1
|
Yang L, Cui H, Cui M, Qiu Y, Shao M, Zhu Y, Liu Y, Nardiello D, Quinto M, Shang HB, Liu H, Li D. An efficient approach to probe bioactive components of herbal patches by 2D-carbon microfiber fractionation and multi-chamber membrane separation electrophoresis: Spatholobus suberectus Dunn as a case. J Pharm Biomed Anal 2025; 260:116791. [PMID: 40073537 DOI: 10.1016/j.jpba.2025.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Herbal patches are widely used in clinics for their good curative effects. However, due to the complexity of plant matrices and the extremely low content of transdermal components, the individuation of their effective bioactive compounds represents a challenge: there is then a great need for an efficient method to reveal the bioactive ingredients of herbal patches. In this work, a wide-screening approach is proposed to an individuation of transdermal bioactive components in herbal patches obtained by Spatholobus suberectus Dunn (S. suberectus). Using a two-dimensional microscale carbon fiber/active carbon fiber system combined with a quadrupole time-of-flight high-resolution mass spectrometry (2DµCFs-QTOF-HRMS), a rapid and comprehensive analysis, lasting only 5 min, allowed the identification of 45 distinct polar components within S. suberectus extracts. Among these, 30 components exhibited a transdermal penetration estimated at values higher than 10 %. The key target, predicted by bioinformatics, was prostaglandin-endoperoxide synthase 2 (PTGS2). From the transdermal components of S. suberectus, four potential inhibitors of PTGS2 (protocatechuic acid, isoliquiritigenin, medicarpin, and catechin) were screened by multi-chamber membrane separation electrophoresis (MCMSE). The presence of binding pockets and action sites for medicarpin, isoliquiritigenin, and catechin determines higher binding energy towards PTGS2, with lower IC50 values (12.27, 9.08, and 41.68 μM, respectively). The high-throughput and high-sensitivity analysis by 2DµCFs-QTOF-HRMS, combined with a high-accuracy screening of MCMSE, provides strong technical support for the discovery of trace transdermal bioactive components of herbal patches. The integration of the two technologies could accelerate the study of action mechanisms, quality control, and product improvement of herbal patches.
Collapse
Affiliation(s)
- Lei Yang
- College of Pharmacy, Yanbian University, Yanji 133002, PR China
| | - Haiyan Cui
- Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China
| | - Meiyu Cui
- Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China
| | - Yu Qiu
- Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China
| | - Miao Shao
- Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China
| | - Yuwei Zhu
- Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China
| | - Yonglong Liu
- Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China
| | - Donatella Nardiello
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Maurizio Quinto
- Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China; Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Hai-Bo Shang
- Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China.
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan 430000, PR China
| | - Donghao Li
- College of Pharmacy, Yanbian University, Yanji 133002, PR China; Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
2
|
Bo S, Chang SK, Chen Y, Sheng Z, Jiang Y, Yang B. The structure characteristics, biosynthesis and health benefits of naturally occurring rare flavonoids. Crit Rev Food Sci Nutr 2022; 64:2490-2512. [PMID: 36123801 DOI: 10.1080/10408398.2022.2124396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rare flavonoids, a special subclass of naturally occurring flavonoids with diverse structures including pterocarpans, aurones, neoflavonoids, homoisoflavones, diphenylpropanes, rotenoids and 2-phenylethyl-chromones. They are mainly found in legumes with numerous health benefits. Rare flavonoids are regarded as minor flavonoids due to their very limited abundance in nature. This review gives an overview of the natural occurrences of rare flavonoids from previous literatures. Recent findings on the biosynthesis of rare flavonoids have been updated by describing their structural characteristics and classifications. Recent findings on the health benefits of rare flavonoids have also been compiled and discussed. Natural rare flavonoids with various characteristics from different subclasses from plant-based food sources are stated. They show a wide range of health benefits, including antibacterial, anticancer, anti-osteoporosis and antiviral activities. Studies reviewed suggest that rare flavonoids possessing different skeletons demonstrate different characteristic bioactivities by discussing their mechanism of actions and structure-activity relationships. Besides, recent advances on the biosynthesis of rare flavonoids, such as pterocarpans, rotenoids and aurones are well-known, while the biosynthesis of other subclasses remain unknown. The perspectives and further applications of rare flavonoids using metabolic engineering strategies also be expected.
Collapse
Affiliation(s)
- Shengtao Bo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul, Rahman, Kampar, Malaysia
| | - Yipeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhili Sheng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Torres-Rêgo M, Aquino-Vital AKSD, Cavalcanti FF, Rocha EEA, Daniele-Silva A, Furtado AA, Silva DPD, Ururahy MAG, Silveira ER, Fernandes-Pedrosa MDF, Araújo RM. Phytochemical analysis and preclinical toxicological, antioxidant, and anti-inflammatory evaluation of hydroethanol extract from the roots of Harpalyce brasiliana Benth (Leguminosae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115364. [PMID: 35551979 DOI: 10.1016/j.jep.2022.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Harpalyce brasiliana Benth (Leguminosae) is a shrub endemic to Brazil, popularly known as "snake's root." This species is used in folk medicine for the treatment of inflammation and snakebites. However, up to now there is no scientific research to justify its popular use. The study aimed to characterize the phytochemical profile of the hydroethanol extract from the roots of H. brasiliana (Hb), to evaluate its antioxidant and anti-inflammatory potential, as well as to investigate its cytotoxicity and acute toxicity. MATERIALS AND METHODS The extract was obtained by maceration method using a solution of ethanol:water (70: 30, v/v). The phytochemical profile was obtained by liquid chromatography coupled to mass spectrometry. The cytotoxicity of extract (31-2000 μg/mL) was evaluated in vitro, by the 3-methyl-[4-5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method using murine macrophage and fibroblast cell lines (RAW 247.6 and 3T3, respectively) and by the hemolytic assay. For the in vivo acute toxicity, the extract (2000 mg/kg) was administered and after 14 days the weight (body and organs) and hematological and biochemical parameters were analyzed. Chemical free radical scavenging effect of the extract (125-2000 μg/mL) was investigated through diphenylpicryl hydrazine reduction, total antioxidant capacity, reducing power, hydroxyl radical scavenging, and iron and copper chelating assays. In vitro anti-inflammatory effect of the extract (125, 500, and 2000 μg/mL) was demonstrated through of nitric oxide (NO) analyzed in lipopolysaccharides stimulated RAW 264.7 cells. In vivo anti-inflammatory activities were evaluated in carrageenan-induced paw edema and zymosan-air-pouch models, with gavage administration (post-treatment) of extract at 100, 200, and 400 mg/kg. For the first animal model, the anti-edematogenic activity and myeloperoxidase (MPO) levels were investigated, while in the zymosan-air-pouch model the leukocyte number, MPO, total protein and pro-inflammatory cytokine (IL-1β, IL-6, and TNF-α) levels were quantified. In addition, the oxidative parameters such as malondialdehyde (MDA) and reduced glutathione (GSH) were determined. RESULTS The phytochemical profile revealed the presence of 20 compounds, mainly prenylated and geranylated pterocarpans. The extract demonstrated no cytotoxicity in erythrocytes, macrophages and fibroblasts cells at the tested concentrations, as well as no sign of toxicity and mortality or significant alterations on the hematological and biochemical parameters in the acute toxicity model. The extract was also able to neutralize chemical free radicals, with copper and iron chelating effect. For the NO dosage, the extract evidenced the reduction of expression of NO after the administration of the extract (500 and 2000 μg/mL). The edematogenic model revealed a decrease in paw edema and MPO level, while the zymosan-air-pouch model evidenced a reduction of leukocyte number (especially of polymorphornuclears), MPO production, and total protein and cytokine levels, and demonstrated the antioxidant effect through a decrease in MDA and increase in GSH parameters. CONCLUSION This approach demonstrates for the first time that Hb is not cytotoxic, has low acute toxicity, and possesses antioxidant and anti-inflammatory properties in preclinical analyses, corroborating its popular use.
Collapse
Affiliation(s)
- Manoela Torres-Rêgo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Ana Karoline Silva de Aquino-Vital
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Felipe França Cavalcanti
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Enos Emanuel Azevedo Rocha
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Marcela Abbott Galvão Ururahy
- Department of Clinical Analysis and Toxicology, College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Edilberto Rocha Silveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Humberto Monte Street, S/N, Campus Pici, Pici, Fortaleza, 60021-970, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Renata Mendonça Araújo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| |
Collapse
|
4
|
Bisht N, Gupta A, Awasthi P, Goel A, Chandran D, Sharma N, Singh N. Development of a rapid LC-MS/MS method for the simultaneous quantification of various flavonoids, isoflavonoids, and phytohormones extracted from Medicago truncatula leaves. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neema Bisht
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, Faridabad, India
| | - Arunima Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, Faridabad, India
| | - Pallavi Awasthi
- Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atul Goel
- Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, Faridabad, India
| | - Neha Sharma
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, Faridabad, India
| | - Nirpendra Singh
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
5
|
Medicarpin isolated from Radix Hedysari ameliorates brain injury in a murine model of cerebral ischemia. J Food Drug Anal 2021; 29:581-605. [PMID: 35649147 PMCID: PMC9931010 DOI: 10.38212/2224-6614.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
The development of effective post-stroke therapy is highly demanded. Medicarpin is a key active component of a famous Chinese herbal prescription used for post-stroke treatment in Taiwan; however, little is known about its biological effects and mechanisms of action. Herein, we implemented a murine model of cerebral ischemic/reperfusional injury-related stroke to elucidate medicarpin's neuroprotective effect. In male ICR mice 24 h after stroke induction, treatment with medicarpin (0.5 and 1.0 mg/kg, i.v.) markedly enhanced the survival rates, improved moving distance and walking area coverage, reduced brain infarction, and preserved the blood-brain barrier, supporting medicarpin's protective effect on stroke-induced injury. Immunohistochemistry analysis further revealed that medicarpin treatment decreased the expression/activation of p65NF-κB and caspase 3, especially near the infarct cortex, while promoting the expression of neurogenesis-associated proteins, including doublecortin (DCX), brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB). These changes of expression levels were accompanied by GSK-3 inactivation and β-catenin upregulation. Notably, pretreatment with LY294002, a PI3K inhibitor, abolished the aforementioned beneficial effects of medicarpin, illustrating an essential role of PI3K/Akt activation in medicarpin's neuroprotective and reparative activities. In vitro studies revealed that medicarpin displayed strong anti-inflammatory activity by reducing nitric oxide (NO) production in lipopolysaccharide-stimulated microglial cells (BV2) with an IC50 around 5 ±1 (μM) and anti-apoptotic activity in neuronal cells (N2A) subjected to oxygen-glucose deprivation with an IC50 around 13 ± 2 (μM). Collectively, this is the first report to demonstrate that medicarpin, isolated from Radix Hedysari, ameliorates ischemic brain injury through its anti-inflammatory microglia/NO), anti-apoptotic (neuronal cells/OGD) and neuroprotective effects by activating the PI3K/Akt-dependent GSK-3 inactivation for upregulating β-catenin, which in turn decreases the expression/activation of p65NF-κB and caspase 3 and promotes the expression of neurogenic (DCX, BDNF, TrkB) and neuroprotective (Bcl2) factors in the brain.
Collapse
|
6
|
Li D, Cai C, Liao Y, Wu Q, Ke H, Guo P, Wang Q, Ding B, Fang J, Fang S. Systems pharmacology approach uncovers the therapeutic mechanism of medicarpin against scopolamine-induced memory loss. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153662. [PMID: 34333326 DOI: 10.1016/j.phymed.2021.153662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Medicarpin is a natural pterocarpan-type phytoalexin widely distributed in many traditional Chinese medicines, such as Astragali Radix. A previous study showed that Astragali Radix demonstrated promising protective effects in neurons. However, there is no reported study on the neuroprotective function and the underlying mechanism of Medicarpin. PURPOSE This study aimed to demonstrate the neuroprotective effect of Medicarpin on Alzheimer's disease (AD) and explore the therapeutic mechanisms. METHOD First, we carried out animal behavioral tests and biochemical analysis to assess the anti-AD potential of Medicarpin for ameliorating spatial learning and memory and modulating cholinergic metabolism in scopolamine-induced amnesic mice. Subsequently, network proximity prediction was used to measure the network distance between the Medicarpin target network and AD-related endophenotype module. We identified Medicarpin-regulated AD pathological processes and highlighted the key disease targets via network analysis. Finally, experimental approaches including Nissl staining and Western blotting were conducted to validate our network-based findings. RESULT In this study, we first observed that Medicarpin can ameliorate cognitive and memory dysfunction and significantly modulate cholinergic metabolism in scopolamine-induced amnesic mice. We then proposed an endophenotype network-based framework to comprehensively explore the AD therapeutic mechanisms of Medicarpin by integrating 25 AD-related endophenotype modules, gold-standard AD seed genes, an experimentally validated drug-target network of Medicarpin, and a global human protein-protein interactome. In silico prediction revealed that the effect of Medicarpin is highly relevant to neuronal apoptosis and synaptic plasticity, which was validated by experimental assays. Network analysis and Western blotting further identified two key targets, GSK-3β and MAPK14 (p38), in the AD-related protein regulatory network, which play key roles in the regulation of neuronal apoptosis and synaptic plasticity by Medicarpin. CONCLUSIONS This study presented a powerful endophenotype network-based strategy to explore the mechanisms of action (MOAs) of new AD therapeutics, and first identified Medicarpin as a potential anti-AD candidate by targeting multiple pathways.
Collapse
Affiliation(s)
- Dongli Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510404, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, China
| | - Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qihui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, United States
| | - Pengfei Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Banghan Ding
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510404, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, United States.
| |
Collapse
|
7
|
Mishra M, Mishra NP, Raiguru BP, Das T, Mohapatra S, Nayak S, Mishra DR, Panda J, Sahoo DK. Microwave‐Assisted Iron(III)Chloride Catalyzed One‐Pot Michael Addition‐Cyclization for the Synthesis of 6
H
‐Chromeno[4’,3’:4,5] imidazo[1,2‐a]pyridine. ChemistrySelect 2021. [DOI: 10.1002/slct.202100165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mitali Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Nilima P. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Tapaswini Das
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Dipak K. Sahoo
- National Institute of Science Education and Research Bhubaneswar 752050 Odisha India
| |
Collapse
|
8
|
Research on Effect and Mechanism of Xuefu Zhuyu Decoction on CHD Based on Meta-Analysis and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9473531. [PMID: 33628326 PMCID: PMC7896852 DOI: 10.1155/2021/9473531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
Xuefu Zhuyu Decoction (XFZY) is an ancient compound widely used in the treatment of coronary heart disease. However, its efficacy evaluation is not complete and its mechanism of action is not clear enough. In an attempt to address these problems, the efficacy was evaluated by meta-analysis and the mechanism was elucidated by the network pharmacology method. We systematically searched relevant studies in PubMed, Chinese National Knowledge Infrastructure Database (CNKI), Cochrane Library, Wanfang Data, and other databases from 2007 to 2019. The association between XFZY treatment and CHD was estimated by risk ratio (RR) and corresponding 95% confidence intervals (95% CIs). The compounds and the potential protein targets of XFZY were obtained from TCMSP, and active compounds were selected according to their oral bioavailability and drug similarity. The potential genes of coronary heart disease were obtained from TTD, OMIM, and GeneCards. The potential pathways related to genes were determined by GO and KEGG pathway enrichment analyses. The compound-target and compound-target-pathway networks were constructed. Molecular docking validates the component and the target. A total of 21 studies including 1844 patients were enrolled in the present meta-analysis, indicating that XFZY has a greater beneficial on total effect (fixed effect RR = 1.30; 95% Cl: 1.24-1.36; P=0.82; I 2 = 0.0%) and electrocardiogram efficacy (fixed effect RR = 1.40; 95% Cl: 1.26-1.56; P=0.96; I 2 = 0.0%) compared with the control group. A total of 1342 components in XFZY were obtained, among which, 241 were chosen as bioactive components. GO and KEGG analyses got top 10 significantly enriched terms and 10 enriched pathways. The C-T network included 192 compounds and 3085 targets, whereas the C-T-P network included 10 compounds, 109 targets, and 5 pathways. There was a good binding activity between the components and the targets. XFZY has the curative effect on coronary heart disease, and its mechanism is related to 10 compounds, 10 core targets, and 5 pathways.
Collapse
|
9
|
Vieira de Morais D, Rosalen PL, Ikegaki M, de Souza Silva AP, Massarioli AP, de Alencar SM. Active Antioxidant Phenolics from Brazilian Red Propolis: An Optimization Study for Their Recovery and Identification by LC-ESI-QTOF-MS/MS. Antioxidants (Basel) 2021; 10:antiox10020297. [PMID: 33669251 PMCID: PMC7919790 DOI: 10.3390/antiox10020297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/05/2022] Open
Abstract
Brazilian red propolis (BRP) is a natural product widely known for its phenolic composition and strong antioxidant properties. In this study, we used the Box–Behnken Design (BBD) with Surface Response Methodology to optimize the extraction conditions for total phenolic content (TPC) and Trolox equivalent antioxidant capacity(TEAC) of bioactive phenolics from BRP. The extraction time, ethanol/water concentration and temperature, were tested. All variables had significant effects (p ≤ 0.05), with a desirability coefficient of 0.88. Under optimized conditions (90% ethanol at 80 °C for 30 min), the BRP extract showed a TPC of 129.00 ± 2.16 mg GAE/g and a TEAC of 3471.76 ± 53.86 µmol TE/g. Moreover, FRAP and ORAC assays revealed that the optimized BRP extract had 1472.86 ± 72.37 µmol Fe2+/g and 4339.61 ± 114.65 µmol TE/gof dry weight, respectively. Thirty-two phenolic compounds were tentatively identified by LC-QTOF-ESI-MS/MS, of which thirteen were found for the first time in BRP, including four flavones, one flavanol, two flavanones, two chalcones, and four isoflavonoids. Thus, our results highlight the importance of BRP as a source of a wide variety of phenolic compounds with significant antioxidant properties.
Collapse
Affiliation(s)
- Daniel Vieira de Morais
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil;
| | - Pedro Luiz Rosalen
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil; (P.L.R.); (M.I.)
| | - Masaharu Ikegaki
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil; (P.L.R.); (M.I.)
| | - Anna Paula de Souza Silva
- Department of Agri-Food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil; (A.P.d.S.S.); (A.P.M.)
| | - Adna Prado Massarioli
- Department of Agri-Food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil; (A.P.d.S.S.); (A.P.M.)
| | - Severino Matias de Alencar
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil;
- Department of Agri-Food Industry, Food and Nutrition, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil; (A.P.d.S.S.); (A.P.M.)
- Correspondence:
| |
Collapse
|
10
|
Mei Y, Wei L, Tan M, Wang C, Zou L, Chen J, Cai Z, Yin S, Zhang F, Shan C, Liu X. Qualitative and quantitative analysis of the major constituents in Spatholobi Caulis by UFLC-Triple TOF-MS/MS and UFLC-QTRAP-MS/MS. J Pharm Biomed Anal 2020; 194:113803. [PMID: 33317912 DOI: 10.1016/j.jpba.2020.113803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
There have been few comprehensive studies on the holistic chemical composition of Spatholobi Caulis (SC) and consequently, the information is lacking for the in-depth study of the major constituents. SC is a kind of widely used traditional Chinese medicine with its xylem and phloem alternately arranged in 3-10 rings, but the relationship of phloem ring number and the quality remains unclear. In this study, the characterization of the major constituents in SC was analyzed by ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-Triple TOF-MS/MS), and the content of 19 flavonoids in SC with different phloem ring numbers was simultaneously determined by ultra-fast liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UFLC-QTRAP-MS/MS). Correlation analysis was performed to evaluate the quality of SC with different phloem ring numbers according to the content of 19 flavonoids. Results showed that 50 constituents in SC were identified and the fragmentation pathways of different types of compounds were preliminarily deduced by the fragmentation behavior of the 50 constituents. In addition, the content of flavonoids increased with phloem ring number, which demonstrated that the content of flavonoids in SC was positively correlated with the number of phloem rings. Our research will contribute to the variety identification and quality evaluation of SC, and provide a scientific basis for evaluating the quality of medicinal materials based on its appearance and characteristics.
Collapse
Affiliation(s)
- Yuqi Mei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Lifang Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhichen Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shengxin Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Furong Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|