1
|
Singh P, Mukherjee R, Kumar A. Chiral Lead Halide Perovskites in Action: Unlocking Enantiomer Separation Puzzle. Biomed Chromatogr 2025; 39:e6085. [PMID: 39916655 DOI: 10.1002/bmc.6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 05/08/2025]
Abstract
Effective enantiomer separation is vital in many important sectors like pharmaceuticals, agrochemicals, food safety, and biomedical imaging, yet conventional methods are costly, slow, and chemical intensive. This has sparked interest in exploring novel materials like chiral lead halide perovskite nanocrystals to address these challenges. This newly emerging chiral material combines the superior properties of traditional halide perovskites with the unique attributes of chirality, resulting in distinct optoelectronic behaviors. This perspective provides a discussion on future research opportunities in the usage of these chiral LHP NCs for enantiomeric recognition and separation. LHPs exhibit extraordinary photophysical properties, easier surface functionalization, range of bonding interactions, and high surface area to volume ratio that can be used for detecting enantiomers. To the best of our knowledge, the use of chiral halide perovskites for the chiral discrimination of enantiomers has been scarcely reported, presenting a novel opportunity to explore their potential in enantiomeric recognition and separation.
Collapse
Affiliation(s)
- Pallavi Singh
- Solid State Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rudra Mukherjee
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Anil Kumar
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Yang X, Wang K. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci 2025; 335:103342. [PMID: 39561657 DOI: 10.1016/j.cis.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Chirality is a common phenomenon in nature, including the dominance preference of small biomolecules, the special spatial conformation of biomolecules, and the biological and physiological processes triggered by chirality. The selective chiral recognition of molecules in nature from up-bottom or bottom-up is of great significance for living organisms. Such as the transcription of DNA, the recognition of membrane proteins, and the catalysis of enzymes all involve chiral recognition processes. The selective recognition between these macromolecules is mainly achieved through non covalent interactions such as hydrophobic interactions, ammonia bonding, electrostatic interactions, metal coordination, van der Waals forces, and π-π stacking. Researchers have been committed to studying how to convert this weak non covalent interaction into macroscopic visualization, which has further understood of the interactions between chiral molecules and is of great significance for simulating the interactions between molecules in living organisms. This article reviews several models of chiral recognition mechanisms, the interaction forces involved in the chiral recognition process, and the research progress of chiral recognition mechanisms. The outlook in this review points out that studying chiral recognition interactions provides an important bridge between chiral materials and the life sciences, providing an ideal platform for studying chiral phenomena in biological systems.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| |
Collapse
|
3
|
Agarwal P, Kavya, Pal N. Nucleoside monophosphate-templated green synthesis of AgNP: effects of reducing agents on the optical properties of as-synthesized AgNPs. JOURNAL OF NANOPARTICLE RESEARCH 2024; 26:275. [DOI: 10.1007/s11051-024-06185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/17/2024] [Indexed: 01/06/2025]
|
4
|
Wang S, Gou X, Shi P, Lin M, Yang A, Du L, Yuan X. Unveiling the Loss Mode Enabled Tunable Plasmonic Chirality at Flat Metal Surface. ACS NANO 2024; 18:27503-27510. [PMID: 39324866 DOI: 10.1021/acsnano.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Plasmonic chirality has garnered significant interest in the past decade due to its enhanced chiral light-matter interactions. Current methods for achieving plasmonic chirality often rely on complex nanostructures or metamaterials, which are hampered by intricate fabrication processes. In this work, we present an approach to generate plasmonic chiral structured surface plasmon polariton (s-SPP) fields on a single, flat metal surface, bypassing elaborate fabrication techniques. The plasmonic chiral s-SPP fields are excited by the superposition of multiple differently oriented transverse magnetic polarized plane waves. We demonstrate, both theoretically and experimentally, the flexible tuning of chiral plasmonic patterns by adjusting the symmetry and phase differences of the incident waves. This method provides a facile mean to optically tailor plasmonic chiral properties on a subwavelength scale, offering potential applications in sensing, enantioselective reactions, imaging, and reconfigurable chiral switches.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xinxin Gou
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Peng Shi
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Min Lin
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Aiping Yang
- Research Institute of Interdisciplinary Sciences (RISE) and School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Luping Du
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Niu X, Wang Y, Liu Y, Yuan M, Zhang J, Li H, Wang K. Defect-engineered chiral metal-organic frameworks. Mikrochim Acta 2024; 191:458. [PMID: 38985164 DOI: 10.1007/s00604-024-06534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Chirality has an important impact on chemical and biological research, as most active substances are chiral. In recent decades, metal-organic frameworks (MOFs), which are assembled from metal ions or clusters and organic linkers via metal-ligand bonding, have attracted considerable scientific interest due to their high crystallinity, exceptional porosity and tunable pore sizes, high modularity, and diverse functionalities. Since the discovery of the first functional chiral metal-organic frameworks (CMOFs), CMOFs have been involved in a variety of disciplines such as chemistry, physics, optics, medicine, and pharmacology. The introduction of defect engineering theory into CMOFs allows the construction of a class of defective CMOFs with high hydrothermal stability and multi-stage pore structure. The introduction of defects not only increases the active sites but also enlarges the pore sizes of the materials, which improves chiral recognition, separation, and catalytic reactions, and has been widely investigated in various fields. This review describes the design and synthesis of various defective CMOFs, their characterization, and applications. Finally, the development of the materials is summarized, and an outlook is given. This review should provide researchers with an insight into the design and study of complex defective CMOFs.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| | - Yuewei Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Jianying Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| |
Collapse
|
6
|
Vlasov E, Heyvaert W, Ni B, Van Gordon K, Girod R, Verbeeck J, Liz-Marzán LM, Bals S. High-Throughput Morphological Chirality Quantification of Twisted and Wrinkled Gold Nanorods. ACS NANO 2024; 18:12010-12019. [PMID: 38669197 DOI: 10.1021/acsnano.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.
Collapse
Affiliation(s)
- Evgenii Vlasov
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Wouter Heyvaert
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Bing Ni
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany
| | - Kyle Van Gordon
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Robin Girod
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Johan Verbeeck
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
- CINBIO, University of Vigo, Vigo 36310, Spain
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| |
Collapse
|
7
|
Farrokhpour H, Hassanjani K, Najafi Chermahini A, Eskandari K. Theoretical Spectroscopic Study of Normal Raman and Charge Transfer Surface-Enhanced Raman Scattering (SERS) Spectra of the Adsorbed l- and d-Cysteine on the Chiral Au 34 and Ag 4@Au 30 Nanoclusters: Chirality Discrimination. J Phys Chem A 2024; 128:3285-3300. [PMID: 38632874 DOI: 10.1021/acs.jpca.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In this work, the discrimination of the enantiomers of cysteine (l- and d-CYS) using the chiral Au34 and Ag4@Au30 clusters was theoretically investigated in the gas phase and water. Two modes were considered for the interaction of each enantiomer with the clusters (via only its S atom or its S atom and NH2 group, simultaneously). The interaction energy (Eint) and adsorption energy (Ead) for the complexation of each enantiomer with the clusters for each interaction mode were calculated. Considering the calculated interaction energies, the interaction of d-CYS with Au34 is stronger than that of l-CYS with the same cluster. Also, it was observed that the substitution of the Au4 core of the Au34 cluster with the Ag4 cluster caused the increase of the interaction energy of l-CYS with the Ag4@Au30 cluster compared to the Au34 cluster, while the reverse trend was observed for d-CYS. Quantum theory of atoms in molecules (QTAIM) analysis was employed to calculate the interaction paths and their related bond critical points (BCPs) between the CYS enantiomers and the clusters to explain the difference between the interaction energy of the enantiomers with the clusters. The IR, normal Raman (NR), and surface-enhanced Raman scattering (SERS) spectra of the enantiomers interacting with the Au34 and Ag4@Au30 clusters were calculated, and the discrimination between l-CYS and d-CYS using the calculated spectra was explained. It was found that the discrimination of the enantiomers based on their interaction with the clusters is controlled by the charge transfer between the enantiomers and the clusters.
Collapse
Affiliation(s)
- Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Kousar Hassanjani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Kiamars Eskandari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
8
|
Sharma M, Aggarwal N, Mishra J, Panda JJ. Neuroglia targeting nano-therapeutic approaches to rescue aging and neurodegenerating brain. Int J Pharm 2024; 654:123950. [PMID: 38430951 DOI: 10.1016/j.ijpharm.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Despite intense efforts at the bench, the development of successful brain-targeting therapeutics to relieve malicious neural diseases remains primitive. The brain, being a beautifully intricate organ, consists of heterogeneous arrays of neuronal and glial cells. Primarily acting as the support system for neuronal functioning and maturation, glial cells have been observed to be engaged more apparently in the progression and worsening of various neural pathologies. The diseased state is often related to metabolic alterations in glial cells, thereby modulating their physiological homeostasis in conjunction with neuronal dysfunction. A plethora of data indicates the effect of oxidative stress, protein aggregation, and DNA damage in neuroglia impairments. Still, a deeper insight is needed to gain a conflict-free understanding in this arena. As a consequence, glial cells hold the potential to be identified as promising targets for novel therapeutic approaches aimed at brain protection. In this review, we describe the recent strides taken in the direction of understanding the impact of oxidative stress, protein aggregation, and DNA damage on neuroglia impairment and neuroglia-directed nanotherapeutic approaches to mitigate the burden of various neural disorders.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Nidhi Aggarwal
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Jibanananda Mishra
- School of Biosciences, RIMT University, Mandi Gobindgarh, Punjab 147301, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| |
Collapse
|
9
|
Ali I, Perrucci M, Ciriolo L, D'Ovidio C, de Grazia U, Ulusoy HI, Kabir A, Savini F, Locatelli M. Applications of electrophoresis for small enantiomeric drugs in real-world samples: Recent trends and future perspectives. Electrophoresis 2024; 45:55-68. [PMID: 37495859 DOI: 10.1002/elps.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Separation and identification of chiral molecules is a topic widely discussed in the literature and of fundamental importance, especially in the pharmaceutical and food fields, both from industrial and laboratory points of view. Several techniques are used to carry out these analyses, but high-performance liquid chromatography is often the "gold standard." The high costs of chiral columns, necessary for this technique, led researchers to look for an alternative, and capillary electrophoresis (CE) is a technique capable of overcoming some of the disadvantages of liquid chromatography, often providing comparable results in terms of sensitivity and robustness. We addressed this topic, already widely discussed in the literature, providing an overview of the last 6 years of the most frequent and recent applications of CE. To make the manuscript more effective, we decided to divide it into paragraphs that represent the main field of application, from enantioseparation in complex matrices (pharmacokinetic studies or toxicological dosage of drugs, analysis of environmental pollutants, and analyses of foods) to quality control analyses on pharmaceutical formulas. About these, which are the fields of most meaningful use, we mentioned some of the most innovative and performing methods, with a look to the future on the application of new materials used, such as chiral selectors, that can make these types of analyses accessible to all, reducing cost, time, and excessive use of toxic solvents.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Miryam Perrucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Luigi Ciriolo
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Cristian D'Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Ugo de Grazia
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Fabio Savini
- Pharmatoxicology Laboratory-Hospital "Santo Spirito", Pescara, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| |
Collapse
|
10
|
Zhao Z, Liao M, Hu G, Zeng S, Ge L, Yang K. Enantioselective adsorption of ibuprofen enantiomers using chiral-active carbon nanoparticles induced S-α-methylbenzylamine. Chirality 2024; 36:e23628. [PMID: 37926465 DOI: 10.1002/chir.23628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
The chiral media is crucial to the chiral recognition and separation of enantiomers. In this study, we report the preparation of novel chiral carbon nanoparticles (CCNPs) via surface passivation using glucose as the carbon source and S-(-)-α-methylbenzylamine as the chiral ligand. The structures of the obtained CCNPs are characterized via FT-IR, Raman spectroscopy, DLS, XPS, XRD, TEM, and zeta potential analysis. These CCNPs could be employed as the chiral adsorbent and used for the enantioselective adsorption of the ibuprofen enantiomers. The results demonstrated that the CCNPs could selectively adsorb R-enantiomer from ibuprofen racemate solution and give an enantiomeric excess (e.e.) of about 50% under an optimal adsorption condition. Moreover, the regeneration efficiency of the CCNPs remained above e.e. of 43% after the fifth cycle. The present work confirmed that the prepared CCNPs show great potential in the enantioselective separation of ibuprofen racemate.
Collapse
Affiliation(s)
- Zhenbo Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Min Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Gang Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Siwen Zeng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Li Ge
- Medical College of Guangxi University, Nanning, China
| | - Kedi Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- Medical College of Guangxi University, Nanning, China
| |
Collapse
|
11
|
Li X, YujuanSun, Zhu X. Preparation of Chiral Carbon Quantum Dots and its Application. J Fluoresc 2024; 34:1-13. [PMID: 37199894 DOI: 10.1007/s10895-023-03262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Chiral carbon quantum dots (cCQDs) , as a new type of carbon nano-functional material with tunable emission wavelength, superior photostability, low toxicity, biocompatibility and chirality, are playing an increasingly important role in the fields of chemistry, biology and medicine. This paper reviews the preparation methods (one-step and two-step), optical properties (UV, fluorescence, chirality) and applications in chiral catalysis, chiral recognition, targeted imaging as well as other fields, while lists some of the issues and challenges in the research of chiral carbon quantum dots. Finally, due to its good fluorescence and other properties, it is expected that chiral carbon quantum dots will have broad commercial prospects in future applications.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, 225002, Yangzhou, China
| | - YujuanSun
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, 225002, Yangzhou, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, 225002, Yangzhou, China.
| |
Collapse
|
12
|
Li S, Pei H, He S, Liang H, Guo R, Liu N, Mo Z. Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications. Chem Asian J 2023; 18:e202300770. [PMID: 37819766 DOI: 10.1002/asia.202300770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Chiral carbon dots (CCDs) can be widely used in various fields such as chiral recognition, chiral catalysis and biomedicine because of their unique optical properties, low toxicity and good biocompatibility. In addition, CCDs with circularly polarized luminescence (CPL) can be synthesized, thus broadening the prospects of CCDs applications. Since the research on CCDs is still in its infancy, this paper reviews the chiral origin, formation mechanism, chiral evolution, synthesis and emerging applications of CCDs, with a special focus on CCDs with CPL activity. It is hoped that it will provide some reference to solve the current problems faced by CCDs. Finally, the opportunities and challenges of the current research on CCDs are described, and their future development trends have also been prospected.
Collapse
Affiliation(s)
- Shijing Li
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hao Liang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
13
|
Azoulay A, Aloni SS, Xing L, Tashakory A, Mastai Y, Shalom M. Polymeric Carbon Nitride with Chirality Inherited from Supramolecular Assemblies. Angew Chem Int Ed Engl 2023; 62:e202311389. [PMID: 37581951 DOI: 10.1002/anie.202311389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride-based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, was not shown. Here, we report the large-scale synthesis of chiral CN materials capable of enantioselective recognition. To achieve this, we designed supramolecular assemblies with a chiral center that remains intact at elevated temperatures. The optimized chiral CN demonstrates an enantiomeric preference of ca. 14 %; CN electrodes were also prepared and show stereoselective interactions with enantiomeric probes in electrochemical measurements. By adding chirality to the properties transferrable from monomers to the final product of a thermal polymerization, this study confirms the potential of using supramolecular precursors to produce carbon and CN materials and electrodes with designed chemical properties.
Collapse
Affiliation(s)
- Adi Azoulay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sapir Shekef Aloni
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lidan Xing
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ayelet Tashakory
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
14
|
Aredes RS, Lima IDP, Faillace AP, Madriaga VGC, Lima TDM, Vaz FAS, Marques FFDC, Duarte LM. From capillaries to microchips, green electrophoretic features for enantiomeric separations: A decade review (2013-2022). Electrophoresis 2023; 44:1471-1518. [PMID: 37667860 DOI: 10.1002/elps.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Enantioseparation by the electromigration-based method is well-established and widely discussed in the literature. Electrophoretic strategies have been used to baseline resolve complex enantiomeric mixtures, typically using a selector substance into the background electrolyte (BGE) from capillaries to microchips. Along with developing new materials/substances for enantioseparations, it is the concern about the green analytical chemistry (GAC) principles for method development and application. This review article brings a last decade's update on the publications involving enantioseparation by electrophoresis for capillary and microchip systems. It also brings a critical discussion on GAC principles and new green metrics in the context of developing an enantioseparation method. Chemical and green features of native and modified cyclodextrins are discussed. Still, given the employment of greener substances, ionic liquids and deep-eutectic solvents are highlighted, and some new selectors are proposed. For all the mentioned selectors, green features about their production, application, and disposal are considered. Sample preparation and BGE composition in GAC perspective, as well as greener derivatization possibilities, were also addressed. Therefore, one of the goals of this review is to aid the electrophoretic researchers to look where they have not.
Collapse
Affiliation(s)
- Rafaella S Aredes
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Isabela de P Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda P Faillace
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Vinicius G C Madriaga
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Thiago de M Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Fernando A S Vaz
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Flávia F de C Marques
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas M Duarte
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Serbezeanu D, Iftime MM, Ailiesei GL, Ipate AM, Bargan A, Vlad-Bubulac T, Rîmbu CM. Evaluation of Poly(vinyl alcohol)-Xanthan Gum Hydrogels Loaded with Neomycin Sulfate as Systems for Drug Delivery. Gels 2023; 9:655. [PMID: 37623110 PMCID: PMC10454009 DOI: 10.3390/gels9080655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, multidrug-resistant bacteria have developed the ability to resist multiple antibiotics, limiting the available options for effective treatment. Raising awareness and providing education on the appropriate use of antibiotics, as well as improving infection control measures in healthcare facilities, are crucial steps to address the healthcare crisis. Further, innovative approaches must be adopted to develop novel drug delivery systems using polymeric matrices as carriers and support to efficiently combat such multidrug-resistant bacteria and thus promote wound healing. In this context, the current work describes the use of two biocompatible and non-toxic polymers, poly(vinyl alcohol) (PVA) and xanthan gum (XG), to achieve hydrogel networks through cross-linking by oxalic acid following the freezing/thawing procedure. PVA/XG-80/20 hydrogels were loaded with different quantities of neomycin sulfate to create promising low-class topical antibacterial formulations with enhanced antimicrobial effects. The inclusion of neomycin sulfate in the hydrogels is intended to impart them with powerful antimicrobial properties, thereby facilitating the development of exceptionally efficient topical antibacterial formulations. Thus, incorporating higher quantities of neomycin sulfate in the PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations yielded promising cycling characteristics. These formulations exhibited outstanding removal efficiency, exceeding 80% even after five cycles, indicating remarkable and consistent adsorption performance with repeated use. Furthermore, both PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations outperformed the drug-free sample, PVA/XG-80/20, demonstrating a significant enhancement in maximum compressive stress.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Manuela Maria Iftime
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Alina-Mirela Ipate
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Tǎchiţǎ Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.M.I.); (G.-L.A.); (A.-M.I.); (A.B.); (T.V.-B.)
| | - Cristina Mihaela Rîmbu
- Department of Public Health, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| |
Collapse
|
16
|
Susanti, Riswoko A, Laksmono JA, Widiyarti G, Hermawan D. Surface modified nanoparticles and their applications for enantioselective detection, analysis, and separation of various chiral compounds. RSC Adv 2023; 13:18070-18089. [PMID: 37323439 PMCID: PMC10267673 DOI: 10.1039/d3ra02399k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The development of efficient enantioselective detection, analysis, and separation relies significantly on molecular interaction. In the scale of molecular interaction, nanomaterials have a significant influence on the performance of enantioselective recognitions. The use of nanomaterials for enantioselective recognition involved synthesizing new materials and immobilization techniques to produce various surface-modified nanoparticles that are either encapsulated or attached to surfaces, as well as layers and coatings. The combination of surface-modified nanomaterials and chiral selectors can improve enantioselective recognition. This review aims to offer engagement insights into the production and application of surface-modified nanomaterials to achieve sensitive and selective detection, better chiral analysis, and separation of numerous chiral compounds.
Collapse
Affiliation(s)
- Susanti
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Asep Riswoko
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Joddy Arya Laksmono
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Galuh Widiyarti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine - National Research and Innovation Agency (BRIN) KST BJ Habibie, Kawasan Puspiptek Building 452 Tangerang Selatan 15314 Indonesia
| | - Dadan Hermawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Jenderal Soedirman University (UNSOED) Indonesia
| |
Collapse
|
17
|
Sapunova AA, Yandybaeva YI, Zakoldaev RA, Afanasjeva AV, Andreeva OV, Gladskikh IA, Vartanyan TA, Dadadzhanov DR. Laser-Induced Chirality of Plasmonic Nanoparticles Embedded in Porous Matrix. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101634. [PMID: 37242050 DOI: 10.3390/nano13101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Chiral plasmonic nanostructures have emerged as promising objects for numerous applications in nanophotonics, optoelectronics, biosensing, chemistry, and pharmacy. Here, we propose a novel method to induce strong chirality in achiral ensembles of gold nanoparticles via irradiation with circularly-polarized light of a picosecond Nd:YAG laser. Embedding of gold nanoparticles into a nanoporous silicate matrix leads to the formation of a racemic mixture of metal nanoparticles of different chirality that is enhanced by highly asymmetric dielectric environment of the nanoporous matrix. Then, illumination with intense circularly-polarized light selectively modifies the particles with the chirality defined by the handedness of the laser light, while their "enantiomers" survive the laser action almost unaffected. This novel modification of the spectral hole burning technique leads to the formation of an ensemble of plasmonic metal nanoparticles that demonstrates circular dichroism up to 100 mdeg. An unforeseen peculiarity of the chiral nanostructures obtained in this way is that 2D and 3D nanostructures contribute almost equally to the observed circular dichroism signals. Thus, the circular dichroism is neither even nor odd under reversal of direction of light propagation. These findings will help guide the development of a passive optical modulator and nanoplatform for enhanced chiral sensing and catalysis.
Collapse
Affiliation(s)
- Anastasiia A Sapunova
- International Research and Education Center for Physics of Nanostructures, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russia
| | - Yulia I Yandybaeva
- Institute of Laser Technology, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russia
| | - Roman A Zakoldaev
- Institute of Laser Technology, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russia
| | - Alexandra V Afanasjeva
- International Research and Education Center for Physics of Nanostructures, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russia
| | - Olga V Andreeva
- Research and Educational Center for Photonics and Optoinformatics, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russia
| | - Igor A Gladskikh
- International Research and Education Center for Physics of Nanostructures, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russia
| | - Tigran A Vartanyan
- International Research and Education Center for Physics of Nanostructures, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russia
| | - Daler R Dadadzhanov
- International Research and Education Center for Physics of Nanostructures, ITMO University, 49 Kronverksky pr., St. Petersburg 197101, Russia
| |
Collapse
|
18
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Das U, Banik S, Nadumane SS, Chakrabarti S, Gopal D, Kabekkodu SP, Srisungsitthisunti P, Mazumder N, Biswas R. Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
Affiliation(s)
- Upama Das
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sharmila Sajankila Nadumane
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shweta Chakrabarti
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dharshini Gopal
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pornsak Srisungsitthisunti
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
20
|
Visheratina A, Hesami L, Wilson AK, Baalbaki N, Noginova N, Noginov MA, Kotov NA. Hydrothermal synthesis of chiral carbon dots. Chirality 2022; 34:1503-1514. [PMID: 36300866 PMCID: PMC9828721 DOI: 10.1002/chir.23509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/12/2023]
Abstract
Nanocolloids that are cumulatively referred to as nanocarbons, attracted significant attention during the last decade because of facile synthesis methods, water solubility, tunable photoluminescence, easy surface modification, and high biocompatibility. Among the latest development in this reserach area are chiral nanocarbons exemplified by chiral carbon dots (CDots). They are expected to have applications in sensing, catalysis, imaging, and nanomedicine. However, the current methods of CDots synthesis show often contradictory chemical/optical properties and structural information that required a systematic study with careful structural evaluation. Here, we investigate and optimize chiroptical activity and photoluminescence of L- and D-CDots obtained by hydrothermal carbonization of L- and D-cysteine, respectively. Nuclear magnetic resonance spectroscopy demonstrates that they are formed via gradual dehydrogenation and condensation reactions of the starting amino acid leading to particles with a wide spectrum of functional groups including aromatic cycles. We found that the chiroptical activity of CDots has an inverse correlation with the synthesis duration and temperature, whereas the photoluminescence intensity has a direct one, which is associated with degree of carbonization. Also, our studies show that the hydrothermal synthesis of cysteine in the presence of boric acid leads to the formation of CDots rather than boron nitride nanoparticles as was previously proposed in several reports. These results can be used to design chiral carbon-based nanoparticles with optimal chemical, chiroptical, and photoluminescent properties.
Collapse
Affiliation(s)
| | - Leila Hesami
- Center for Materials ResearchNorfolk State UniversityNorfolkVirginiaUSA
| | | | - Nicole Baalbaki
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Natalia Noginova
- Center for Materials ResearchNorfolk State UniversityNorfolkVirginiaUSA
| | | | | |
Collapse
|
21
|
Chromatographic supports for enantioselective liquid chromatography: Evolution and innovative trends. J Chromatogr A 2022; 1684:463555. [DOI: 10.1016/j.chroma.2022.463555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
|
22
|
Bitchagno GTM, Nchiozem-Ngnitedem VA, Melchert D, Fobofou SA. Demystifying racemic natural products in the homochiral world. Nat Rev Chem 2022; 6:806-822. [PMID: 36259059 PMCID: PMC9562063 DOI: 10.1038/s41570-022-00431-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 12/03/2022]
Abstract
Natural products possess structural complexity, diversity and chirality with attractive functions and biological activities that have significantly impacted drug discovery initiatives. Chiral natural products are abundant in nature but rarely occur as racemates. The occurrence of natural products as racemates is very intriguing from a biosynthetic point of view; as enzymes are chiral molecules, enzymatic reactions generating natural products should be stereospecific and lead to single-enantiomer products. Despite several reports in the literature describing racemic mixtures of stereoisomers isolated from natural sources, there has not been a comprehensive review of these intriguing racemic natural products. The discovery of many more natural racemates and their potential enzymatic sources in recent years allows us to describe the distribution and chemical diversity of this 'class of natural products' to enrich discussions on biosynthesis. In this Review, we describe the chemical classes, occurrence and distribution of pairs of enantiomers in nature and provide insights about recent advances in analytical methods used for their characterization. Special emphasis is on the biosynthesis, including plausible enzymatic and non-enzymatic formation of natural racemates, and their pharmacological significance.
Collapse
Affiliation(s)
- Gabin Thierry M. Bitchagno
- Agrobiosciences, Mohamed IV Polytechnic University, Ben-Guerir, Morocco
- Plant Sciences and Bioeconomy, Rothamsted Research, Harpenden, UK
- Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Vaderament-A. Nchiozem-Ngnitedem
- Department of Chemistry, University of Dschang, Dschang, Cameroon
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
- Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany
| | - Dennis Melchert
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Serge Alain Fobofou
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| |
Collapse
|
23
|
Arnaboldi S, Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A. Bipolar electrochemical rotors for the direct transduction of molecular chiral information. Biosens Bioelectron 2022; 218:114740. [PMID: 36179630 DOI: 10.1016/j.bios.2022.114740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022]
Abstract
Efficient monitoring of chiral information of bioactive compounds has gained considerable attention, due to their involvement in different biochemical processes. In this work, we propose a novel dynamic system for the easy and straightforward recognition of chiral redox active molecules and its possible use for the efficient measurement of enantiomeric excess in solution. The approach is based on the synergy between the localized enantioselective oxidation of only one of the two antipodes of a chiral molecule and the produced charge-compensating asymmetric proton flux along a bipolar electrode. The resulting clockwise or anticlockwise rotation is triggered only when the probe with the right chirality is present in solution. The angle of rotation shows a linear correlation with the analyte concentration, enabling the quantification of enantiomeric ratios in mixtures where the two antipodes are present in solution. This device was successfully used to simultaneously measure different ratios of the enantiomers of 3,4-dihydroxyphenylalanine and tryptophan. The versatility of the proposed approach opens up the possibility to use such a dynamic system as a straightforward (bio)analytical tool for the qualitative and quantitative discrimination of different redox active chiral probes.
Collapse
Affiliation(s)
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Rome, Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France.
| |
Collapse
|
24
|
Salinas G, Niamlaem M, Kuhn A, Arnaboldi S. Recent Advances in Electrochemical Transduction of Chiral Information. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Lv S, Ma C, Cong H, Shen Y, Yu B. Synthesis of 3,5-dichlorobenzene isocyanate-derived β-cyclodextrin and 3,5-dimethyl phenyl isocyanate-derived β-cyclodextrin chiral stationary phases and their applications in the separation of chiral compounds. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Zhang Y, Li M, Yan S, Zhou Y, Gao W, Yao B. Identification and separation of chiral particles by focused circularly polarized vortex beams. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1371-1377. [PMID: 36215580 DOI: 10.1364/josaa.462817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
The identification and separation of chiral substances are of importance in the biological, chemical, and pharmaceutical industries. Here, we demonstrate that a focused circularly polarized vortex beam can, in the focal plane, selectively trap and rotate chiral dipolar particles via radial and azimuthal optical forces. The handedness and topological charge of the incident beam have strong influence on identifying and separating behavior: left- and right-handed circular polarizations lead to opposite effects on the particle of trapping and rotating, while the sign of topological charge will change the particle's rotation direction. Such effects are a direct result of the handedness and topological charge manifesting themselves in the directions of the spin angular momentum (SAM) and Poynting vector. The research provides insight into the chiral light-matter interaction and may find potential application in the identification and separation of chiral nanoparticles.
Collapse
|
27
|
Ameur M, Sekkoum K, Gonazles F, Comez‐Carpintero J, Menendez C, Belboukhari N, Aboul‐Enein HY. Enantioseparation and antioxidant activity of novel diarylpyrazoline derivatives. Chirality 2022; 34:1389-1399. [DOI: 10.1002/chir.23493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Messaouda Ameur
- Bioactive Molecules and Chiral Separation Laboratory, Faculty of Exact Sciences University Tahri Mohamed of Bechar Bechar Algeria
| | - Khaled Sekkoum
- Bioactive Molecules and Chiral Separation Laboratory, Faculty of Exact Sciences University Tahri Mohamed of Bechar Bechar Algeria
| | - Francisco Gonazles
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia Universidad Complutense Madrid Spain
| | - Jorge Comez‐Carpintero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia Universidad Complutense Madrid Spain
| | - Carlos Menendez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia Universidad Complutense Madrid Spain
| | - Nasser Belboukhari
- Bioactive Molecules and Chiral Separation Laboratory, Faculty of Exact Sciences University Tahri Mohamed of Bechar Bechar Algeria
| | - Hassan Y. Aboul‐Enein
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical and Drug Industries Research Division National Research Center, Dokki Giza Egypt
| |
Collapse
|
28
|
Butyrskaya E, Izmailova E, Le D. Understanding structure of alanine enantiomers on carbon nanotubes in aqueous solutions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Döring A, Ushakova E, Rogach AL. Chiral carbon dots: synthesis, optical properties, and emerging applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:75. [PMID: 35351850 PMCID: PMC8964749 DOI: 10.1038/s41377-022-00764-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 05/05/2023]
Abstract
Carbon dots are luminescent carbonaceous nanoparticles that can be endowed with chiral properties, making them particularly interesting for biomedical applications due to their low cytotoxicity and facile synthesis. In recent years, synthetic efforts leading to chiral carbon dots with other attractive optical properties such as two-photon absorption and circularly polarized light emission have flourished. We start this review by introducing examples of molecular chirality and its origins and providing a summary of chiroptical spectroscopy used for its characterization. Then approaches used to induce chirality in nanomaterials are reviewed. In the main part of this review we focus on chiral carbon dots, introducing their fabrication techniques such as bottom-up and top-down chemical syntheses, their morphology, and optical/chiroptical properties. We then consider emerging applications of chiral carbon dots in sensing, bioimaging, and catalysis, and conclude this review with a summary and future challenges.
Collapse
Affiliation(s)
- Aaron Döring
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Elena Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| |
Collapse
|
30
|
Nikam S, S. K A. Enantioselective Separation of Amino Acids Using Chiral Polystyrene Microspheres Synthesized by a Post-Polymer Modification Approach. ACS POLYMERS AU 2022; 2:257-265. [PMID: 36855562 PMCID: PMC9955280 DOI: 10.1021/acspolymersau.2c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective separation of a racemic mixture of amino acids was achieved by chiral amino acid-modified polystyrene (PS) that was developed by a post-polymer modification approach. Styrene was polymerized using the reversible addition-fragmentation chain-transfer (RAFT) polymerization technique and further post-polymer modification was applied by Friedel-Crafts acylation reaction with chiral N-phthaloyl-l-leucine acid chloride to obtain the protected PS-l-Leu. The chiral PS (protected PS-l-Leu) was assembled into microspheres using a surfactant and was used for carrying out the enantioselective separation of amino acid racemic mixtures by enantioselective adsorption followed by a simple filtration process. Compared to as-precipitated chiral PS (protected PS-l-Leu) powder, the protected PS-l-Leu microspheres exhibited a better enantioselective separation efficiency (ee %). Furthermore, the protected PS-l-Leu was deprotected to obtain the amine-functionalized deprotected PS-l-Leu chiral PS, which was also assembled into microspheres and used for carrying out enantioselective separation. Deprotected PS-l-Leu-functionalized chiral PS microspheres could achieve up to 81.6 ee % for the enantioselective separation of a racemic mixture of leucine. This is one of the first reports of the synthesis of amino acid-modified chiral PS microspheres and their application to the simple filtration-based enantioselective separation of native amino acids from their racemic mixtures.
Collapse
Affiliation(s)
- Shrikant
B. Nikam
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India,Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar
Pradesh, India
| | - Asha S. K
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India,Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar
Pradesh, India,. Fax: 0091-20-25902615
| |
Collapse
|
31
|
Abuaf M, Mastai Y. Electrospinning of polymer nanofibers based on chiral polymeric nanoparticles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meir Abuaf
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan Israel
| |
Collapse
|
32
|
Tang J, Zhao L. Structural Control and Chiroptical Response in Intrinsically Tetra- and Pentanuclear Chiral Gold Clusters. Inorg Chem 2022; 61:4541-4549. [PMID: 35262331 DOI: 10.1021/acs.inorgchem.2c00256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling the synthesis of chiral metal clusters in the aspects of nuclearity number, metal-metal interaction, and spatial arrangement of metal atoms is crucial for establishing the correlation of detailed structural factors with chiroptical activity. Herein, a series of enantiopure gold complexes with nuclearity numbers ranging from 2 to 5 were constructed and structurally characterized. On the basis of the annulation reaction between two aurated μ2-imido nucleophilic units with various aldehydes, we finely adjusted the metal-metal interaction and torsion angles of a characteristic tetranuclear metal cluster by introducing different substituents into the resulting imidazolidine dianionic chiral skeleton. Further structural investigations, contrast experiments, and time-dependent density functional theory calculations confirmed that the chiroptical response of the acquired asymmetric metal clusters was mainly affected by the geometrically twisted arrangement of metal atoms. Finally, the tetranuclear gold cluster compound with the shortest intermetallic interaction and the largest torsion angle of a Au4 core showed the highest absorption anisotropy factor up to 2.2 × 10-3. In addition, the correlation of structural factors with the stability of chiral gold clusters was thoroughly evaluated by monitoring the CD, UV-vis, and NMR spectra at elevated temperatures. Insight into the relationship between the structural factors with the chiroptical property and stability of chiral gold clusters in this work will help us to design and achieve more stable chiral metal clusters and stimulate their practical applications in chiroptical functional materials.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
33
|
Farmanbordar-Ghadikolaei N, Kowsari E, Taromi FA, Vatanpour V, Abdollahi H. High-performance functionalized graphene oxide reinforced hyperbranched polymer nanocomposites for catalytic hydrolysis of a chiral ester in water. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Qu A, Xu L, Xu C, Kuang H. Chiral nanomaterials for biosensing, bioimaging, and disease therapies. Chem Commun (Camb) 2022; 58:12782-12802. [DOI: 10.1039/d2cc04420j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral plasmonic nanomaterials for biosensing, bioimaging and disease therapy.
Collapse
Affiliation(s)
- Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
35
|
Kőrösi M, Béri J, Arany D, Varga C, Székely E. Experimental investigation of chiral melting phase diagrams in high-pressure CO2 containing organic modifiers. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Abstract
Subnanometric materials (SNMs) refer to nanomaterials with sizes comparable to the diameter of common linear polymers or confined at the level of a single unit cell in at least one dimension, usually <1 nm. Conventional inorganic nanoparticles are usually deemed to be rigid, lacking self-adjustable conformation. In contrast, the size at subnanometric scale endows SNMs with flexibility analogous to polymers, resulting in their abundant self-adjustable conformation. It is noteworthy that some highly flexible SNMs can adjust their shape automatically to form chiral conformation, which is rare in conventional inorganic nanoparticles. Herein, we summarize the chiral conformation of SNMs and clarify the driving force behind their formation, in an attempt to establish a better understanding for the origin of flexibility and chirality at subnanometric scale. In addition, the general strategies for controlling the conformation of SNMs are elaborated, which might shed light on the efficient fabrications of chiral inorganic materials. Finally, the challenges facing this area as well as some unexplored topics are discussed.
Collapse
Affiliation(s)
- Biao Yu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
37
|
Le DT, Butyrskaya EV, Eliseeva TV. Sorption Interaction between Carbon Nanotubes and Histidine Enantiomers in Aqueous Solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s003602442111011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Yang S, Wu F, Yu F, Gu L, Wang H, Liu Y, Chu Y, Wang F, Fang X, Ding CF. Distinction of chiral penicillamine using metal-ion coupled cyclodextrin complex as chiral selector by trapped ion mobility-mass spectrometry and a structure investigation of the complexes. Anal Chim Acta 2021; 1184:339017. [PMID: 34625257 DOI: 10.1016/j.aca.2021.339017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Penicillamine (Pen) is a common chiral drug that is obtained from penicillin. Between the two enantiomers of Pen, only D-Pen can be used to treat cystinuria and rheumatoid arthritis while L-Pen is toxic. Therefore, it requires great efforts for the research of the rigorous analysis and distinction of the two enantiomers. The non-covalent combination of chiral molecules and chiral selectors (CSs) has been proved as a unique strategy for chiral distinction by ion mobility spectrometry in coupling with -mss spectrometry (IM-MS). Here, we developed a simple method to distinguish D, L-Pen by using special CSs for IM-MS separation. The CSs utilized here include cyclodextrins (CD) and linear chain oligosaccharides plus metal ions. We found that non-covalent complexes [Pen+β-CD + Li]+ could be easily formed by electrospray ionization of the mixture of the solution, and the chirality of Pen could be effectively recognized by measuring their mobilities due to the different collision cross collision sections of [D-Pen+β-CD + Li]+ and [L-Pen+β-CD + Li]+. A detailed analysis of [Pen+β-CD + Li]+ was then conducted by the optical rotation measurements and NMR experiments to reveal their structural differences. Furthermore, DFT calculation showed the differences of molecular conformation between the complexes. The results provide a new powerful method for fast analysis and recognition of chirality of Pen compounds by IM-MS.
Collapse
Affiliation(s)
- Shutong Yang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fanzhen Yu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Liancheng Gu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Huanhuan Wang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yiyi Liu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yanqiu Chu
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Fengyan Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xiang Fang
- Institute of Metrology, Beijing, 100084, China.
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
39
|
Wang Y, Wang X, Sun Q, Li R, Ji Y. Facile separation of enantiomers via covalent organic framework bonded stationary phase. Mikrochim Acta 2021; 188:367. [PMID: 34617147 DOI: 10.1007/s00604-021-04925-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Covalent organic frameworks (COFs), a type of crystalline polymers, have attracted increasing interest because of their controllability of geometry and functionality. Featuring infinitely extended networks and tremendous interaction sites, COFs emerge as a potential platform for separation science. Here, a novel chiral COF (β-CD COFBPDA) constructed by the imine condensation of 4,4'-biphenyldicarboxaldehyde and heptakis(6-amino-6-deoxy)-β-cyclodextrin was introduced into an electrochromatographic system via a photopolymerization method and applied to the separation of enantiomers. The structure and properties of as-synthesized β-CD COFBPDA were investigated by powder X-ray diffraction (PXRD) patterns, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and N2adsorption-desorption isotherms. It was proved that β-CD COFBPDA was provided with larger pore size and BET surface area. The β-CD COFBPDA coating endowed the chiral stationary phase with superior three-dimensional orientation, and realized satisfactory separation with improved selectivity and column efficiency for a dozen racemic drugs. Under the optimized conditions, homatropine, ondansetron, metoprolol, terbutaline, tulobuterol, and promethazine were all baseline separated with resolution values of 2.24, 2.03, 1.65, 1.62, 1.60, and 1.58, respectively. The results indicate the high perspective of COF modified stationary in enantioseparation.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xuehua Wang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Qiuyue Sun
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
40
|
|
41
|
Arbell N, Bauer K, Paz Y. Kinetic Resolution of Racemic Mixtures via Enantioselective Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39781-39790. [PMID: 34378379 PMCID: PMC8397234 DOI: 10.1021/acsami.1c12216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Despite the increasing demand for enantiopure drugs in the pharmaceutical industry, currently available chiral separation technologies are still lagging behind, whether due to throughput or to operability considerations. This paper presents a new kinetic resolution method, based on the specific adsorption of a target enantiomer onto a molecularly imprinted surface of a photocatalyst and its subsequent degradation through a photocatalytic mechanism. The current model system is composed of an active TiO2 layer, on which the target enantiomer is adsorbed. A photocatalytic suppression layer of Al2O3 is then grown around the adsorbed target molecules by atomic layer deposition. Following the removal of the templating molecules, molecularly imprinted cavities that correspond to the adsorbed species are formed. The stereospecific nature of these pores encourages enantioselective degradation of the undesired species through its enhanced adsorption on the photocatalyst surface, while dampening nonselective photocatalytic activity around the imprinted sites. The method, demonstrated with the dipeptide leucylglycine as a model system, revealed a selectivity factor of up to 7 and an enrichment of a single enantiomer to 85% from an initially racemic mixture. The wide range of parameters that can be optimized (photocatalyst, concentration of imprinted sites, type of passivating layer, etc.) points to the great potential of this method for obtaining enantiomerically pure compounds, beginning from racemic mixtures.
Collapse
Affiliation(s)
- Nitai Arbell
- The
Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Kesem Bauer
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yaron Paz
- The
Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- The
Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
42
|
Hoyas S, Roscioni OM, Tonneaux C, Gerbaux P, Cornil J, Muccioli L. Peptoids as a Chiral Stationary Phase for Liquid Chromatography: Insights from Molecular Dynamics Simulations. Biomacromolecules 2021; 22:2573-2581. [PMID: 34009963 DOI: 10.1021/acs.biomac.1c00302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptoids are peptide regioisomers with attractive structural tunability in terms of sequence and three-dimensional arrangement. Peptoids are foreseen to have a great potential for many diverse applications, including their utilization as a chiral stationary phase in chromatography. To achieve chiral recognition, a chiral side chain is required to allow specific interactions with a given enantiomer from a racemic mixture. One of the most studied chiral stationary phases, built with (S)-N-1-phenylethyl (Nspe) units, was shown to be successful in resolving racemic mixtures of binaphthyl derivatives. However, there is currently no description at the atomic scale of the factors favoring its enantioselectivity. Here, we take advantage of steered molecular dynamics simulations to mimic the elution process at the atomic scale and present evidence that the predominantly right-handed helical conformation of Nspe peptoids and their ability to form stronger hydrogen bonds with the (S) enantiomer are responsible for the chiral recognition of the popular chiral probe 2,2'-bihydroxy-1,1'-binaphthyl.
Collapse
Affiliation(s)
- Sébastien Hoyas
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons, 23 Place du Parc, Mons 7000, Belgium.,Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, 23 Place du Parc, Mons 7000, Belgium
| | - Otello M Roscioni
- Department of Industrial Chemistry ≪ Toso Montanari ≫, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.,MaterialX LTD, Bristol BS2 0XJ, U.K
| | - Corentin Tonneaux
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons, 23 Place du Parc, Mons 7000, Belgium
| | - Pascal Gerbaux
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, 23 Place du Parc, Mons 7000, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons, 23 Place du Parc, Mons 7000, Belgium
| | - Luca Muccioli
- Department of Industrial Chemistry ≪ Toso Montanari ≫, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
43
|
Gogoi A, Konwer S, Zhuo GY. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front Chem 2021; 8:611833. [PMID: 33644001 PMCID: PMC7902787 DOI: 10.3389/fchem.2020.611833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
A molecule, molecular aggregate, or protein that cannot be superimposed on its mirror image presents chirality. Most living systems are organized by chiral building blocks, such as amino acids, peptides, and carbohydrates, and any change in their molecular structure (i.e., handedness or helicity) alters the biochemical and pharmacological functions of the molecules, many of which take place at surfaces. Therefore, studying surface chirogenesis at the nanoscale is fundamentally important and derives various applications. For example, since proteins contain highly ordered secondary structures, the intrinsic chirality can be served as a signature to measure the dynamics of protein adsorption and protein conformational changes at biological surfaces. Furthermore, a better understanding of chiral recognition and separation at bio-nanointerfaces is helpful to standardize chiral drugs and monitor the synthesis of adsorbents with high precision. Thus, exploring the changes in surface chirality with polarized excitations would provide structural and biochemical information of the adsorbed molecules, which has led to the development of label-free and noninvasive measurement tools based on linear and nonlinear optical effects. In this review, the principles and selected applications of linear and nonlinear optical methods for quantifying surface chirality are introduced and compared, aiming to conceptualize new ideas to address critical issues in surface biochemistry.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
44
|
|
45
|
Lu N, Kutter JP. Recent advances in microchip enantioseparation and analysis. Electrophoresis 2020; 41:2122-2135. [PMID: 32949465 DOI: 10.1002/elps.202000242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022]
Abstract
This review summarizes recent developments (over the past decade) in the field of microfluidics-based solutions for enantiomeric separation and detection. The progress in various formats of microchip electrodriven separations, such as MCE, microchip electrochromatography, and multidimensional separation techniques, is discussed. Innovations covering chiral stationary phases, surface coatings, and modification strategies to improve resolution, as well as integration with detection systems, are reported. Finally, combinations with other microfluidic functional units are also presented and highlighted.
Collapse
Affiliation(s)
- Nan Lu
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Fan J, Kotov NA. Chiral Nanoceramics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906738. [PMID: 32500963 DOI: 10.1002/adma.201906738] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 05/27/2023]
Abstract
The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever-expanding toolbox of nanoscale engineering and self-organization provides a chirality-based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.
Collapse
Affiliation(s)
- Jinchen Fan
- Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Nicholas A Kotov
- Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
47
|
A novel process for the preparation of Cys-Si-NIPAM as a stationary phase of hydrophilic interaction liquid chromatography (HILIC). Talanta 2020; 218:121154. [DOI: 10.1016/j.talanta.2020.121154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/28/2023]
|
48
|
Nazarova A, Shurpik D, Padnya P, Mukhametzyanov T, Cragg P, Stoikov I. Self-Assembly of Supramolecular Architectures by the Effect of Amino Acid Residues of Quaternary Ammonium Pillar[5]arenes. Int J Mol Sci 2020; 21:E7206. [PMID: 33003555 PMCID: PMC7582551 DOI: 10.3390/ijms21197206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Novel water-soluble multifunctional pillar[5]arenes containing amide-ammonium-amino acid moiety were synthesized. The compounds demonstrated a superior ability to bind (1S)-(+)-10-camphorsulfonic acid (S-CSA) and methyl orange dye depending on the nature of the substituent, resulting in the formation one-to-one complexes with both guests. The formation of host-guest complexes was confirmed by ultraviolet (UV), circular dichroism (CD) and 1H NMR spectroscopy. This work demonstrates the first case of using S-CSA as a chiral template for the non-covalent self-assembly of architectures based on pillar[5]arenes. It was shown that pillar[5]arenes with glycine or L-alanine fragments formed aggregates with average hydrodynamic diameters (d) of 165 and 238 nm, respectively. It was established that the addition of S-CSA to the L-alanine-containing derivative led to the formation of micron-sized aggregates with d of 713 nm. This study may advance the design novel stereoselective catalysts and transmembrane amino acid channels.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Dmitriy Shurpik
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Pavel Padnya
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Timur Mukhametzyanov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Peter Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK;
| | - Ivan Stoikov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| |
Collapse
|
49
|
D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3419034. [PMID: 32685468 PMCID: PMC7320276 DOI: 10.1155/2020/3419034] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 06/06/2020] [Indexed: 01/18/2023]
Abstract
Two enantiomers of lactic acid exist. While L-lactic acid is a common compound of human metabolism, D-lactic acid is produced by some strains of microorganism or by some less relevant metabolic pathways. While L-lactic acid is an endogenous compound, D-lactic acid is a harmful enantiomer. Exposure to D-lactic acid can happen by various ways including contaminated food and beverages and by microbiota during some pathological states like short bowel syndrome. The exposure to D-lactic acid cannot be diagnosed because the common analytical methods are not suitable for distinguishing between the two enantiomers. In this review, pathways for D-lactic acid, pathological processes, and diagnostical and analytical methods are introduced followed by figures and tables. The current literature is summarized and discussed.
Collapse
|
50
|
Hobbs C, Řezanka P, Řezanka M. Cyclodextrin‐Functionalised Nanomaterials for Enantiomeric Recognition. Chempluschem 2020; 85:876-888. [DOI: 10.1002/cplu.202000187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Hobbs
- Department of Nanomaterials in Natural SciencesInstitute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Pavel Řezanka
- Department of Analytical ChemistryUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Michal Řezanka
- Department of Nanomaterials in Natural SciencesInstitute for Nanomaterials, Advanced Technologies and InnovationTechnical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| |
Collapse
|