1
|
Kang M, Koosha M, Li T, Geng X. The favorable role of oxidized pullulan as a multipurpose crosslinker in polyvinyl alcohol (PVA)/chitosan/collagen films for promoting human skin fibroblast viability, antibacterial activity and healing of methicillin-resistant Staphylococcus aureus (MRSA) infected wounds in mice. Int J Biol Macromol 2025:143435. [PMID: 40286968 DOI: 10.1016/j.ijbiomac.2025.143435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
In this study, pullulan was oxidized by NaIO4 into low, medium and high oxidation degrees (OPL1,OPL2,OPL3) and used as a crosslinker to enhance physicochemical and biological properties of the wound dressings based on polyvinyl alcohol(PVA)/chitosan/collagen (FPL,FOPL1,FOPL2,FOPL3). Physicochemical, mechanical and biological properties of OPL samples as well as crosslinked films were characterized. The results showed that OPL not only increased the cell viability of human skin fibroblasts but also promoted antibacterial activity. Fourier transform infrared spectroscopy, rheological and gel content results proved the crosslinking effect of OPL. Mechanical properties of FOPL2 and FOPL3 films was >2 times higher than FPL film. The viability of human skin fibroblast cells was higher than the control for all films, and antibacterial activity of the film FOPL3 was significantly higher compared to other films. Wound healing effect of FOPL3 film was evaluated in a methicillin-resistant staphylococcus aureus(MRSA) infected full-thickness skin defect model in mice. The results showed a significantly lower wound area after 7,10,14 days of treatment compared to the control group treated by normal saline. The findings of this research enlighten wound healing potentials of oxidized pullulan to be used as a multifunctional ingredient for the development of future skin care biomaterials.
Collapse
Affiliation(s)
- Mingzhen Kang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Mojtaba Koosha
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Northern Beauty Valley Cosmetics Institute, Jinan 250307, Shandong, China; Yi Mu E-Zhong Biotechnology (Shandong) Co., LTD, Jinan 250307, Shandong, China.
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Northern Beauty Valley Cosmetics Institute, Jinan 250307, Shandong, China; Yi Mu E-Zhong Biotechnology (Shandong) Co., LTD, Jinan 250307, Shandong, China.
| | - Xiwen Geng
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
2
|
Obeidat WM, Lahlouh IK. Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy. AAPS PharmSciTech 2025; 26:108. [PMID: 40244367 DOI: 10.1208/s12249-025-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The integration of nanotechnology into drug delivery systems holds great promise for enhancing pharmaceutical effectiveness. This approach enables precise targeting, controlled release, improved patient compliance, reduced side effects, and increased bioavailability. Nanoparticles are vital for transporting biomolecules-such as proteins, enzymes, genes, and vaccines-through various administration routes, including oral, intranasal, vaginal, buccal, and pulmonary. Among biodegradable polymers, chitosan, a linear polysaccharide derived from chitin, stands out due to its biocompatibility, safety, biodegradability, mucoadhesive properties, and ability to enhance permeation. Its cationic nature supports strong molecular interactions and provides antimicrobial, anti-inflammatory, and hemostatic benefits. However, its solubility, influenced by pH and ionic sensitivity, poses challenges requiring effective solutions. This review explores chitosan, its modified derivatives and chitosan nanoparticles mainly, focusing on nanoparticles physicochemical properties, drug release mechanisms, preparation methods, and factors affecting their mean hydrodynamic diameter (particle size). It highlights their application in drug delivery systems and disease treatments across various routes. Key considerations include drug loading capacity, zeta potential, and stability, alongside the impact of molecular weight, degree of deacetylation, and drug solubility on nanoparticle properties. Recent advancements and studies underscore chitosan's potential, emphasizing its modified derivatives'versatility in improving therapeutic outcomes.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan.
| | - Ishraq K Lahlouh
- Jordan University of Science and Technology, 3030, Irbid, 22110, Jordan
| |
Collapse
|
3
|
Antonio Hernández Martínez S, Tang P, Parra-Saldívar R, Melchor-Martínez EM, Czekster CM. Immobilized Nucleoside 2'-Deoxyribosyltransferases from Extremophiles for Nucleoside Biocatalysis. ACS OMEGA 2025; 10:1067-1076. [PMID: 39829460 PMCID: PMC11740241 DOI: 10.1021/acsomega.4c08364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
The synthesis of nucleosides is crucial for pharmaceutical and biotechnological applications, acting as drugs and as essential building blocks for numerous therapeutic agents. However, most enzymes employed in nucleoside biocatalysis are not recycled, possess limited stability, and have strict substrate selection for ribonucleosides or 2'deoxyribonucleosides. We employed 2'-deoxyribonucleoside transferase (NDT) enzymes from thermophilic and psychrophilic bacteria to demonstrate they can be immobilized to enhance specific activity, stability, and recyclability. NDT enzymes from Chroococcidiopsis thermalis (CtNDT), and Bacillus psychrosaccharolyticus (BpNDT) were immobilized by covalent attachment to chitosan beads. A double mutant of CtNDT, capable of generating 3'deoxyribonucleosides, showed remarkable and increased stability after immobilization compared to the same enzyme in the solution. Furthermore, we demonstrated the recyclability of immobilized biocatalysts, with a 10-fold improvement in reaction yield over 20 consecutive cycles, highlighting the practicality and sustainability of the developed immobilization method. We used our strategy to produce a pharmaceutically relevant 3'deoxyribonucleoside (2-fluoro-3'-deoxyadenosine). This highlights the importance of efficient immobilization techniques to enhance the catalytic properties of NDT enzymes, expanding their utility in biocatalysis.
Collapse
Affiliation(s)
| | - Peijun Tang
- School
of
Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Roberto Parra-Saldívar
- Facultad
de Medicina, Universidad Autónoma
de Nuevo León, Monterrey, Nuevo León 64460, México
- Megan Centre
of Applied Mycology (MCAM), Faculty of Engineering and Applied Sciences, Cranfield University,
Cranfield, Bedford MK43 0AL, U.K.
| | | | | |
Collapse
|
4
|
Yadav H, Malviya R, Kaushik N. Chitosan in biomedicine: A comprehensive review of recent developments. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 8:100551. [DOI: 10.1016/j.carpta.2024.100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
5
|
Maulvi FA, Patel AR, Shetty KH, Desai DT, Shah DO, Willcox MDP. Chitosan nanoparticles laden contact lenses for enzyme-triggered controlled delivery of timolol maleate: A promising strategy for managing glaucoma. Drug Deliv Transl Res 2024; 14:3212-3224. [PMID: 38407770 DOI: 10.1007/s13346-024-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
To improve drug bioavailability, eye drops can be replaced by drug-eluting contact lenses. However, issues of drug leaching from lenses during manufacture and storage, and sterilization, currently limit their commercial application. To address the issues, stimuli-(lysozyme)-sensitive chitosan nanoparticles were developed to provide controlled ocular drug delivery. Nanoparticles were prepared by ionic gelation and characterized by TEM, X-ray diffraction, DSC, and FTIR. In the flux study, conventional-soaked contact lenses (SM-TM-CL) showed high-burst release, while with direct drug-only laden contact lenses (DL-TM-CL) the drug was lost during extraction and sterilization, as well as having poor swelling and optical properties. The nanoparticle-laden contact lenses (TM-Cht-NPs) showed controlled release of timolol for 120 h in the presence of lysozyme, with acceptable opto-physical properties. In the shelf-life study, the TM-Cht-NPs contact lenses showed no leaching or alteration in the drug release pattern. In animal studies, the TM-NPs-CL lenses gave a high drug concentration in rabbit tear fluid (mean = 11.01 µg/mL for 56 h) and helped maintain a low intraocular pressure for 120 h. In conclusion, the chitosan nanoparticle-laden contact lenses demonstrated the potential application to treat glaucoma with acceptable opto-physical properties and addressed the issues of drug-leaching during sterilization and storage.
Collapse
Affiliation(s)
- Furqan A Maulvi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, 2052, Australia
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India
| | - Ashmi R Patel
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India
| | - Kiran H Shetty
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India
| | - Ditixa T Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India.
| | - Dinesh O Shah
- Department of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Mazlan NF, Sage EE, Mohamad NS, Mackeen MM, Tan LL. On-site sensing for aflatoxicosis poisoning via ultraviolet excitable aptasensor based on fluorinated ethylene propylene strip: a promising forensic tool. Sci Rep 2024; 14:17357. [PMID: 39075202 PMCID: PMC11286874 DOI: 10.1038/s41598-024-68264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The environmental contamination by extremophile Aspergillus species, i.e., Aflatoxin B1, is hardly controllable in Southeast Asia and Sub-Saharan Africa, which lack handling resources and controlled storage facilities. Acute aflatoxicosis poisoning from aflatoxin-prone dietary staples could cause acute hepatic necrosis, acute liver failure, and death. Here, as the cheaper, more straightforward, and facile on-site diagnostic kit is needed, we report an ultraviolet-excitable optical aptasensor based on a fluorinated ethylene propylene film strip. Molecular dynamics on the aptamer.AFB1 complex revealed that the AFB1 to the aptamer increases the overall structural stability, suggesting that the aptamer design is suitable for the intended application. Under various influencing factors, the proposed label-free strategy offers a fast 20-min on-site fabrication simplicity and 19-day shelf-life. The one-pot incubation provides an alternative to catalytic detection and exhibited 4 times reusability. The recovery of crude brown sugar, processed peanuts, and long-grain rice were 102.74 ± 0.41 (n = 3), 86.90 ± 3.38 (n = 3), and 98.50 ± 0.42 (n = 3), comparable to High-Performance Liquid Chromatography-Photodiode Array Detector results. This study is novel owing to the peculiar UV-active spectrum fingerprint and the convenient use of hydrophobic film strips that could promote breakthrough innovations and new frontiers for on-site/forensic detection of environmental pollutants.
Collapse
Affiliation(s)
- Nur-Fadhilah Mazlan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Edison Eukun Sage
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nur Syamimi Mohamad
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mukram Mohamed Mackeen
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
7
|
Özpınar FB, İspirli H, Kayacan S, Korkmaz K, Dere S, Sagdic O, Alkay Z, Tunçil YE, Ayyash M, Dertli E. Physicochemical and structural characterisation of a branched dextran type exopolysaccharide (EPS) from Weissella confusa S6 isolated from fermented sausage (Sucuk). Int J Biol Macromol 2024; 264:130507. [PMID: 38428765 DOI: 10.1016/j.ijbiomac.2024.130507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Exopolysaccharide (EPS) producing Lactic Acid Bacteria (LAB) species can be presented in distinct environments. In this study, Turkish fermented sausage (sucuk) was tested for the presence of EPS producer LAB strains and slimy-mucoid colonies were selected for further tests. Among the isolates, Weissella confusa strain S6 was identified and tested for the physicochemical characterisation of its EPS. This strain was found to produce 0.74 g L-1 of EPS in modified BHI medium conditions. Structural characterisation of EPS S6 by 1H and 13C NMR demonstrated that EPS S6 was a highly branched dextran type glucan formed by mainly (1 → 2)-linked α-d-glucose units together with low levels of (1 → 3)-linked α-d-glucose units as branching points. This structure was further confirmed by methylation analysis detected by GC-MS. An average molecular weight of 8 × 106 Da was detected for dextran S6. The FTIR analysis supported the dextran structure and revealed the presence of distinct functional groups within dextran S6 structure. A strong thermal profile was observed for dextran S6 detected by DSC and TGA analysis and dextran S6 revealed a degradation temperature of 289 °C. In terms of physical status, dextran S6 showed amorphous nature detected by XRD analysis. SEM analysis of dextran S6 demonstrated its rough, compact and porous morphology whereas AFM analysis of dextran S6 detected in its water solution showed the irregularity with no clear cross-link within the dextran chains. These technological features of dextran S6 suggests its potential to be used for in situ or ex situ application during meat fermentations.
Collapse
Affiliation(s)
- Fatma Beyza Özpınar
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Istanbul, Turkiye
| | - Hümeyra İspirli
- Bayburt University, Engineering Faculty, Food Engineering Department, Bayburt, Turkiye
| | - Selma Kayacan
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Istanbul, Turkiye
| | - Kader Korkmaz
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Istanbul, Turkiye
| | - Sevda Dere
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Istanbul, Turkiye
| | - Osman Sagdic
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Istanbul, Turkiye
| | - Zuhal Alkay
- Necmettin Erbakan University, Engineering Faculty, Food Engineering Department, Konya, Turkiye
| | - Yunus Emre Tunçil
- Necmettin Erbakan University, Engineering Faculty, Food Engineering Department, Konya, Turkiye
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Enes Dertli
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Istanbul, Turkiye.
| |
Collapse
|
8
|
Diaz-Gonzalez J, Arriaga LG, Casanova-Moreno JR. Probing the influence of crosslinkers on the properties, response, and degradation of enzymatic hydrogels for electrochemical glucose biosensing through fluorescence analysis. RSC Adv 2024; 14:9514-9528. [PMID: 38516160 PMCID: PMC10953846 DOI: 10.1039/d4ra00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Drop-cast crosslinked hydrogels are a common platform for enzymatic electrochemical biosensors. Despite the widespread use of these complex systems, there are still several questions about how their physicochemical properties affect their performance, stability, and reproducibility. In this work, first-generation faradaic biosensors composed of glucose oxidase and branched polyethyleneimine (BPEI) are prepared using either glutaraldehyde (GA) or ethylene glycol diglycidyl ether (EGDGE) as crosslinkers. While EGDGE gels present an increasing electrochemical response with increasing crosslinker concentration, the current of GA gels decreases at high crosslinker concentration probably due to the hampered diffusion on tightly networked gels. We compared different strategies to use fluorescence microscopy to gain insight into the gel structure either by labeling the gel components with fluorophores or taking advantage of the intrinsic fluorescence of the imines formed upon crosslinking with GA. By monitoring the fluorescence of the crosslinking bonds and the electrochemical response, we demonstrate that hydrolysis, a common hydrogel degradation mechanism, is not responsible for the loss of electrical current over time in gels prepared with glutaraldehyde. Most hydrogel-based electrochemical biosensor studies do not perform specific experiments to determine the cause of the degradation and instead just infer it from the dependence of the current on the preparation conditions (most commonly concentrations). We show that, by taking advantage of several analytical techniques, it is possible to gain more knowledge about the degradation mechanisms and design better enzymatic biosensors.
Collapse
Affiliation(s)
- Jancarlo Diaz-Gonzalez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| | - Jannu R Casanova-Moreno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| |
Collapse
|
9
|
Parrilla M, Detamornrat U, Domínguez-Robles J, Tunca S, Donnelly RF, De Wael K. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment. ACS Sens 2023; 8:4161-4170. [PMID: 37856156 DOI: 10.1021/acssensors.3c01381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Wearable devices based on microneedle (MN) technology have recently emerged as tools for in situ transdermal sensing or delivery in interstitial fluid (ISF). Particularly, MN-based electrochemical sensors allow the continuous monitoring of analytes in a minimally invasive manner through ISF. Exogenous small molecules found in ISF such as therapeutic drugs are ideal candidates for MN sensors due to their correlation with blood levels and their relevance for the optimal management of personalized therapies. Herein, a hollow MN array patch is modified with conductive pastes and functionalized with cross-linked chitosan to develop an MN-based voltammetric sensor for continuous monitoring of methotrexate (MTX). Interestingly, the chitosan coating avoids biofouling while enabling the adsorption of MTX at the electrode's surface for sensitive analysis. The MN sensor exhibits excellent analytical performance in vitro with protein-enriched artificial ISF and ex vivo under a Franz diffusion cell configuration. The MN sensor shows a linear range from 25 to 400 μM, which fits within the therapeutic range of high-dose MTX treatment for cancer patients and an excellent continuous operation for more than two days. Moreover, an iontophoretic hollow MN array patch is developed with the integration of both the anode and cathode in the single MN array patch. The ex vivo characterization demonstrates the transdermal on-demand drug delivery of MTX. Overall, the combination of both MN patches represents impactful progress in closed-loop systems for therapeutic drug management in disorders such as cancer, rheumatoid arthritis, or psoriasis.
Collapse
Affiliation(s)
- Marc Parrilla
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Usanee Detamornrat
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Juan Domínguez-Robles
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, 97 Lisburn Road, Seville 41004, Spain
| | - Sensu Tunca
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
10
|
Agarwala P, Ghosh A, Hazarika P, Acharjee D, Ghosh S, Rout D, Sasmal DK. Unraveling the Interaction of Diflunisal with Cyclodextrin and Lysozyme by Fluorescence Spectroscopy. J Phys Chem B 2023; 127:9710-9723. [PMID: 37917720 DOI: 10.1021/acs.jpcb.3c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the interaction between the drug:carrier complex and protein is essential for the development of a new drug-delivery system. However, the majority of reports are based on an understanding of interactions between the drug and protein. Here, we present our findings on the interaction of the anti-inflammatory drug diflunisal with the drug carrier cyclodextrin (CD) and the protein lysozyme, utilizing steady-state and time-resolved fluorescence spectroscopy. Our findings reveal a different pattern of molecular interaction between the inclusion complex of β-CD (β-CD) or hydroxypropyl-β-CD (HP-β-CD) (as the host) and diflunisal (as the guest) in the presence of protein lysozyme. The quantum yield for the 1:2 guest:host complex is twice that of the 1:1 guest:host complex, indicating a more stable hydrophobic microenvironment created in the 1:2 complex. Consequently, the nonradiative decay pathway is significantly reduced. The interaction is characterized by ultrafast solvation dynamics and time-resolved fluorescence resonance energy transfer. The solvation dynamics of the lysozyme becomes 10% faster under the condition of binding with the drug, indicating a negligible change in the polar environment after binding. In addition, the fluorescence lifetime of diflunisal (acceptor) is increased by 50% in the presence of the lysozyme (donor), which indicates that the drug molecule is bound to the binding pocket on the surface of the protein, and the average distance between active tryptophan in the hydrophobic region and diflunisal is calculated to be approximately 50 Å. Excitation and emission matrix spectroscopy reveals that the tryptophan emission increases 3-5 times in the presence of both diflunisal and CD. This indicates that the tryptophan of lysozyme may be present in a more hydrophobic environment in the presence of both diflunisal and CD. Our observations on the interaction of diflunisal with β-CD and lysozyme are well supported by molecular dynamics simulation. Results from this study may have an impact on the development of a better drug-delivery system in the future. It also reveals a fundamental molecular mechanism of interaction of the drug-carrier complex with the protein.
Collapse
Affiliation(s)
- Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Guwahati Unit, Guwahati, Assam 781032, India
| | - Priyanka Hazarika
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| | - Shirsendu Ghosh
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Hyderabad Campus, Hyderabad 502329, India
| | - Debasish Rout
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
11
|
de Castro R, Kandhola G, Kim JW, Moore QC, Thompson AK. Fabrication of Chitosan/PEGDA Bionanocomposites for Enhanced Drug Encapsulation and Release Efficiency. Mol Pharm 2023; 20:5532-5542. [PMID: 37774674 DOI: 10.1021/acs.molpharmaceut.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Drug delivery systems (DDS) have evolved in the last decades with the development of hydrogels and particles. However, challenges such as high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be significant hurdles faced by such DDSs. Particles and hydrogels can be specifically designed for targeted DDSs to mitigate some of these problems. This study developed chitosan (Cs) particles (Ps) and composite films using poly(ethylene glycol) diacrylate (PEGDA) as a copolymer to encapsulate gentamicin (GtS) for drug delivery. We demonstrated that lysozyme degrades the chitosan β-1,4 glycosidic bonds to release GtS. PEGDA increased drug encapsulation efficiency by shielding the repelling forces of like charges between Cs and GtS. The data show that PEGDA does not hinder enzymatic degradation while increasing drug encapsulation efficiency and producing more homogeneous particles. Additionally, we utilized Michael's reaction to cross-link Cs, CsPs, and PEGDA to produce a film designed for drug delivery. The film is an anchor for CsPs to prevent premature drug release. The cross-linking of Cs and PEGDA does not affect lysozyme activity, and CsPs could successfully release GtS without affecting GtS activity.
Collapse
Affiliation(s)
- Raquel de Castro
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Gurshagan Kandhola
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science & Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Quincy C Moore
- Department of Biology, Prairie View A&M University, Prairie View, Texas 77446, United States
| | - Audie K Thompson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, Mississippi 39180, United States
| |
Collapse
|
12
|
Fujita S, Takeda H, Noda J, Wakamori H, Kono H. Chitosan Hydrogels Crosslinked with Oxidized Sucrose for Antimicrobial Applications. Gels 2023; 9:786. [PMID: 37888359 PMCID: PMC10606239 DOI: 10.3390/gels9100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Oxidized sucrose (OS) reacts with amino-group-containing polysaccharides, including chitosan, without catalyst, resulting in hydrogels entirely composed of carbohydrates. The presence of imine bonds with low structural stabilities and unreacted aldehydes in the structures of these hydrogels hinder their application as biomaterials. Therefore, herein, the chitosan hydrogels (CTSGs) obtained after the crosslinking of chitosan with OS were reduced using sodium borohydride to convert imine bonds to secondary amines and aldehydes to alcohols. The structures of CTSGs were comprehensively characterized using Fourier transform infrared and 13C nuclear magnetic resonance spectroscopies, and the results implied that the degree of crosslinking (CR) depended on the OS feed amount used during CTSG preparation. The properties of CTSGs were significantly dependent on CR; with an increase in CR, the thermal stabilities and dynamic moduli of CTSGs increased, whereas their swelling properties decreased. CTSGs exhibited antimicrobial properties against the gram-negative bacterium Escherichia coli, and their performances were also dependent on CR. The results indicated the potentials of CTSGs completely based on carbohydrates as antimicrobial hydrogels for various medical and pharmaceutical applications. We believe that this study will contribute to the development of hydrogels for application in the food, medical, and pharmaceutical fields.
Collapse
Affiliation(s)
- Sayaka Fujita
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
| | - Hijiri Takeda
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
| | - Junki Noda
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
| | - Haruki Wakamori
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
- Hokkaido Soda Co., Ltd., Numanohata 134-122, Tomakomai 059-1364, Hokkaido, Japan
| | - Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan; (S.F.)
| |
Collapse
|
13
|
Nguyen THP, Le NAT, Tran PT, Bui DD, Nguyen QH. Preparation of water-soluble chitosan oligosaccharides by oxidative hydrolysis of chitosan powder with hydrogen peroxide. Heliyon 2023; 9:e19565. [PMID: 37681167 PMCID: PMC10480655 DOI: 10.1016/j.heliyon.2023.e19565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Chitosan (CS) is only soluble in weak acid medium, thereby limiting its wide utilisation in the field of biomedicine, food, and agriculture. In this report, we present a method for preparing water-soluble CS oligosaccharides (COSs) at high concentration (∼10%, w/v) via the oxidative hydrolysis of CS powder with molecular weight (Mw) ∼90,000 g/mol) in 2% H2O2 solution at ambient temperature by a two-step process, namely, the heterogeneous hydrolysis step and homogeneous hydrolysis step. The resultant COSs were characterised by gel permeation chromatography (GPC), fourier transforms infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), proton nuclear magnetic resonance spectroscopy (1H NMR) and X-ray diffraction (XRD) spectroscopy. The resulting products were composed of COSs (Mw of 2000-6600 g/mol) that were completely soluble in water. The results also indicated that the structure of COSs was almost unchanged compared with the original CS unless Mw was low. Accordingly, COSs with low Mw (∼2000 g/mol) and high concentration (10%, w/v) could be effectively prepared by the oxidative hydrolysis of CS powder using hydrogen peroxide under ambient conditions.
Collapse
Affiliation(s)
- Trong Hoanh Phong Nguyen
- Graduate University of Science and Technology-Vietnam Academy of Science and Technology, Hanoi 10000, Viet Nam
- Vietnam Atomic Energy Institute, Hanoi 10000, Viet Nam
| | - Nghiem Anh Tuan Le
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Phuoc Tho Tran
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Duy Du Bui
- Graduate University of Science and Technology-Vietnam Academy of Science and Technology, Hanoi 10000, Viet Nam
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | | |
Collapse
|
14
|
Parveen S, Ali MS, Al-Lohedan HA, Hoti N, Tabassum S. Molecular interaction of lysozyme with therapeutic drug azithromycin: Effect of sodium dodecyl sulfate on binding profile. Int J Biol Macromol 2023; 242:124844. [PMID: 37210056 DOI: 10.1016/j.ijbiomac.2023.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
This paper describes an inclusive biophysical study elucidating the interaction of therapeutic drug azithromycin (Azith) with hen egg white lysozyme (HEWL). Spectroscopic and computational tools have been employed to study the interaction of Azith with HEWL at pH 7.4. The fluorescence quenching constant values (Ksv) exhibited a decrease with the increase in temperature which revealed the occurrence of static quenching mechanism between Azith and HEWL. The thermodynamic data demonstrated that hydrophobic interactions were predominantly involved in the Azith-HEWL interaction. The negative value of standard Gibbs free energy (ΔG°) stated that the Azith-HEWL complex formed via spontaneous molecular interactions. The effect of sodium dodecyl sulfate (SDS) surfactant monomers on the binding propensity of Azith with HEWL was insignificant at lower concentrations however the binding significantly decreased at increased concentrations of the former. Far-UV CD data revealed alteration in the secondary structure of HEWL in the presence of Azith and the overall HEWL conformation changed. Molecular docking results revealed that the binding of Azith with HEWL takes place through hydrophobic interactions and hydrogen bonds.
Collapse
Affiliation(s)
- Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Sajid Ali
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, the Kingdom of Saudi Arabia
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, the Kingdom of Saudi Arabia
| | | | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
15
|
Zhang K, Liu Y, Shi X, Zhang R, He Y, Zhang H, Wang W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int J Biol Macromol 2023:125192. [PMID: 37276897 DOI: 10.1016/j.ijbiomac.2023.125192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Hydrogels is a hydrophilic, cross-linked polymer of three-dimensional network structures. The application of hydrogels prepared from a single polymer in the biomedical field has many drawbacks. The functional blend of polyvinyl alcohol and chitosan allows hydrogels to have better and more desirable properties than those produced from a single polymer, which is a good biomaterial for development and design. In this paper, we have reviewed the progress in the application of polyvinyl alcohol/chitosan composite hydrogels in various medical fields, the different cross-linking agents and cross-linking methods, and the research progress in the optimization of composite hydrogels for their subsequent wide range of biomedical applications.
Collapse
Affiliation(s)
- Kui Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | - Yan Liu
- Department of Gynecology, First Affiliated Hospital of Xi 'an Medical College, Xi'an 710000, China
| | - Xuewen Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Ruihao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yixiang He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Wenji Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
16
|
Cytotoxic and Bactericidal Effects of Inhalable Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticles with Traces of Zinc Oxide. Int J Mol Sci 2023; 24:ijms24054532. [PMID: 36901963 PMCID: PMC10002581 DOI: 10.3390/ijms24054532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The bactericidal effects of inhalable ciprofloxacin (CIP) loaded-poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) with traces of zinc oxide (ZnO) were investigated against clinical strains of the respiratory pathogens Staphylococcus aureus and Pseudomonas aeruginosa. CIP-loaded PEtOx NPs retained their bactericidal activity within the formulations compared to free CIP drugs against these two pathogens, and bactericidal effects were enhanced with the inclusion of ZnO. PEtOx polymer and ZnO NPs did not show bactericidal activity alone or in combination against these pathogens. The formulations were tested to determine the cytotoxic and proinflammatory effects on airway epithelial cells derived from healthy donors (NHBE), donors with chronic obstructive pulmonary disease (COPD, DHBE), and a cell line derived from adults with cystic fibrosis (CFBE41o-) and macrophages from healthy adult controls (HCs), and those with either COPD or CF. NHBE cells demonstrated maximum cell viability (66%) against CIP-loaded PEtOx NPs with the half maximal inhibitory concentration (IC50) value of 50.7 mg/mL. CIP-loaded PEtOx NPs were more toxic to epithelial cells from donors with respiratory diseases than NHBEs, with respective IC50 values of 0.103 mg/mL for DHBEs and 0.514 mg/mL for CFBE41o- cells. However, high concentrations of CIP-loaded PEtOx NPs were toxic to macrophages, with respective IC50 values of 0.002 mg/mL for HC macrophages and 0.021 mg/mL for CF-like macrophages. PEtOx NPs, ZnO NPs, and ZnO-PEtOx NPs with no drug were not cytotoxic to any cells investigated. The in vitro digestibility of PEtOx and its NPs was investigated in simulated lung fluid (SLF) (pH 7.4). The analysed samples were characterized using Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. Digestion of PEtOx NPs commenced one week following incubation and was completely digested after four weeks; however, the original PEtOx was not digested after six weeks of incubation. The outcome of this study revealed that PEtOx polymer could be considered an efficient drug delivery carrier in respiratory linings, and CIP-loaded PEtOx NPs with traces of ZnO could be a promising addition to inhalable treatments against resistant bacteria with reduced toxicity.
Collapse
|
17
|
Sulej J, Osińska-Jaroszuk M, Jaszek M, Olszewska A, Belcarz A, Piątek-Gołda W. Chitosan as a Promising Support of a CDH Activity Preservation System for Biomedical and Industrial Applications. Int J Mol Sci 2023; 24:4535. [PMID: 36901965 PMCID: PMC10003442 DOI: 10.3390/ijms24054535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoprotein catalyzing the oxidation reaction of β-1,4-glycosidic-bonded sugars (lactose or cellobiose), which results in the formation of aldobionic acids and hydrogen peroxide as a byproduct. The biotechnological application of CDH requires the immobilization of the enzyme on a suitable support. As a carrier of natural origin used for CDH immobilization, chitosan seems to increase the catalytic potential of the enzyme, especially for applications as packaging in the food industry and as a dressing material in medical applications. The present study aimed to immobilize the enzyme on chitosan beads and determine the physicochemical and biological properties of immobilized CDHs obtained from different fungal sources. The chitosan beads with immobilized CDHs were characterized in terms of their FTIR spectra or SEM microstructure. The most effective method of immobilization in the proposed modification was the covalent bonding of enzyme molecules using glutaraldehyde, resulting in efficiencies ranging from 28 to 99%. Very promising results, compared to free CDH, were obtained in the case of antioxidant, antimicrobial, and cytotoxic properties. Summarizing the obtained data, chitosan seems to be a valuable material for the development of innovative and effective immobilization systems for biomedical applications or food packaging, preserving the unique properties of CDH.
Collapse
Affiliation(s)
- Justyna Sulej
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Anna Olszewska
- Department of Human Physiology, Medical University of Lublin, 11 Radziwiłowska Street, 20-080 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Wiktoria Piątek-Gołda
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
18
|
Study of stability, kinetic parameters and release of lysozyme immobilized on chitosan microspheres by crosslinking and covalent attachment for cotton fabric functionalization. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
19
|
Chen YT, Huang PY, Chai CY, Yu S, Hsieh YL, Chang HC, Kuo CW, Lee YC, Yu HS. Early detection of the initial stages of LED light-triggered non-alcoholic fatty liver disease by wax physisorption kinetics-Fourier transform infrared imaging. Analyst 2023; 148:643-653. [PMID: 36621928 DOI: 10.1039/d2an01546c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Light-emitting diodes (LEDs), particularly in the blue waveform range, are regarded as a major source of circadian rhythm dysregulation. A circadian rhythm dysregulation induced by blue LEDs is associated with non-alcoholic fatty liver disease (NAFLD). Hepatocellular accumulation of lipids is a key event in the early stages of NAFLD. Kupffer cells (KCs) have been reported to be lost in the early onset of NAFLD followed by an inflammatory reaction that alters the liver response to lipid overload. This study focused on the detection of the initial stages (subpathological stages) of LED light-triggered NAFLD. Mice were exposed to either blue or white LED irradiation for 44 weeks. Synchrotron radiation-based Fourier-transform infrared microspectroscopy (SR-FTIRM) and wax physisorption kinetic-Fourier transform infrared (WPK-FTIR) imaging were used to evaluate the ratio of lipid to protein and the glycosylation of glycoprotein, respectively. Immunohistopathological studies on KCs and circadian-related proteins were performed. Although liver biopsy showed normal pathology, an SR-FTIRM study revealed a high hepatic lipid-to-protein ratio after receiving LED illumination. The results of WPK-FTIR demonstrated that a high inflammation index was found in the high irradiance of the blue LED illumnation group. These groups showed a decrease in KC number and an increase in Bmal1 and Reverbα circadian protein expression. These findings provide explanations for the reduction of KCs without subsequent inflammation. A significant reduction of Per2 and Cry1 expression is correlated with the findings of WPK-FTIR imaging. WPK-FTIR is a sensitive method for detecting initiative stages of NAFLD induced by long-term blue LED illumination.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Yu Huang
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. .,Department of Dermatology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hao-Chao Chang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30205, Taiwan
| | - Chin-Wei Kuo
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yao-Chang Lee
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Department of Optics and Photonics, National Central University, Taoyuan 320317, Taiwan.,Chemistry Department, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. .,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 35053, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
20
|
Hoseinpour Kouhestany R, Tamaddon A, Ahmad Panahi H, Afshar Ebrahimi A, Amiri R. Hyper-branched nanodendrimer as a novel solid-phase extraction sorbent followed by three phase hollow fiber microextraction for trace separation of exemestane. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Bat-Amgalan M, Miyamoto N, Kano N, Yunden G, Kim HJ. Preparation and Characterization of Low-Cost Ceramic Membrane Coated with Chitosan: Application to the Ultrafine Filtration of Cr(VI). MEMBRANES 2022; 12:membranes12090835. [PMID: 36135854 PMCID: PMC9504684 DOI: 10.3390/membranes12090835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 05/12/2023]
Abstract
In this work, low-cost ceramic membranes (CMs) were prepared from ultrafine starting powders such as kaolin, clay, and starch by a dry compaction method. The ceramic membranes were sintered at different temperatures and times and were characterized by XRD, XRF, TG-DTA, SEM-EDS, N2-BET, water absorption, compressive strength, and pure water flux. The optimal membrane, sintered at 1000 °C for 3 h, possessed water absorption of 27.27%, a compressive strength of 31.05 MPa, and pure water flux of 20.74 L/h m2. Furthermore, chitosan crosslinked with glutaraldehyde was coated on the surface of the ceramic membrane by the dip coating method, and the pore size of the chitosan-coated ceramic membrane (CCCM) was 16.24 nm. Eventually, the separation performance of this membrane was assessed for the removal of chromium(VI) from aqueous solution. The ultrafine filtration of Cr(VI) was studied in the pH range of 2-7. The maximum removal of Cr(VI) was observed to be 71.25% with a pH of 3. The prepared CCCM showed good membrane properties such as mechanical stability and ultrafine structure, which have important applications for the treatment of wastewater including such heavy metals.
Collapse
Affiliation(s)
- Munkhpurev Bat-Amgalan
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Sciences and Technology, Ulaanbaatar 14191, Mongolia
| | - Naoto Miyamoto
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
| | - Naoki Kano
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
- Correspondence: ; Tel.: +81-025-262-7218
| | - Ganchimeg Yunden
- Department of Chemical Engineering, School of Applied Sciences, Mongolian University of Sciences and Technology, Ulaanbaatar 14191, Mongolia
| | - Hee-Joon Kim
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, Hachioji 192-0015, Japan
| |
Collapse
|
22
|
Ma J, Wang Y, Lu R. Mechanism and Application of Chitosan and Its Derivatives in Promoting Permeation in Transdermal Drug Delivery Systems: A Review. Pharmaceuticals (Basel) 2022; 15:ph15040459. [PMID: 35455456 PMCID: PMC9033127 DOI: 10.3390/ph15040459] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/15/2023] Open
Abstract
The mechanisms and applications of chitosan and its derivatives in transdermal drug delivery to promote drug permeation were reviewed in this paper. Specifically, we summarized the permeation-promoting mechanisms of chitosan and several of its derivatives, including changing the structure of stratum corneum proteins, acting on the tight junction of granular layers, affecting intercellular lipids, and increasing the water content of stratum corneum. These mechanisms are the reason why chitosan and its derivatives can increase the transdermal permeation of drugs. In addition, various transdermal preparations containing chitosan and its derivatives were summarized, and their respective advantages were expounded, including nanoparticles, emulsions, transdermal microneedles, nanocapsules, transdermal patches, transdermal membranes, hydrogels, liposomes, and nano-stents. The purpose of this review is to provide a theoretical basis for the further and wider application of chitosan in transdermal drug delivery systems. In the future, research results of chitosan and its derivatives in transdermal drug delivery need more support from in vivo experiments, as well as good correlation between in vitro and in vivo experiments. In conclusion, the excellent permeability-promoting property, good biocompatibility, and biodegradability of chitosan and its derivatives make them ideal materials for local transdermal drug delivery.
Collapse
|
23
|
Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery - A review of their properties and fates. Carbohydr Polym 2022; 277:118784. [PMID: 34893219 DOI: 10.1016/j.carbpol.2021.118784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022]
Abstract
Polysaccharides can be elite carriers for therapeutic molecules due to their versatility and low probability to trigger toxicity and immunogenic responses. Local and systemic therapies can be achieved through particle pulmonary delivery, a promising non-invasive alternative. Successful pulmonary delivery requires particles with appropriate flowability to reach alveoli and avoid premature clearance mechanisms. Polysaccharides can form micro-, nano-in-micro-, and large porous particles, aerogels, and hydrogels. Herein, the characteristics of polysaccharides used in drug formulations for pulmonary delivery are reviewed, providing insights into structure-function relationships. Charged polysaccharides can confer mucoadhesion, whereas the ability for specific sugar recognition may confer targeting capacity for alveolar macrophages. The method of particle preparation must be chosen considering the properties of the components and the delivery device to be utilized. The fate of polysaccharide-based carriers is dependent on enzyme-triggered hydrolytic and/or oxidative mechanisms, allowing their complete degradation and elimination through urine or reutilization of released monosaccharides.
Collapse
Affiliation(s)
- Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lisete M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Sarmento
- INEB - Institute of Biomedical Engineering Instituto, University of Porto, 4150-180 Porto, Portugal; i3S - Institute for Research & Innovation in Health, University of Porto, 4150-180 Porto, Portugal; CESPU - Institute for Research and Advanced Training in Health Sciences and Technologies, 4585-116 Gandra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
24
|
Taghizadeh M, Taghizadeh A, Yazdi MK, Zarrintaj P, Stadler FJ, Ramsey JD, Habibzadeh S, Hosseini Rad S, Naderi G, Saeb MR, Mozafari M, Schubert US. Chitosan-based inks for 3D printing and bioprinting. GREEN CHEMISTRY 2022; 24:62-101. [DOI: 10.1039/d1gc01799c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
3D printing gave biomedical engineering great potential to mimic native tissues, accelerated regenerative medicine, and enlarged capacity of drug delivery systems; thus, advanced biomimetic functional biomaterial developed by 3D-printing for tissue engineering demands.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Ali Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-39675, Iran
| | - Somayeh Hosseini Rad
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC, H3C 3A7, Canada
| | - Ghasem Naderi
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11, /12 80-233, Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
25
|
Varamini M, Zamani H, Hamedani H, Namdari S, Rastegari B. Immobilization of horseradish peroxidase on lysine-functionalized gum Arabic-coated Fe 3O 4 nanoparticles for cholesterol determination. Prep Biochem Biotechnol 2021; 52:737-747. [PMID: 34871533 DOI: 10.1080/10826068.2021.1992780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Horseradish Peroxidase (HRP) is ranked as one of the most important industrial enzymes that is extensively used in industry. Cholesterol is routinely detected indirectly by cholesterol oxidase in the presence of O2, liberating H2O2 as a by-product. The H2O2 content is determined through the HRP activity in the presence of a redox dye, producing a red colored quinoneimine which can be measured quantitatively. Herein, we have designed a magnetic nanoparticle for reusing and easily separating HRP as the most expensive compartment for the low-cost cholesterol assay. METHODS The gum Arabic coated magnetic nanoparticles were functionalized with L-lysine linker for maintaining protein flexibility on nanoparticle. Enzyme-loaded nanoparticles were characterized by TEM, FTIR, DLS, VSM and XRD analysis. RESULTS The immobilization efficiency was ∼65% and the immobilized HRP retained 60% of its activity after 8 times reuse. The optimum pH and thermal stability shifted from 7.0 to 8.0 and 60 to 70 °C after immobilization, respectively. Storage stability of HRP was improved by 10%, at 4 °C for 60 days. Immobilized HRP showed more catalytic activity in presence of Fe2+, Ca2+ and Na+. The designed system has cholesterol detection linearity range from 0.2 to 5.0 mM and detection limit of 0.08 mM and acceptable correlation coefficient of 0.9973 and 0.9982 on sample serum using both chromogens. CONCLUSION The HRP-loaded magnetic nanoparticles are capable of being used as a cost-effective system for cholesterol determination in laboratory due to its reusability and stability benefits.
Collapse
Affiliation(s)
- Morteza Varamini
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Zamani
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Hale Hamedani
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Sepide Namdari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Hassanpour M, Jafari H, Sharifi S, Rezaie J, Lighvan ZM, Mahdavinia GR, Gohari G, Akbari A. Salicylic acid-loaded chitosan nanoparticles (SA/CTS NPs) for breast cancer targeting: Synthesis, characterization and controlled release kinetics. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Thermoresponsive Chitosan-Grafted-Poly( N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics 2021; 13:1654. [PMID: 34683947 PMCID: PMC8539247 DOI: 10.3390/pharmaceutics13101654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microgels can be considered soft, porous and deformable particles with an internal gel structure swollen by a solvent and an average size between 100 and 1000 nm. Due to their biocompatibility, colloidal stability, their unique dynamicity and the permeability of their architecture, they are emerging as important candidates for drug delivery systems, sensing and biocatalysis. In clinical applications, the research on responsive microgels is aimed at the development of "smart" delivery systems that undergo a critical change in conformation and size in reaction to a change in environmental conditions (temperature, magnetic fields, pH, concentration gradient). Recent achievements in biodegradable polymer fabrication have resulted in new appealing strategies, including the combination of synthetic and natural-origin polymers with inorganic nanoparticles, as well as the possibility of controlling drug release remotely. In this review, we provide a literature review on the use of dual and multi-responsive chitosan-grafted-poly-(N-vinylcaprolactam) (CP) microgels in drug delivery and oncological applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
28
|
Ahmad Ruzaidi DA, Mahat MM, Shafiee SA, Mohamed Sofian Z, Mohmad Sabere AS, Ramli R, Osman H, Hamzah HH, Zainal Ariffin Z, Sadasivuni KK. Advocating Electrically Conductive Scaffolds with Low Immunogenicity for Biomedical Applications: A Review. Polymers (Basel) 2021; 13:3395. [PMID: 34641210 PMCID: PMC8513068 DOI: 10.3390/polym13193395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
Scaffolds support and promote the formation of new functional tissues through cellular interactions with living cells. Various types of scaffolds have found their way into biomedical science, particularly in tissue engineering. Scaffolds with a superior tissue regenerative capacity must be biocompatible and biodegradable, and must possess excellent functionality and bioactivity. The different polymers that are used in fabricating scaffolds can influence these parameters. Polysaccharide-based polymers, such as collagen and chitosan, exhibit exceptional biocompatibility and biodegradability, while the degradability of synthetic polymers can be improved using chemical modifications. However, these modifications require multiple steps of chemical reactions to be carried out, which could potentially compromise the end product's biosafety. At present, conducting polymers, such as poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT: PSS), polyaniline, and polypyrrole, are often incorporated into matrix scaffolds to produce electrically conductive scaffold composites. However, this will reduce the biodegradability rate of scaffolds and, therefore, agitate their biocompatibility. This article discusses the current trends in fabricating electrically conductive scaffolds, and provides some insight regarding how their immunogenicity performance can be interlinked with their physical and biodegradability properties.
Collapse
Affiliation(s)
- Dania Adila Ahmad Ruzaidi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (R.R.)
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (R.R.)
| | - Saiful Arifin Shafiee
- Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Malaysia;
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Awis Sukarni Mohmad Sabere
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Malaysia;
| | - Rosmamuhamadani Ramli
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (R.R.)
| | - Hazwanee Osman
- Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Malaysia;
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Malaysia;
| | - Zaidah Zainal Ariffin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (R.R.)
| | | |
Collapse
|
29
|
Microencapsulated Chitosan-Based Nanocapsules: A New Platform for Pulmonary Gene Delivery. Pharmaceutics 2021; 13:pharmaceutics13091377. [PMID: 34575452 PMCID: PMC8472419 DOI: 10.3390/pharmaceutics13091377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, we propose chitosan (CS)-based nanocapsules (NCs) for pulmonary gene delivery. Hyaluronic acid (HA) was incorporated in the NCs composition (HA/CS NCs) aiming to promote gene transfection in the lung epithelium. NCs were loaded with a model plasmid (pCMV-βGal) to easily evaluate their transfection capacity. The plasmid encapsulation efficiencies were of approx. 90%. To facilitate their administration to the lungs, the plasmid-loaded NCs were microencapsulated in mannitol (Ma) microspheres (MS) using a simple spray-drying technique, obtaining dry powders of adequate properties. In vivo, the MS reached the deep lung, where the plasmid-loaded CS-based NCs were released and transfected the alveolar cells more homogeneously than the control formulation of plasmid directly microencapsulated in Ma MS. The HA-containing formulation achieved the highest transfection efficiency, in a more extended area and more homogeneously distributed than the rest of tested formulations. The new micro-nanostructured platform proposed in this work represents an efficient strategy for the delivery of genetic material to the lung, with great potential for the treatment of genetic lung diseases.
Collapse
|
30
|
Ahmad Ruzaidi DA, Mahat MM, Mohamed Sofian Z, Nor Hashim NA, Osman H, Nawawi MA, Ramli R, Jantan KA, Aizamddin MF, Azman HH, Robin Chang YH, Hamzah HH. Synthesis and Characterization of Porous, Electro-Conductive Chitosan-Gelatin-Agar-Based PEDOT: PSS Scaffolds for Potential Use in Tissue Engineering. Polymers (Basel) 2021; 13:2901. [PMID: 34502941 PMCID: PMC8434095 DOI: 10.3390/polym13172901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Herein we report the synthesis and characterization of electro-conductive chitosan-gelatin-agar (Cs-Gel-Agar) based PEDOT: PSS hydrogels for tissue engineering. Cs-Gel-Agar porous hydrogels with 0-2.0% (v/v) PEDOT: PSS were fabricated using a thermal reverse casting method where low melting agarose served as the pore template. Sample characterizations were performed by means of scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD) and electrochemical impedance spectroscopy (EIS). Our results showed enhanced electrical conductivity of the cs-gel-agar hydrogels when mixed with DMSO-doped PEDOT: PSS wherein the optimum mixing ratio was observed at 1% (v/v) with a conductivity value of 3.35 × 10-4 S cm-1. However, increasing the PEDOT: PSS content up to 1.5 % (v/v) resulted in reduced conductivity to 3.28 × 10-4 S cm-1. We conducted in vitro stability tests on the porous hydrogels using phosphate-buffered saline (PBS) solution and investigated the hydrogels' performances through physical observations and ATR-FTIR characterization. The present study provides promising preliminary data on the potential use of Cs-Gel-Agar-based PEDOT: PSS hydrogel for tissue engineering, and these, hence, warrant further investigation to assess their capability as biocompatible scaffolds.
Collapse
Affiliation(s)
- Dania Adila Ahmad Ruzaidi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nikman Adli Nor Hashim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Drug Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hazwanee Osman
- Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Malaysia;
| | - Mohd Azizi Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Rosmamuhamadani Ramli
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Khairil Anuar Jantan
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Muhammad Faiz Aizamddin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (D.A.A.R.); (M.A.N.); (R.R.); (K.A.J.); (M.F.A.)
| | - Hazeeq Hazwan Azman
- Centre for Foundation and General Studies, Universiti Selangor, Bestari Jaya 45600, Malaysia;
| | - Yee Hui Robin Chang
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Sarawak, Samarahan 94300, Malaysia;
| | | |
Collapse
|
31
|
Cerón AA, Nascife L, Norte S, Costa SA, Oliveira do Nascimento JH, Morisso FDP, Baruque-Ramos J, Oliveira RC, Costa SM. Synthesis of chitosan-lysozyme microspheres, physicochemical characterization, enzymatic and antimicrobial activity. Int J Biol Macromol 2021; 185:572-581. [PMID: 34216659 DOI: 10.1016/j.ijbiomac.2021.06.178] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022]
Abstract
Chitosan microspheres (CMS) by the emulsion-chemical cross-linking method with and without lysozyme immobilization were synthesized and characterized. The technique conditions were adjusted, and spherical particles with approximate diameters of 3.74 ± 1.08 μm and 0. 29 ± 0.029 μm to CMS and chitosan-lysozyme microspheres (C-LMS), respectively, were obtained. The microspheres were characterized by scanning electron microscopy (FESEM), Spectroscopy Fourier Transform Spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and zeta potential. Particle size was identified by laser light scattering (DLS) and the thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA) were determined. By the lysis of Micrococcus lysodeikticus, the activity of the microspheres was determined, and the results correlated with the amount of lysozyme used in the immobilization process and the enzyme loading efficiency was 67%. Finally, release tests pointed out the amount of enzyme immobilized on the microsphere surface. These results showed that chitosan microspheres could be used as material for lysozyme immobilization by cross-linking technique. The antimicrobial activity was tested by inhibition percent determination, and it evidenced both chitosan microspheres (CMS) and chitosan-lysozyme microspheres (C-LMS) positive antimicrobial activity to Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Annie A Cerón
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil.
| | - Lorrane Nascife
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| | - Samuel Norte
- Center of Agricultural Sciences, University Federal of São Carlos, Rodovia Anhanguera, km 174, Araras, SP 13600-97, Brazil
| | - Silgia A Costa
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| | | | | | - Júlia Baruque-Ramos
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| | - Rodrigo C Oliveira
- Departament of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, SP 17012-901, Brazil
| | - Sirlene M Costa
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| |
Collapse
|
32
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
33
|
Salama A. Recent progress in preparation and applications of chitosan/calcium phosphate composite materials. Int J Biol Macromol 2021; 178:240-252. [PMID: 33631262 DOI: 10.1016/j.ijbiomac.2021.02.143] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/15/2022]
Abstract
Studying the development of unique materials from sustainable and renewable resources has gained increasing concern due to the depletion of fossil resources. Chitosan and its derivatives have been considered as versatile candidates for preparing attractive materials. The fabrication of chitosan/calcium phosphate composite compounds has received much attention for the development of numerous promising products in different fields. In this short review, recent preparation strategies for chitosan/calcium phosphate composites such as freeze casting, vacuum-assisted filtration, and biomimetic mineralization were discussed. The review presented their advances for diverse applications such as bone tissue engineering implants, drug delivery, wound healing, dental caries, as well adsorption of organic and heavy metals from polluted water. The challenges and future perspectives for the application of chitosan/calcium phosphate materials in biomedical and environmental applications were also involved in this review article.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
34
|
Bil M, Hipś I, Mrówka P, Święszkowski W. Studies on enzymatic degradation of multifunctional composite consisting of chitosan microspheres and shape memory polyurethane matrix. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Arnaldi P, Pastorino L, Monticelli O. On an effective approach to improve the properties and the drug release of chitosan-based microparticles. Int J Biol Macromol 2020; 163:393-401. [DOI: 10.1016/j.ijbiomac.2020.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022]
|
37
|
Liu Y, Sun M, Wang T, Chen X, Wang H. Chitosan‐based self‐assembled nanomaterials: Their application in drug delivery. VIEW 2020. [DOI: 10.1002/viw.20200069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ya Liu
- College of Marine Life Science Ocean University of China Qingdao China
| | - Mengjie Sun
- College of Marine Life Science Ocean University of China Qingdao China
| | - Ting Wang
- College of Marine Life Science Ocean University of China Qingdao China
| | - Xiguang Chen
- College of Marine Life Science Ocean University of China Qingdao China
| | - Hao Wang
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) Beijing China
| |
Collapse
|
38
|
Alhakamy NA, Ahmed OAA, Kurakula M, Caruso G, Caraci F, Asfour HZ, Alfarsi A, Eid BG, Mohamed AI, Alruwaili NK, Abdulaal WH, Fahmy UA, Alhadrami HA, Eldakhakhny BM, Abdel-Naim AB. Chitosan-Based Microparticles Enhance Ellagic Acid's Colon Targeting and Proapoptotic Activity. Pharmaceutics 2020; 12:E652. [PMID: 32660035 PMCID: PMC7407221 DOI: 10.3390/pharmaceutics12070652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed at improving the targeting and cytotoxic effect of ellagic acid (EA) on colon cancer cells. EA was encapsulated in chitosan (CHIT) polymers then coated by eudragit S100 (ES100) microparticles. The release of EA double-coated microparticles (MPs) was tested at simulative pH values. Maximum release was observed at 24 h and pH 7.4. The cytotoxicity of EA MPs on HCT 116 colon cancer cells was synergistically improved as compared with raw EA. Cell-cycle analysis by flow cytometry suggested enhanced G2-M phase colon cancer cell accumulation. In addition, a significantly higher cell fraction was observed in the pre-G phase, which highlighted the enhancement of the proapoptotic activity of EA formulated in the double-coat mixture. Annexin-V staining was used for substantiation of the observed cell-death-inducing activity. Cell fractions were significantly increased in early, late, and total cell death. This was backed by high elevation in cellular content of caspase 3. Effectiveness of the double-coated EA to target colonic tissues was confirmed using real-time iohexol dye X-ray radiography. In conclusion, CHIT loaded with EA and coated with ES100 formula exhibits improved colon targeting as well as enhanced cytotoxic and proapoptotic activity against HCT 116 colon cancer when compared with the administration of raw EA.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (A.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (A.A.); (U.A.F.)
| | - Mallesh Kurakula
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina, Italy; (G.C.); (F.C.)
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina, Italy; (G.C.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Anas Alfarsi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (A.A.); (U.A.F.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amir I. Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Military Medical Academy, Cairo 11757, Egypt;
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, Faculty of Pharmacy, Jouf University, Skaka P.O. Box 2014, Saudi Arabia;
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (A.A.); (U.A.F.)
| | - Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
- Special Infectious Agent Unit (Biosafety Level 3), King Fahd Medical Research Centre, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Basmah M. Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
39
|
Alagha A, Nourallah A, Alhariri S. Dexamethasone- loaded polymeric porous sponge as a direct pulp capping agent. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1689-1705. [PMID: 32402228 DOI: 10.1080/09205063.2020.1769801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aims to achieve the principles of tissue engineering using biopolymers to be applied in the field of vital endodontic treatment to stimulate stem cells and engineering and regeneration of dentin tissue. the polymer blend was loaded with the steroidal anti-inflammatory drug, dexamethasone, and the porous drug-loaded bio-sponge was produced by lyophilization. Bio-sponge, as a direct pulp capping agent, was histologically studied compared to calcium hydroxide Ca(OH)2 in an animal experiment. The results indicated the effectiveness of the bio-sponge as a direct pulp capping agent where the dentin bridge was formed faster than Ca(OH)2 treated samples. There was no inflammatory response in the pulp tissue throughout the follow-up period. The porous bio-sponge loaded with dexamethasone with a neutral pH resulted in enhancement of the odontoblast differentiation from stem cells, resulting in the formation of a renewed dentin bridge without the slightest inflammatory response in the pulp.
Collapse
Affiliation(s)
- Amjad Alagha
- Faculty of Dentistry, Department of Pediatric Dentistry, Tishreen University, Lattakia, Syria
| | - Abdulwahab Nourallah
- Faculty of Dentistry, Department of Pediatric Dentistry, Tishreen University, Lattakia, Syria
| | - Sahar Alhariri
- Faculty of Science, Department of Chemistry, Damascus University, Damascus, Syria
| |
Collapse
|
40
|
Faccendini A, Ruggeri M, Miele D, Rossi S, Bonferoni MC, Aguzzi C, Grisoli P, Viseras C, Vigani B, Sandri G, Ferrari F. Norfloxacin-Loaded Electrospun Scaffolds: Montmorillonite Nanocomposite vs. Free Drug. Pharmaceutics 2020; 12:pharmaceutics12040325. [PMID: 32260441 PMCID: PMC7238150 DOI: 10.3390/pharmaceutics12040325] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Infections in nonhealing wounds remain one of the major challenges. Recently, nanomedicine approach seems a valid option to overcome the antibiotic resistance mechanisms. The aim of this study was the development of three types of polysaccharide-based scaffolds (chitosan-based (CH), chitosan/chondroitin sulfate-based (CH/CS), chitosan/hyaluronic acid-based (CH/HA)), as dermal substitutes, to be loaded with norfloxacin, intended for the treatment of infected wounds. The scaffolds have been loaded with norfloxacin as a free drug (N scaffolds) or in montmorillonite nanocomposite (H—hybrid-scaffolds). Chitosan/glycosaminoglycan (chondroitin sulfate or hyaluronic acid) scaffolds were prepared by means of electrospinning with a simple, one-step process. The scaffolds were characterized by 500 nm diameter fibers with homogeneous structures when norfloxacin was loaded as a free drug. On the contrary, the presence of nanocomposite caused a certain degree of surface roughness, with fibers having 1000 nm diameters. The presence of norfloxacin–montmorillonite nanocomposite (1%) caused higher deformability (90–120%) and lower elasticity (5–10 mN/cm2), decreasing the mechanical resistance of the systems. All the scaffolds were proven to be degraded via lysozyme (this should ensure scaffold resorption) and this sustained the drug release (from 50% to 100% in 3 days, depending on system composition), especially when the drug was loaded in the scaffolds as a nanocomposite. Moreover, the scaffolds were able to decrease the bioburden at least 100-fold, proving that drug loading in the scaffolds did not impair the antimicrobial activity of norfloxacin. Chondroitin sulfate and montmorillonite in the scaffolds are proven to possess a synergic performance, enhancing the fibroblast proliferation without impairing norfloxacin’s antimicrobial properties. The scaffold based on chondroitin sulfate, containing 1% norfloxacin in the nanocomposite, demonstrated adequate stiffness to sustain fibroblast proliferation and the capability to sustain antimicrobial properties to prevent/treat nonhealing wound infection during the healing process.
Collapse
Affiliation(s)
- Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (C.V.)
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (C.A.); (C.V.)
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
- Correspondence: ; Tel.: +0039-0382-987728
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (A.F.); (M.R.); (D.M.); (S.R.); (M.C.B.); (P.G.); (B.V.); (F.F.)
| |
Collapse
|
41
|
Wang Y, Li S, Jin M, Han Q, Liu S, Chen X, Han Y. Enhancing the Thermo-Stability and Anti-Bacterium Activity of Lysozyme by Immobilization on Chitosan Nanoparticles. Int J Mol Sci 2020; 21:ijms21051635. [PMID: 32121010 PMCID: PMC7084273 DOI: 10.3390/ijms21051635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
The recent emergence of antibiotic-resistant bacteria requires the development of new antibiotics or new agents capable of enhancing antibiotic activity. Lysozyme degrades bacterial cell wall without involving antibiotic resistance and has become a new antibacterial strategy. However, direct use of native, active proteins in clinical settings is not practical as it is fragile under various conditions. In this study, lysozyme was integrated into chitosan nanoparticles (CS-NPs) by the ionic gelation technique to obtain lysozyme immobilized chitosan nanoparticles (Lys-CS-NPs) and then characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), which showed a small particle size (243.1 ± 2.1 nm) and positive zeta potential (22.8 ± 0.2 mV). The immobilization significantly enhanced the thermal stability and reusability of lysozyme. In addition, compared with free lysozyme, Lys-CS-NPs exhibited superb antibacterial properties according to the results of killing kinetics in vitro and measurement of the minimum inhibitory concentration (MIC) of CS-NPs and Lys-CS-NPs against Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus). These results suggest that the integration of lysozyme into CS-NPs will create opportunities for the further potential applications of lysozyme as an anti-bacterium agent.
Collapse
|
42
|
Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int J Mol Sci 2019; 20:5776. [PMID: 31744157 PMCID: PMC6888098 DOI: 10.3390/ijms20225776] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/06/2023] Open
Abstract
The development of advanced nanomaterials and technologies is essential in biomedical engineering to improve the quality of life. Chitosan-based nanomaterials are on the forefront and attract wide interest due to their versatile physicochemical characteristics such as biodegradability, biocompatibility, and non-toxicity, which play a promising role in biological applications. Chitosan and its derivatives are employed in several applications including pharmaceuticals and biomedical engineering. This article presents a comprehensive overview of recent advances in chitosan derivatives and nanoparticle synthesis, as well as emerging applications in medicine, tissue engineering, drug delivery, gene therapy, and cancer therapy. In addition to the applications, we critically review the main concerns and mitigation strategies related to chitosan bactericidal properties, toxicity/safety using tissue cultures and animal models, and also their potential environmental impact. At the end of this review, we also provide some of future directions and conclusions that are important for expanding the field of biomedical applications of the chitosan nanoparticles.
Collapse
Affiliation(s)
- Balsam R. Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar;
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nadin N. Younes
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 5825, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| |
Collapse
|
43
|
Islam N, Dmour I, Taha MO. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 2019; 5:e01684. [PMID: 31193324 PMCID: PMC6525292 DOI: 10.1016/j.heliyon.2019.e01684] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Chitosan, a natural carbohydrate polymer, has long been investigated for drug delivery and medical applications due to its biodegradability, biocompatibility and low toxicity. The micro/nanoparticulate forms of chitosan are reported to enhance the efficiency of drug delivery with better physicochemical properties including improved solubility and bioavailability. This polymer is known to be biodegradable and biocompatible; however, crosslinked chitosan particles may not be biodegradable. Crosslinkers (e.g., tripolyphosphate and glutaraldehyde) are needed for efficient micro/nanoparticle formation, but it is not clear whether the resultant particles are biodegradable or able to release the encapsulated drug fully. To date, no studies have conclusively demonstrated the complete biodegradation or elimination of chitosan nanoparticles in vivo. Herein we review the synthesis and degradation mechanisms of chitosan micro/nanoparticles frequently used in drug delivery especially in pulmonary drug delivery to understand whether these nanoparticles are biodegradable.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Institute of Health and Biomedical Innovation, QUT, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Isra Dmour
- Faculty of Pharmacy and Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942 Jordan
| |
Collapse
|