1
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
2
|
Rodríguez-deLeón E, Bah M, Báez JE, Hernández-Sierra MT, Moreno KJ, Nuñez-Vilchis A, Bonilla-Cruz J, Shea KJ. Sustainable xanthophylls-containing poly(ε-caprolactone)s: synthesis, characterization, and use in green lubricants. RSC Adv 2022; 12:30851-30859. [PMID: 36349044 PMCID: PMC9609694 DOI: 10.1039/d2ra04502h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Three xanthophylls [(3R,3'R,6'R)-lutein (1), (3R,3'S)-zeaxanthin (2), and (3R,3'S)-astaxanthin (3)] were used for the first time as initiators in the ring-opening polymerization (ROP) of ε-caprolactone (CL) catalyzed by tin(ii) 2-ethylhexanoate [Sn(Oct)2] for the synthesis of novel sustainable xanthophyll-containing poly(ε-caprolactone)s (xanthophylls-PCL). The obtained polyesters were characterized by 1H and 13C NMR, FT-IR, DSC, SEC, and MALDI-TOF MS, and their use as additives in green lubricants was evaluated using a sliding friction test under boundary conditions. Xanthophylls-PCL were obtained with good conversions and with molecular weights determined by SEC to be between 2500 and 10 500 Da. The thermal properties of xanthophyll-polyesters showed a crystalline domain, detected by DSC. Lastly, the green lubricant activity of these polymers was evaluated and the results showed that xanthophylls-PCL could be employed as additives for biodegradable lubricant applications since they have better tribological behavior than current additives, which demonstrates their potential as future commercial materials with interesting eco-friendly properties for diverse applications.
Collapse
Affiliation(s)
- Eloy Rodríguez-deLeón
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - Moustapha Bah
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - José E Báez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato (UG), Campus Guanajuato Noria Alta S/N Guanajuato 36050 Mexico
| | - María T Hernández-Sierra
- Department of Mechanical Engineering, National Technology Institute of Mexico at Celaya Celaya 38010 Guanajuato Mexico
| | - Karla J Moreno
- Department of Mechanical Engineering, National Technology Institute of Mexico at Celaya Celaya 38010 Guanajuato Mexico
| | - Alejandro Nuñez-Vilchis
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - José Bonilla-Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Monterrey) Av. Alianza Norte 202, PIIT, Autopista Monterrey-Aeropuerto Km 10 Apodaca 66628 N.L. Mexico
| | - Kenneth J Shea
- Deparment of Chemistry, University of California, Irvine, (UCI) Irvine 92697-2025 California USA
| |
Collapse
|
3
|
Moreno KJ, Hernández-Sierra MT, Báez JE, Rodríguez-deLeón E, Aguilera-Camacho LD, García-Miranda JS. On the Tribological and Oxidation Study of Xanthophylls as Natural Additives in Castor Oil for Green Lubrication. MATERIALS 2021; 14:ma14185431. [PMID: 34576654 PMCID: PMC8468782 DOI: 10.3390/ma14185431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
The present study focuses on an introductory analysis of the use of three xanthophylls as additives for green lubricant applications. For this purpose, the additives were characterized by FTIR and 1H-NMR techniques, and the bio-lubricants were described by their physical properties. The effect of the natural compounds on the friction and wear properties of bio-lubricants were evaluated by sliding friction tests under boundary conditions, as confirmed by an analysis of the lubricating film thickness. The antioxidant capacity was analyzed by FTIR spectroscopy. It was observed better wear protection in castor oil with xanthophylls than without these additives. The wear rate was reduced up to 50% compared with neat oil. Lesser beneficial effects were appreciated in friction coefficient since it was increased 25%. The best contribution was observed with astaxanthin as an additive. In addition, a significant improvement in the oxidation of castor oil, complemented with this additive, was exhibited by FTIR analysis. It was found that xanthophylls could be employed as additives for totally biodegradable lubricant applications since they have better tribological and antioxidant behavior than current additives.
Collapse
Affiliation(s)
- Karla J. Moreno
- Department of Mechanical Engineering, National Technology of Mexico in Celaya (TecNM), Celaya 38010, Mexico; (K.J.M.); (L.D.A.-C.); (J.S.G.-M.)
| | - María Teresa Hernández-Sierra
- Department of Mechanical Engineering, National Technology of Mexico in Celaya (TecNM), Celaya 38010, Mexico; (K.J.M.); (L.D.A.-C.); (J.S.G.-M.)
- Department of Chemistry, University of Guanajuato, Guanajuato 36050, Mexico;
- Correspondence: ; Tel.: +52-461-611-7575; Fax: +52-461-611-7878
| | - José E. Báez
- Department of Chemistry, University of Guanajuato, Guanajuato 36050, Mexico;
| | | | - Luis Daniel Aguilera-Camacho
- Department of Mechanical Engineering, National Technology of Mexico in Celaya (TecNM), Celaya 38010, Mexico; (K.J.M.); (L.D.A.-C.); (J.S.G.-M.)
| | - J. Santos García-Miranda
- Department of Mechanical Engineering, National Technology of Mexico in Celaya (TecNM), Celaya 38010, Mexico; (K.J.M.); (L.D.A.-C.); (J.S.G.-M.)
| |
Collapse
|
4
|
Effects of Exogenous Abscisic Acid (ABA) on Carotenoids and Petal Color in Osmanthus fragrans 'Yanhonggui'. PLANTS 2020; 9:plants9040454. [PMID: 32260328 PMCID: PMC7238031 DOI: 10.3390/plants9040454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/16/2023]
Abstract
Osmanthus fragrans is a well-known native plant in China, and carotenoids are the main group of pigments in the petals. Abscisic acid (ABA) is one of the products of the metabolic pathway of carotenoids. Application of ABA could affect pigmentation of flower petals by changing the carotenoid content. However, little is known about the effects of ABA treatment on carotenoid accumulation in O. fragrans. In this study, different concentrations of ABA (0, 150 and 200 mg/L) were spread on the petals of O. fragrans 'Yanhonggui'. The petal color of 'Yanhonggui' receiving every ABA treatment was deeper than that of the control. The content of total carotenoids in the petals significantly increased with 200 mg/L ABA treatment. In the petals, α-carotene and β-carotene were the predominant carotenoids. The expression of several genes involved in the metabolism of carotenoids increased with 200 mg/L ABA treatment, including PSY1, PDS1, Z-ISO1, ZDS1, CRTISO, NCED3 and CCD4. However, the transcription levels of the latter two carotenoid degradation-related genes were much lower than of the five former carotenoid biosynthesis-related genes; the finding would explain the significant increase in total carotenoids in 'Yanhonggui' petals receiving the 200 mg/L ABA treatment.
Collapse
|
5
|
Rodríguez-deLeón E, Bah M, Jiménez-Halla JOC, Bonilla-Cruz J, Estévez M, Báez JE. Synthesis and characterization of segmented poly(ester-urethane)s (PEUs) containing carotenoids. Polym Chem 2019. [DOI: 10.1039/c9py01487j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of three different xanthophylls such as lutein, zeaxanthin, and astaxanthin were used as chain extender agents in the synthesis of a new family of segmented poly(ester-urethane)s (PEUs) derived from poly(ε-caprolactone) (PCL).
Collapse
Affiliation(s)
- Eloy Rodríguez-deLeón
- Posgrado en Ciencias Químico Biológicas
- Faculty of Chemistry
- Autonomous University of Querétaro (UAQ)
- Cerro de Las Campanas
- Querétaro
| | - Moustapha Bah
- Posgrado en Ciencias Químico Biológicas
- Faculty of Chemistry
- Autonomous University of Querétaro (UAQ)
- Cerro de Las Campanas
- Querétaro
| | - J. Oscar C. Jiménez-Halla
- Department of Chemistry
- Division of Natural and Exact Sciences (DCNE)
- University of Guanajuato (UG)
- Noria Alta S/N, Guanajuato
- Gto. 36050 Mexico
| | - José Bonilla-Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Unidad Monterrey)
- Apodaca
- 66628 Mexico
| | - Miriam Estévez
- Centro Física Aplicada y Tecnología Avanzada (CFATA) de la Universidad Nacional Autónoma de México (UNAM)
- Querétaro
- Qro. 76230 Mexico
| | - José E. Báez
- Department of Chemistry
- Division of Natural and Exact Sciences (DCNE)
- University of Guanajuato (UG)
- Noria Alta S/N, Guanajuato
- Gto. 36050 Mexico
| |
Collapse
|