and glycosaminoglycan in the ECM by 14- and 7-fold, respectively. Furthermore, the synergistic stimuli selectively upregulated the expression of cartilage-specific proteins, COL11A2 by 7-fold, and COL2A1 by 47-fold, and, in contrast, downregulated the expression of MMP-1 by 2.5-fold and MMP-13 by 125-fold. GA supplementation with CTS is a promising approach for restoring osteoarthritic hAChs ECM production ability making them suitable for complex tissue engineering applications.
Collapse
Affiliation(s)
- Haneen A Abusharkh
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| | - Olivia M Reynolds
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| | - Juana Mendenhall
- Department of Chemistry, Morehouse College, Atlanta, GA, 30314, USA.
| | - Bulent A Gozen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA.
| | - Edwin Tingstad
- Inland Orthopedic Surgery and Sports Medicine Clinic, Pullman, WA, 99163, USA.
| | - Vincent Idone
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA.
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249-3209, USA.
| | - Bernard J Van Wie
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
25
|
Anti-Osteoporotic Effects of n-trans-Hibiscusamide and Its Derivative Alleviate Ovariectomy-Induced Bone Loss in Mice by Regulating RANKL-Induced Signaling. Molecules 2021; 26:molecules26226820. [PMID: 34833909 PMCID: PMC8623072 DOI: 10.3390/molecules26226820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is characterized by the deterioration of bone structures and decreased bone mass, leading to an increased risk of fracture. Estrogen deficiency in postmenopausal women and aging are major factors of osteoporosis and are some of the reasons for reduced quality of life. In this study, we investigated the effects of n-trans-hibiscusamide (NHA) and its derivative 4-O-(E)-feruloyl-N-(E)-hibiscusamide (HAD) on receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL)-induced osteoclast differentiation and an ovariectomized osteoporosis mouse model. NHA and HAD significantly inhibited the differentiation of osteoclasts from bone marrow-derived macrophages (BMMs) and the expression of osteoclast differentiation-related genes. At the molecular level, NHA and HAD significantly downregulated the phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules. However, Akt and NF-κB phosphorylation was inhibited only after NHA or HAD treatment. In the ovariectomy (OVX)-induced osteoporosis model, both NHA and HAD effectively improved trabecular bone structure. C-terminal telopeptide (CTX), a bone resorption marker, and RANKL, an osteoclast stimulation factor, were significantly reduced by NHA and HAD. The tartrate-resistant acid phosphatase (TRAP)-stained area, which indicates the osteoclast area, was also decreased by these compounds. These results show the potential of NHA and HAD as therapeutic agents for osteoporosis.
Collapse
|
26
|
Ryyti R, Pemmari A, Peltola R, Hämäläinen M, Moilanen E. Effects of Lingonberry ( Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021; 13:3693. [PMID: 34835949 PMCID: PMC8623941 DOI: 10.3390/nu13113693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Rainer Peltola
- Natural Resources Institute Finland, Bioeconomy and Environment, 96200 Rovaniemi, Finland;
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| |
Collapse
|
27
|
Mu Y, Zhang Y, Wu J, Li Q. NLRC5 attenuates inflammatory response in IL-1β-stimulated human osteoarthritis chondrocytes through the NF-κB signaling pathway. Aging (Albany NY) 2021; 13:20651-20660. [PMID: 34438368 PMCID: PMC8436921 DOI: 10.18632/aging.203453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/14/2021] [Indexed: 05/12/2023]
Abstract
NOD-like receptor family caspase recruitment domain family domain containing 5 (NLRC5) has been found to be a critical mediator of inflammatory response. However, the role of NLRC5 in osteoarthritis (OA) has not been reported. Our results showed that NLRC5 was down-regulated by IL-1β induction in chondrocytes. Overexpression of NLRC5 in chondrocytes significantly suppressed IL-1β-induced inflammatory response through inhibiting the production of multiple inflammatory mediators including inducible nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), NO, TNF-α and IL-6, as well matrix metalloproteinase 3 (MMP-3) and MMP-13. Consistently, NLRC5 knockdown exhibited opposite effects on the production of these inflammatory mediators in IL-1β-induced chondrocytes. Furthermore, overexpression of NLRC5 increased the IĸBα expression, while decreased the p-p65 expression, indicating that NLRC5 inhibited the activation of NF-κB signaling. Additionally, inhibition of NF-κB by PDTC mitigated the si-NLRC5-mediated promotion of IL-1β-induced inflammatory injury in chondrocytes. Finally, NLRC5 treatment ameliorated cartilage degeneration in an OA model in rats. Taken together, these findings revealed that NLRC5 attenuated IL-1β-induced inflammatory injury in chondrocytes through regulating the NF-κB signaling.
Collapse
Affiliation(s)
- Yiping Mu
- Hand Surgery Department, Central Hospital Affiliated to Shen Yang Medical Collage, Shenyang 110024, Liaoning Province, China
| | - Yang Zhang
- Hand Surgery Department, Central Hospital Affiliated to Shen Yang Medical Collage, Shenyang 110024, Liaoning Province, China
| | - Jie Wu
- Hand Surgery Department, Central Hospital Affiliated to Shen Yang Medical Collage, Shenyang 110024, Liaoning Province, China
| | - Qi Li
- Hand Surgery Department, Central Hospital Affiliated to Shen Yang Medical Collage, Shenyang 110024, Liaoning Province, China
| |
Collapse
|
28
|
Thielen N, Neefjes M, Wiegertjes R, van den Akker G, Vitters E, van Beuningen H, Blaney Davidson E, Koenders M, van Lent P, van de Loo F, van Caam A, van der Kraan P. Osteoarthritis-Related Inflammation Blocks TGF-β's Protective Effect on Chondrocyte Hypertrophy via (de)Phosphorylation of the SMAD2/3 Linker Region. Int J Mol Sci 2021; 22:ijms22158124. [PMID: 34360888 PMCID: PMC8347103 DOI: 10.3390/ijms22158124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-β signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1β and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-β signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1β was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.
Collapse
Affiliation(s)
- Nathalie Thielen
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Margot Neefjes
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Renske Wiegertjes
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Guus van den Akker
- Department of Orthopedic Surgery, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Elly Vitters
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Henk van Beuningen
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Esmeralda Blaney Davidson
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Marije Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Peter van Lent
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Fons van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Arjan van Caam
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Peter van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
- Correspondence:
| |
Collapse
|
29
|
Pinosylvin Shifts Macrophage Polarization to Support Resolution of Inflammation. Molecules 2021; 26:molecules26092772. [PMID: 34066748 PMCID: PMC8125806 DOI: 10.3390/molecules26092772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Pinosylvin is a natural stilbenoid found particularly in Scots pine. Stilbenoids are a group of phenolic compounds identified as protective agents against pathogens for many plants. Stilbenoids also possess health-promoting properties in humans; for instance, they are anti-inflammatory through their suppressing action on proinflammatory M1-type macrophage activation. Macrophages respond to environmental changes by polarizing towards proinflammatory M1 phenotype in infection and inflammatory diseases, or towards anti-inflammatory M2 phenotype, mediating resolution of inflammation and repair. In the present study, we investigated the effects of pinosylvin on M2-type macrophage activation, aiming to test the hypothesis that pinosylvin could polarize macrophages from M1 to M2 phenotype to support resolution of inflammation. We used lipopolysaccharide (LPS) to induce M1 phenotype and interleukin-4 (IL-4) to induce M2 phenotype in J774 murine and U937 human macrophages, and we measured expression of M1 and M2-markers. Interestingly, along with inhibiting the expression of M1-type markers, pinosylvin had an enhancing effect on the M2-type activation, shown as an increased expression of arginase-1 (Arg-1) and mannose receptor C type 1 (MRC1) in murine macrophages, and C-C motif chemokine ligands 17 and 26 (CCL17 and CCL26) in human macrophages. In IL-4-treated macrophages, pinosylvin enhanced PPAR-γ expression but had no effect on STAT6 phosphorylation. The results show, for the first time, that pinosylvin shifts macrophage polarization from the pro-inflammatory M1 phenotype towards M2 phenotype, supporting resolution of inflammation and repair.
Collapse
|
30
|
Wu YT, Tang MX, Wang YJ, Li J, Wang YX, Deng A, Guo CF, Zhang HQ. Lower androgen levels promote abnormal cartilage development in female patients with adolescent idiopathic scoliosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:784. [PMID: 34268397 PMCID: PMC8246169 DOI: 10.21037/atm-20-3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/25/2021] [Indexed: 11/14/2022]
Abstract
Background Adolescent idiopathic scoliosis (AIS) is a disease characterized by changes in the three-dimensional structure of the spine. Studies have shown that the development of AIS might be associated with genetic, biomechanics, endocrine factors and abnormal bone or cartilage development. Methods Blood samples collected from 301 female patients (161 females with AIS and 140 females without AIS) were used for genotyping. Forty-eight serum samples from 161 females with AIS and 40 serum samples from 140 females without AIS were subjected to enzyme-linked immunosorbent assays (ELISAs). We also evaluated 32 facet joints (18 females with AIS and 14 females without AIS from the 301 female patients) using immunohistochemistry, Western blotting, and isolation of human primary chondrocytes, among other methods. We treated the AIS primary chondrocytes with dihydrotestosterone (DHT) to verify the relationship among androgen, the androgen receptor (AR), and its downstream pathway proteins. Results The serum androgen level in the AIS group was significantly decreased (1.94±0.09 vs. 2.284±0.103) compared with that in the non-AIS (control) group. The single nucleotide polymorphism genotyping results showed that the mutation rates of rs6259 between the AIS and control groups were significantly different (G/G genotype: 48.4% vs. 42.1%, G/A genotype: 40.4% vs. 35.7%, P<0.05). The levels of interleukin (IL)-6 and metalloproteinase (MMP)-13 were increased in the cartilage of AIS patients, and these patients also exhibited decreased AR levels. The cell experiment results showed that androgen reduced the degree of abnormal cartilage development in female AIS patients through the AR/IL-6/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Conclusions Our study provides a new perspective on the pathogenesis of AIS and indicates that decreased androgen levels in female AIS patients play a potential role in the development of AIS via the AR/IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuan-Tao Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery, Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ming-Xing Tang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Jia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Xiang Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ang Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao-Feng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Qi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Yi X, Liu J, Cheng MS, Zhou Q. Low-intensity pulsed ultrasound inhibits IL-6 in subchondral bone of temporomandibular joint osteoarthritis by suppressing the TGF-β1/Smad3 pathway. Arch Oral Biol 2021; 125:105110. [PMID: 33774341 DOI: 10.1016/j.archoralbio.2021.105110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This study aimed to provide further information on the exact mechanisms involved in the anti-inflammatory effect of low-intensity pulsed ultrasound (LIPUS) on rabbit temporomandibular joint osteoarthritis (TMJOA) on interleukin-6 (IL-6) production in subchondral bone, IL-6 production in IL-1β stimulated via inhibition of the TGF-β1/Smad3 pathway in mouse embryo osteoblast precursor (MC3T3-E1) cells. DESIGN Bilateral joints were injected with type II collagenase to establish TMJOA models in two male and four female rabbits. The left joint was continuously stimulated by LIPUS, while the right joint was treated with the power off in this model. One male and two female rabbits were used as normal healthy controls without treatment. The histological features of subchondral bone were examined by Safranin-O/Fast staining. Immunohistochemistry was conducted to evaluate IL-6 expression. Then, cells were stimulated by LIPUS with IL-1β. IL-6 expression and activity of the TGF-β1/Smad3 pathway were evaluated by Enzyme-linked immunosorbent assay (ELISA), Immunofluorescence and Western blotting, respectively. Specific inhibition of the TGF-β1/Smad3 pathway was conducted by transfecting with small interfering RNA (siRNA) of type II receptor (siTβRII). RESULTS LIPUS significantly ameliorated the production of IL-6 in vitro and in vivo. Its inhibitory effect on the production of IL-6 induced by IL-1β in MC3T3-E1 cells was partly reversed by siTβRII knockdown. CONCLUSIONS LIPUS inhibited IL-6 production by suppressing the TGF-β1/Smad3 pathway of subchondral bone in TMJOA. These data revealed the part of the pathways involved in the anti-inflammatory effect of LIPUS and provided a possible treatment strategy for TMJOA patients and other inflammatory diseases.
Collapse
Affiliation(s)
- Xin Yi
- Department of Oral Anatomy and Physiology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, 110002, China.
| | - Jie Liu
- Department of Science Experiment Center of China Medical University, Shenyang, 110122, China.
| | - Mo-Sha Cheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, 110002, China.
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, 110002, China.
| |
Collapse
|
32
|
Liu JF, Chi MC, Lin CY, Lee CW, Chang TM, Han CK, Huang YL, Fong YC, Chen HT, Tang CH. PM2.5 facilitates IL-6 production in human osteoarthritis synovial fibroblasts via ASK1 activation. J Cell Physiol 2021; 236:2205-2213. [PMID: 32808296 DOI: 10.1002/jcp.30009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disorder characterized by synovial inflammation. Interleukin-6 (IL-6) is a key proinflammatory cytokine in OA progression. Particulate matter 2.5 (PM2.5) exposure increases the risk of different diseases, including OA. Up until now, no studies have described any association between PM2.5 and IL-6 expression in human OA synovial fibroblasts (OASFs). Here, our data show that PM2.5 concentration- and time-dependently promoted IL-6 synthesis in human OASFs. We also found that reactive oxygen species (ROS) generation potentiated the effects of PM2.5 on IL-6 production. ASK1, ERK, p38, and JNK inhibitors reduced PM2.5-induced increases of IL-6 expression. Treatment of OASFs with PM2.5 promoted phosphorylation of these signaling cascades. We also found that PM2.5 enhanced c-Jun phosphorylation and its translocation into the nucleus. Thus, PM2.5 increases IL-6 production in human OASFs via the ROS, ASK1, ERK, p38, JNK, and AP-1 signaling pathways. Our evidence links PM2.5 with OA progression.
Collapse
Affiliation(s)
- Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Miao-Ching Chi
- Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Taoyuan, Chiayi County, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Puzi City, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Chih-Yang Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Rim YA, Nam Y, Park N, Lee K, Jung H, Jung SM, Lee J, Ju JH. Characterization of Early-Onset Finger Osteoarthritis-Like Condition Using Patient-Derived Induced Pluripotent Stem Cells. Cells 2021; 10:cells10020317. [PMID: 33557199 PMCID: PMC7913990 DOI: 10.3390/cells10020317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Early osteoarthritis (OA)-like symptoms are difficult to study owing to the lack of disease samples and animal models. In this study, we generated induced pluripotent stem cell (iPSC) lines from a patient with a radiographic early-onset finger osteoarthritis (efOA)-like condition in the distal interphalangeal joint and her healthy sibling. We differentiated those cells with similar genetic backgrounds into chondrogenic pellets (CPs) to confirm efOA. CPs generated from efOA-hiPSCs (efOA-CPs) showed lower levels of COL2A1, which is a key marker of hyaline cartilage after complete differentiation, for 21 days. Increase in pellet size and vacuole-like morphologies within the pellets were observed in the efOA-CPs. To analyze the changes occurred during the development of vacuole-like morphology and the increase in pellet size in efOA-CPs, we analyzed the expression of OA-related markers on day 7 of differentiation and showed an increase in the levels of COL1A1, RUNX2, VEGFA, and AQP1 in efOA-CPs. IL-6, MMP1, and MMP10 levels were also increased in the efOA-CPs. Taken together, we present proof-of-concept regarding disease modeling of a unique patient who showed OA-like symptoms.
Collapse
Affiliation(s)
- Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Yoojun Nam
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Narae Park
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Kijun Lee
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Hyerin Jung
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Seung Min Jung
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
| | - Jennifer Lee
- Department of Internal Medicine, Division of Rheumatology, Institute of Medical Science, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.); (N.P.); (K.L.); (H.J.); (S.M.J.)
- Department of Internal Medicine, Division of Rheumatology, Institute of Medical Science, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
- Correspondence: ; Tel.: +82-2-2258-6895
| |
Collapse
|
34
|
Wiegertjes R, van de Loo FAJ, Blaney Davidson EN. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology (Oxford) 2021; 59:2681-2694. [PMID: 32691066 PMCID: PMC7516110 DOI: 10.1093/rheumatology/keaa248] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Joint inflammation is present in the majority of OA patients and pro-inflammatory mediators, such as IL-6, are actively involved in disease progression. Increased levels of IL-6 in serum or synovial fluid from OA patients correlate with disease incidence and severity, with IL-6 playing a pivotal role in the development of cartilage pathology, e.g. via induction of matrix-degrading enzymes. However, IL-6 also increases expression of anti-catabolic factors, suggesting a protective role. Until now, this dual role of IL-6 is incompletely understood and may be caused by differential effects of IL-6 classic vs trans-signalling. Here, we review current evidence regarding the role of IL-6 classic- and trans-signalling in local joint pathology of cartilage, synovium and bone. Furthermore, we discuss targeting of IL-6 in experimental OA models and provide future perspective for OA treatment by evaluating currently available IL-6 targeting strategies.
Collapse
Affiliation(s)
- Renske Wiegertjes
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esmeralda N Blaney Davidson
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Rosshirt N, Trauth R, Platzer H, Tripel E, Nees TA, Lorenz HM, Tretter T, Moradi B. Proinflammatory T cell polarization is already present in patients with early knee osteoarthritis. Arthritis Res Ther 2021; 23:37. [PMID: 33482899 PMCID: PMC7821658 DOI: 10.1186/s13075-020-02410-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023] Open
Abstract
Background Investigating the pathophysiological mechanisms of early osteoarthritis (OA) is of utmost interest since this stage holds the strongest promise for therapeutic interventions. The aims of this study were to analyze if synovial inflammation is already present in early OA and to characterize the involved cell populations, by investigating synovial fluid (SF) and synovial membrane (SM) of early OA patients for the presence and polarization status of CD4 T cells. Methods A quantitative analysis of CD4+ T cell infiltration in SF and SM compared to peripheral blood (PB) was performed in patients with early stages of OA. We further investigated intracellular staining (ICS), surface marker, and chemokine receptor expression profiles of CD4+ T cells in SF, SM, and PB, as well as cytokine expression in native SF and PB. Matched samples of SF, SM, and PB were harvested from 40 patients with early OA at the time of surgery. Early OA was confirmed by independent surgeons intraoperatively. Samples were analyzed by flow cytometry for surface markers and cytokines, which are preferentially expressed by distinct T cell subsets (Th1, Th2, Th17, regulatory T cells). Furthermore, we analyzed native SF and PB supernatants using MACSPlex for multiple cytokine expression profiles. Results SF and SM showed a distinct infiltration of CD4+ T lymphocytes, with significantly increased expression of chemokine receptors CXCR3/CCR5, cytokine IFN-γ (preferentially expressed by Th1 cells), and CD161 (preferentially expressed by IL-17 producing Th17 cells) compared to PB. Furthermore, the percentage of CD4+ T cells polarized to Treg was significantly increased in SM compared to SF and PB. No significant differences were observed for CCR3 and CCR4 (preferentially expressed by Th2 cells), although IL-4 values were significantly higher in SM and SF compared to PB. Cytokine analysis showed comparable results between PB and SF, with only IL-6 being significantly increased in SF. Conclusions Early OA joints show already significant inflammation through CD4+ T cell infiltration, with predominant Th1 cell polarization. Inflammation seems to be driven by direct proinflammatory cell interaction. Cytokine signaling seems to be negligible at the site of inflammation in early OA, with only IL-6 being significantly increased in SF compared to PB. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-020-02410-w.
Collapse
Affiliation(s)
- Nils Rosshirt
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany.
| | - Richard Trauth
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany
| | - Hadrian Platzer
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany
| | - Elena Tripel
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany
| | - Timo A Nees
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, Schlierbacher Landstr. 200a, Heidelberg, 69118, Germany
| | - Hanns-Martin Lorenz
- Department of Internal Medicine V, Division of Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Tretter
- Department of Internal Medicine V, Division of Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Babak Moradi
- Clinic of Orthopedic and Trauma Surgery, University of Kiel, Arnold-Heller-Straße 3, Kiel, 24105, Germany
| |
Collapse
|
36
|
Nummenmaa E, Hämäläinen M, Pemmari A, Moilanen LJ, Tuure L, Nieminen RM, Moilanen T, Vuolteenaho K, Moilanen E. Transient Receptor Potential Ankyrin 1 (TRPA1) Is Involved in Upregulating Interleukin-6 Expression in Osteoarthritic Chondrocyte Models. Int J Mol Sci 2020; 22:ijms22010087. [PMID: 33374841 PMCID: PMC7794684 DOI: 10.3390/ijms22010087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a membrane-bound ion channel found in neurons, where it mediates nociception and neurogenic inflammation. Recently, we have discovered that TRPA1 is also expressed in human osteoarthritic (OA) chondrocytes and downregulated by the anti-inflammatory drugs aurothiomalate and dexamethasone. We have also shown TRPA1 to mediate inflammation, pain, and cartilage degeneration in experimental osteoarthritis. In this study, we investigated the role of TRPA1 in joint inflammation, focusing on the pro-inflammatory cytokine interleukin-6 (IL-6). We utilized cartilage/chondrocytes from wild-type (WT) and TRPA1 knockout (KO) mice, along with primary chondrocytes from OA patients. The results show that TRPA1 regulates the synthesis of the OA-driving inflammatory cytokine IL-6 in chondrocytes. IL-6 was highly expressed in WT chondrocytes, and its expression, along with the expression of IL-6 family cytokines leukemia inhibitory factor (LIF) and IL-11, were significantly downregulated by TRPA1 deficiency. Furthermore, treatment with the TRPA1 antagonist significantly downregulated the expression of IL-6 in chondrocytes from WT mice and OA patients. The results suggest that TRPA1 is involved in the upregulation of IL-6 production in chondrocytes. These findings together with previous results on the expression and functions of TRPA1 in cellular and animal models point to the role of TRPA1 as a potential mediator and novel drug target in osteoarthritis.
Collapse
Affiliation(s)
- Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri J. Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Riina M. Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Coxa Hospital for Joint Replacement, FI-33520 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, FI-33014 Tampere, Finland; (E.N.); (M.H.); (A.P.); (L.J.M.); (L.T.); (R.M.N.); (T.M.); (K.V.)
- Correspondence:
| |
Collapse
|
37
|
Chen P, Ruan A, Zhou J, Huang L, Zhang X, Ma Y, Wang Q. Cinnamic Aldehyde Inhibits Lipopolysaccharide-Induced Chondrocyte Inflammation and Reduces Cartilage Degeneration by Blocking the Nuclear Factor-Kappa B Signaling Pathway. Front Pharmacol 2020; 11:949. [PMID: 32848721 PMCID: PMC7419651 DOI: 10.3389/fphar.2020.00949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA), as one of the top 10 causes of physical disability, is characterized by inflammation of the synovial membrane and progressive destruction of the articular cartilage. Cinnamic aldehyde (CA), an α,β-unsaturated aldehyde extracted from the traditional Chinese herbal medicine cinnamon (Cinnamomum verum J.Presl), has been reported to have anti-inflammatory, antioxidant, and anticancer properties. However, the anti-inflammatory effect of CA on OA remains unclear. The purpose of the present study was to investigate the effects of CA on inflammation, and cartilage degeneration in OA. A CCK-8 assay was performed to assess the potential toxicity of CA on cultured human OA chondrocytes. Following treatment with lipopolysaccharide (LPS) and CA, the expression of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alfa (TNF-α), was evaluated using quantitative real-time polymerase chain reaction (RT-qPCR) analysis, enzyme-linked immunosorbent assay, and Western blotting (WB). The production of matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5) was also examined using RT-qPCR and WB. Furthermore, to investigate the potential anti-inflammatory mechanism of CA, biomarkers of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway (p65, IKB-α) were detected using WB. The results demonstrated that CA significantly inhibited the expressions of IL-1β, IL-6, TNF-α, MMP-13, and ADAMTS-5 in LPS-induced OA chondrocytes. CA dramatically suppressed LPS-stimulated NF-κB activation. Collectively, these results suggest that CA treatment may effectively prevent OA.
Collapse
Affiliation(s)
- Pu Chen
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Anmin Ruan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Zhou
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liuwei Huang
- Department of Nephrology, Southern Medical University, Guangzhou, China
| | - Xiaozhe Zhang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yufeng Ma
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - QingFu Wang
- Department of Orthopedics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
38
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
39
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
40
|
Lee H, Jang D, Jeon J, Cho C, Choi S, Han SJ, Oh E, Nam J, Park CH, Shin YS, Yun SP, Yang S, Kang LJ. Seomae mugwort and jaceosidin attenuate osteoarthritic cartilage damage by blocking IκB degradation in mice. J Cell Mol Med 2020; 24:8126-8137. [PMID: 32529755 PMCID: PMC7348148 DOI: 10.1111/jcmm.15471] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Seomae mugwort, a Korean native variety of Artemisia argyi, exhibits physiological effects against various diseases. However, its effects on osteoarthritis (OA) are unclear. In this study, a Seomae mugwort extract prevented cartilage destruction in an OA mouse model. In vitro and ex vivo analyses revealed that the extract suppressed MMP3, MMP13, ADAMTS4 and ADAMTS5 expression induced by IL-1β, IL-6 and TNF-α and inhibited the loss of extracellular sulphated proteoglycans. In vivo analysis revealed that oral administration of the extract suppressed DMM-induced cartilage destruction. We identified jaceosidin in Seomae mugwort and showed that this compound decreased MMP3, MMP13, ADAMTS4 and ADAMTS5 expression levels, similar to the action of the Seomae mugwort extract in cultured chondrocytes. Interestingly, jaceosidin and eupatilin combined had similar effects to Seomae mugwort in the DMM-induced OA model. Induction of IκB degradation by IL-1β was blocked by the extract and jaceosidin, whereas JNK phosphorylation was only suppressed by the extract. These results suggest that the Seomae mugwort extract and jaceosidin can attenuate cartilage destruction by suppressing MMPs, ADAMTS4/5 and the nuclear factor-κB signalling pathway by blocking IκB degradation. Thus, the findings support the potential application of Seomae mugwort, and particularly jaceosidin, as natural therapeutics for OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Dain Jang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jimin Jeon
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Chanmi Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Sangil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Seong Jae Han
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Eunjeong Oh
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jiho Nam
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Yu Su Shin
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Seung Pil Yun
- Department of Pharmacology and Convergence Medical Science, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Siyoung Yang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Li-Jung Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
41
|
Jia J, Sun J, Liao W, Qin L, Su K, He Y, Zhang J, Yang R, Zhang Z, Sun Y. Knockdown of long non‑coding RNA AK094629 attenuates the interleukin‑1β induced expression of interleukin‑6 in synovium‑derived mesenchymal stem cells from the temporomandibular joint. Mol Med Rep 2020; 22:1195-1204. [PMID: 32468015 PMCID: PMC7339665 DOI: 10.3892/mmr.2020.11193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Interleukin (IL)‑1β is a key promotor in the pathogenesis of temporomandibular joint osteoarthritis. Differentiation of stem cells to cartilage is a crucial repair mechanism of articular cartilage damage, and IL‑1β has been reported to impede the differentiation by upregulating the secretion of IL‑6, an important inflammatory factor. Long non‑coding RNAs (lncRNAs) regulate a number of physiological and pathological processes, but whether lncRNA AK094629 contributes to the IL‑1β mediated induction of inflammation remains unclear. Therefore, the aim of the present study was to investigate the effect of AK094629 on IL‑1β‑induced IL‑6 expression in synovial‑derived mesenchymal stem cells (SMSCs) of the temporomandibular joints. The results of the present study demonstrated that the expression of AK094629 in the synovial tissue of patients with osteoarthritis was positively correlated with IL‑1β. In addition, IL‑1β upregulated the expression of AK094629 in the SMSCs in vitro, and AK094629 knockdown inhibited the IL‑1β mediated upregulation of IL‑6. The present study also demonstrated that AK094629 knockdown downregulated the expression of the mitogen‑activated protein kinase kinase kinase 4 (MAP3K4), which is upregulated by IL‑1β, whereas knockdown of MAP3K4 did not affect the expression of AK094629, but reversed the upregulation of IL‑6 in SMSCs. In conclusion, AK094629 knockdown attenuated the expression of IL‑1β‑regulated IL‑6 in the SMSCs of the temporomandibular joint by inhibiting MAP3K4. Therefore, AK094629 may be a potential novel therapeutic target for the treatment of temporomandibular joint osteoarthritis.
Collapse
Affiliation(s)
- Jiaxin Jia
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiadong Sun
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Wenting Liao
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lingling Qin
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Kai Su
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yiqing He
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiaqiang Zhang
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ronchung Yang
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhiguang Zhang
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yangpeng Sun
- Guangdong Provincial Key Laboratory of Stomatology, Stomatology Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
42
|
Dai H, Chen R, Gui C, Tao T, Ge Y, Zhao X, Qin R, Yao W, Gu S, Jiang Y, Gui J. Eliminating senescent chondrogenic progenitor cells enhances chondrogenesis under intermittent hydrostatic pressure for the treatment of OA. Stem Cell Res Ther 2020; 11:199. [PMID: 32450920 PMCID: PMC7249424 DOI: 10.1186/s13287-020-01708-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteoarthritis (OA) is a major cause of limb dysfunction, and distraction arthroplasty which generates intermittent hydrostatic pressure (IHP) is an effective approach for OA treatment. However, the result was not always satisfactory and the reasons remained unresolved. Because aging is recognized as an important risk factor for OA and chondrogenic progenitor cells (CPCs) could acquire senescent phenotype, we made a hypothesis that CPCs senescence could have harmful effect on chondrogenesis and the outcome of distraction arthroplasty could be improved by eliminating senescent CPCs pharmacologically. Methods The role of senescent CPCs on distraction arthroplasty was first determined by comparing the cartilage samples from the failure and non-failure patients. Next, the biological behaviors of senescent CPCs were observed in the in vitro cell culture and IHP model. Finally, the beneficial effect of senescent CPCs clearance by senolytic dasatinib and quercetin (DQ) on cartilage regeneration was observed in the in vitro and in vivo IHP model. Results Larger quantities of senescent CPCs along with increased IL-1 β secretion were demonstrated in the failure patients of distraction arthroplasty. Senescent CPCs revealed impaired proliferation and chondrogenic capability and also had increased IL-1 β synthesis, typical of senescence-associated secretory phenotype (SASP). CPCs senescence and SASP formation were mutually dependent in vitro. Greater amounts of senescent CPCs were negatively correlated with IHP-induced chondrogenesis. In contrast, chondrogenesis could be significantly improved by DQ pretreatment which selectively induced senescent CPCs into apoptosis in the in vitro and in vivo IHP model. Mechanistically, senescent CPCs elimination could decrease SASP formation and therefore promote the proliferation and chondrogenic regeneration capacity of the surrounding survived CPCs under IHP stimulation. Conclusions Eliminating senescent CPCs by senolytics could decrease SASP formation and improve the result of joint distraction arthroplasty effectively. Our study provided a novel CPCs senescence-based therapeutic target for improving the outcome of OA treatment.
Collapse
Affiliation(s)
- Hanhao Dai
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Chen
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tianqi Tao
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xilian Zhao
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Qin
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wangxiang Yao
- Department of Orthopaedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Song Gu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianchao Gui
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Miguel MG. Editorial to Special Issue-Anti-Inflammatory Activity of Natural Products. Molecules 2020; 25:molecules25081926. [PMID: 32326279 PMCID: PMC7221512 DOI: 10.3390/molecules25081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Maria Graça Miguel
- Faculdade de Ciências e Tecnologia, Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
44
|
Zha Z, Han Q, Huo S. The protective effects of bexarotene against advanced glycation end-product (AGE)-induced degradation of articular extracellular matrix (ECM). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 48:1-7. [PMID: 31852246 DOI: 10.1080/21691401.2019.1699802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhuqing Zha
- Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, Henan, China
| | - Qingmin Han
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaochuan Huo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
45
|
Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019; 8:cells8090969. [PMID: 31450621 PMCID: PMC6769927 DOI: 10.3390/cells8090969] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|