1
|
Dong Q, Cui Z, Wu X, Li L, Lu F, Liu F. Natural flavonoid hesperetin blocks amyloid β-protein fibrillogenesis, depolymerizes preformed fibrils and alleviates cytotoxicity caused by amyloids. Food Funct 2024; 15:4233-4245. [PMID: 38517352 DOI: 10.1039/d3fo05566c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The aggregation of β-amyloid (Aβ) peptides to form amyloid plaques is one of the primary hallmarks for Alzheimer's disease (AD). Dietary flavonoid supplements containing hesperetin have an ability to decline the risk of developing AD, but the molecular mechanism is still unclear. In this work, hesperetin, a flavanone abundant in citrus fruits, has been proven to prevent the formation of Aβ aggregates and depolymerized preformed fibrils in a concentration-dependent fashion. Hesperetin inhibited the conformational conversion from the natural structure to a β-sheet-rich conformation. It was found that hesperetin significantly reduced the cytotoxicity and relieved oxidative stress eventuated by Aβ aggregates in a concentration-dependent manner. Additionally, the beneficial effects of hesperetin were confirmed in Caenorhabditis elegans, including the inhibition of the formation and deposition of Aβ aggregates and extension of their lifespan. Finally, the results of molecular dynamics simulations showed that hesperetin directly interacted with an Aβ42 pentamer mainly through strong non-polar and electrostatic interactions, which destroyed the structural stability of the preformed pentamer. To summarize, hesperetin exhibits great potential as a prospective dietary supplement for preventing and improving AD.
Collapse
Affiliation(s)
- Qinchen Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Zhan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Li Li
- College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
2
|
Taniwa K, Murakami K, Sakaguchi Y, Izuo N, Hanaki M, Sampa N, Kume T, Shimizu T, Irie K. Detection of Dietary Chalcone and Flavonoid Metabolites in Mice Using UPLC-MS/MS and Their Modulatory Effects on Amyloid β Aggregation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14289-14299. [PMID: 37702279 DOI: 10.1021/acs.jafc.3c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Amyloid β-protein (Aβ42) aggregates have been demonstrated to induce cognitive decline and neurodegeneration in Alzheimer's disease (AD). Thus, functional food ingredients that inhibit Aβ42 aggregation are valuable for AD prevention. Although several food ingredients have been studied for their anti-aggregation activity, information on their bioavailability in the brain, incorporated forms, and relevance to AD etiology is limited. Here, we first detected the sulfate- and glucuronic-acid-conjugated forms of green perilla-derived chalcone (1) and taxifolin (2), which inhibit Aβ42 aggregation, in the brain, small intestine, and plasma of mice (1 and 2 were administered orally) using ultra-performance liquid chromatography-tandem mass spectrometry. We observed that the conjugated metabolites (sulfate (4) and glucuronide (5)) of 1 prevented the fibrillization and oligomerization of Aβ42. These findings imply that the conjugated metabolites of 1 can prove beneficial for AD treatment.
Collapse
Affiliation(s)
- Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nobuaki Sampa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Firouzi R, Sowlati-Hashjin S, Chávez-García C, Ashouri M, Karimi-Jafari MH, Karttunen M. Identification of Catechins' Binding Sites in Monomeric A β42 through Ensemble Docking and MD Simulations. Int J Mol Sci 2023; 24:ijms24098161. [PMID: 37175868 PMCID: PMC10179585 DOI: 10.3390/ijms24098161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
The assembly of the amyloid-β peptide (Aβ) into toxic oligomers and fibrils is associated with Alzheimer's disease and dementia. Therefore, disrupting amyloid assembly by direct targeting of the Aβ monomeric form with small molecules or antibodies is a promising therapeutic strategy. However, given the dynamic nature of Aβ, standard computational tools cannot be easily applied for high-throughput structure-based virtual screening in drug discovery projects. In the current study, we propose a computational pipeline-in the framework of the ensemble docking strategy-to identify catechins' binding sites in monomeric Aβ42. It is shown that both hydrophobic aromatic interactions and hydrogen bonding are crucial for the binding of catechins to Aβ42. Additionally, it has been found that all the studied ligands, especially EGCG, can act as potent inhibitors against amyloid aggregation by blocking the central hydrophobic region of Aβ. Our findings are evaluated and confirmed with multi-microsecond MD simulations. Finally, it is suggested that our proposed pipeline, with low computational cost in comparison with MD simulations, is a suitable approach for the virtual screening of ligand libraries against Aβ.
Collapse
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran 1496813151, Iran
| | | | - Cecilia Chávez-García
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mohammad Hossein Karimi-Jafari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
4
|
Chowdhury UD, Malayil I, Bhargava BL. Understanding the screening effect of aqueous DES on the IDPs: A molecular dynamics simulation study using amyloid β 42 monomer. J Mol Graph Model 2023; 119:108398. [PMID: 36542916 DOI: 10.1016/j.jmgm.2022.108398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Deep eutectic solvents (DESs) have emerged as the promising replacement to the ionic liquids in solvent engineering for bio-compatibility. We aim to understand the effect of aqueous deep eutectic solvents on the conformation of intrinsically disordered proteins (IDPs). In this context, we have studied the effect on amyloid beta (Aβ42) monomer in the hydrated DES composed of tetrabutylammonium chloride and ethylene glycol in a 3:1 ratio using all-atom molecular dynamics simulations. DES is found to effectively screen the interaction of four zones of the amyloid beta monomer with water. Water molecules and the DES constituents modulate the local protein-solvent interactions, in the solvation shell of the protein. In addition, the aqueous DES medium conserves the secondary structure of the Aβ42 monomer by increasing the intramolecular hydrogen bonding and D23-K28 salt-bridge interactions when compared to the pure water medium. The current study provides insights into the impact of DES in stabilizing an IDP, at molecular level. We envisage the hindered aggregation of the amyloid beta structures in DES medium over the pure water medium due to the screening of hydrophobic intramolecular interactions.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - Insha Malayil
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
5
|
Alhazmi HA, Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm J 2022; 30:1755-1764. [PMID: 36601504 PMCID: PMC9805975 DOI: 10.1016/j.jsps.2022.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Given the severity of the condition and the increasing number of patients, developing effective therapies for Alzheimer's disease has become a significant necessity. Aggregation of Amyloid-Beta (Aβ) plaques and Tau Protein Tangles in the brain's nerve tissue are two of the most histopathological/pathophysiological symptoms. Another important element involved in the etiology of Alzheimer's disease is the reduction in acetylcholine (ACh) levels in the brain. Currently available medications for Alzheimer's disease treatment, such as cholinesterase inhibitors and an antagonist of the N-methyl-d-aspartate receptor, can temporarily reduce dementia symptoms but not stop or reverse disease development. In addition, several medicinal plants have been shown to diminish the degenerative characteristics associated with Alzheimer's disease, either in its crude form or as isolated chemicals. Aim This review summarises the results from previous studies that reflect an array of novel therapies underway in various phases of clinical trials. Many are discontinued due to non-adherence to the designed endpoints or the surfacing of unavoidable side effects. The present piece of article focuses on the approved drugs for the treatment of Alzheimer's disease and their related mode of action as well as the promising therapies for the treatment of the said disease. Special attention has been placed on the researched herbal drugs, with the pipeline of novel therapies underway in various phases of clinical trials. Result The current article includes a list of approved pharmaceuticals for treating Alzheimer's disease, prospective therapies for the illness's treatment, and a pipeline of novel therapies in various stages of clinical trials. Conclusion The results suggest that the drugs under clinical trials may open new pathways for the effective treatment of patients with Alzheimer's disease while improving their quality of life.
Collapse
Affiliation(s)
- Hassan Ahmad Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia,Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia,Corresponding author at: Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia.
| |
Collapse
|
6
|
Murakami K, Sakaguchi Y, Taniwa K, Izuo N, Hanaki M, Kawase T, Hirose K, Shimizu T, Irie K. Lysine-targeting inhibition of amyloid β oligomerization by a green perilla-derived metastable chalcone in vitro and in vivo. RSC Chem Biol 2022; 3:1380-1396. [PMID: 36544574 PMCID: PMC9709778 DOI: 10.1039/d2cb00194b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022] Open
Abstract
Oligomers of amyloid β (Aβ) represent an early aggregative form that causes neurotoxicity in the pathogenesis of Alzheimer's disease (AD). Thus, preventing Aβ aggregation is important for preventing AD. Despite intensive studies on dietary compounds with anti-aggregation properties, some identified compounds are susceptible to autoxidation and/or hydration upon incubation in water, leaving unanswered issues regarding which active structures in metastable compounds are actually responsible for the inhibition of Aβ aggregation. In this study, we observed the site-specific inhibition of 42-mer Aβ (Aβ42) oligomerization by the green perilla-derived chalcone 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), which was converted to its decomposed flavonoids (dDDC, 1-3) via nucleophilic aromatic substitution with water molecules. DDC suppressed Aβ42 fibrillization and slowed the transformation of the β-sheet structure, which is rich in Aβ42 aggregates. To validate the contribution of dDDC to the inhibitory effects of DDC on Aβ42 aggregation, we synthesized 1-3 and identified 3, a catechol-type flavonoid, as one of the active forms of DDC. 1H-15N SOFAST-HMQC NMR revealed that 1-3 as well as DDC could interact with residues between His13 and Leu17, which were near the intermolecular β-sheet (Gln15-Ala21). The nucleation in Aβ42 aggregates involves the rate-limiting formation of low-molecular-weight oligomers. The formation of a Schiff base with dDDC at Lys16 and Lys28 in the dimer through autoxidation of dDDC was associated with the suppression of Aβ42 nucleation. Of note, in two AD mouse models using immunoaffinity purification-mass spectrometry, adduct formation between dDDC and brain Aβ was observed in a similar manner as reported in vitro. The present findings unraveled the lysine-targeting inhibitory mechanism of metastable dietary ingredients regarding Aβ oligomerization.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | | | | | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| |
Collapse
|
7
|
Li J, Sun M, Cui X, Li C. Protective Effects of Flavonoids against Alzheimer's Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci 2022; 23:ijms231710020. [PMID: 36077418 PMCID: PMC9456554 DOI: 10.3390/ijms231710020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with high morbidity and mortality, for which there is no available cure. Currently, it is generally believed that AD is a disease caused by multiple factors, such as amyloid-beta accumulation, tau protein hyperphosphorylation, oxidative stress, and inflammation. Multitarget prevention and treatment strategies for AD are recommended. Interestingly, naturally occurring dietary flavonoids, a class of polyphenols, have been reported to have multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this review, we summarize and discuss the existing multiple pathogenic factors of AD. Moreover, we further elaborate on the biological activities of natural flavonoids and their potential mode of action and targets in managing AD by presenting a wide range of experimental evidence. The gathered data indicate that flavonoids can be regarded as prophylactics to slow the advancement of AD or avert its onset. Different flavonoids have different activities and varying levels of activity. Further, this review summarizes the structure–activity relationship of flavonoids based on the existing literature and can provide guidance on the design and selection of flavonoids as anti-AD drugs.
Collapse
Affiliation(s)
- Jiao Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| | - Min Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| |
Collapse
|
8
|
Hanaki M, Murakami K, Gunji H, Irie K. Activity-differential search for amyloid-β aggregation inhibitors using LC-MS combined with principal component analysis. Bioorg Med Chem Lett 2022; 61:128613. [PMID: 35176471 DOI: 10.1016/j.bmcl.2022.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/02/2022]
Abstract
Aggregation of amyloid β42 (Aβ42) is one of the hallmarks of Alzheimer's disease (AD). Inhibition of Aβ42 aggregation is thus a promising approach for AD therapy. Kampo medicine has been widely used to combat dementias such as AD. Crude drug known as Shoyaku is an ingredient of Kampo that could have potential as a natural source of novel drugs. However, given that a mixture of compounds, rather than singular compounds, could contribute to the biological functions of crude drug, there are very limited studies on the structure and mechanism of each constituent in crude drug which may have anti-Aβ42 aggregation properties. Herein we provide an efficient method, using LC-MS combined with principal component analysis (PCA), to search for activity-dependent compounds that inhibit Aβ42 aggregation from 46 crude drug extracts originating from 18 plants. Only 5 extracts (Kakou, Kayou, Gusetsu, Rensu, and Renbou) from lotus demonstrated differentially inhibitory activities depending on the part of the plant from which they are derived (e.g. petiole, leaf, root node, stamen, and receptacle, respectively). To compare the anti-aggregative properties of compounds of active crude drug with those of inactive crude drug, these extracts were subjected to LC-MS measurement, followed by PCA. From 12 candidate compounds identified from the analysis, glucuronized and glucosidized quercetin, as well as 6 flavonoids (datiscetin, kaempferol, morin, robinetin, quercetin, and myricitrin), including catechol or flatness moiety suppressed Aβ42 aggregation, whereas curcumol, a sesquiterpene, did not. In conclusion, this study offers a new activity-differential methodology to identify bioactive natural products in crude drugs that inhibit Aβ42 aggregation and that could be applied to future AD therapies.
Collapse
Affiliation(s)
- Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Hiroki Gunji
- Alps-Pharmaceutical Industry Co., Ltd., Gifu 509-4241, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Murakami K, Horii S, Hanaki M, Irie K. Searching for Natural Products That Delay Nucleation Phase and Promote Elongation Phase of Amyloid β42 toward Alzheimer's Disease Therapeutics. ACS Chem Neurosci 2021; 12:3467-3476. [PMID: 34463471 DOI: 10.1021/acschemneuro.1c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aggregation of amyloid β42 (Aβ42) is one of the hallmarks of Alzheimer's disease (AD). The mechanism of Aβ42 aggregation mainly consists of two phases, nucleation and elongation (including plateau region as a saturation phase). During the nucleation phase, the monomer gradually forms toxic oligomers. During the elongation phase, each nucleus acts as a template and associates with monomers to initiate less toxic fibrillization. We previously proposed a method of classifying compounds into nine groups based on their ability to modulate the nucleation and/or elongation phases. An orcein derivative (O4), which is a phenoxazine dye isolated from the lichen Roccella tinctoria and containing a 2,5-cyclohexadienone moiety, was reported to convert oligomers into relatively inert fibrils, resulting in the reduction of the neurotoxicity of Aβ42. Focusing on O4 in the pursuit of anti-AD drugs, we herein screened 480 natural products including NPDepo (RIKEN) for the compounds that delayed the nucleation phase and promoted the elongation phase. The signal intensities for Aβ42 treated with each of the 15 compounds that met these criteria were lowered in dot blotting using antioligomer antibody, and the fibril formation of Aβ42 in the presence of these compounds was observed in transmission electron microscopy. Among the 15 compounds, 12 compounds (80%) reduced the toxicity of Aβ42 against mouse neuroblastoma Neuro-2a cells. Some of these anticytotoxic compounds contain 2-pyrone and 4-pyrone that interacted with Aβ42, maybe by shifting the equilibrium of Aβ from toxic oligomer into inert fibrils.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shiori Horii
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Hofmann J, Ginex T, Espargaró A, Scheiner M, Gunesch S, Aragó M, Stigloher C, Sabaté R, Luque FJ, Decker M. Azobioisosteres of Curcumin with Pronounced Activity against Amyloid Aggregation, Intracellular Oxidative Stress, and Neuroinflammation. Chemistry 2021; 27:6015-6027. [PMID: 33666306 PMCID: PMC8048673 DOI: 10.1002/chem.202005263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Indexed: 01/01/2023]
Abstract
Many (poly-)phenolic natural products, for example, curcumin and taxifolin, have been studied for their activity against specific hallmarks of neurodegeneration, such as amyloid-β 42 (Aβ42) aggregation and neuroinflammation. Due to their drawbacks, arising from poor pharmacokinetics, rapid metabolism, and even instability in aqueous medium, the biological activity of azobenzene compounds carrying a pharmacophoric catechol group, which have been designed as bioisoteres of curcumin has been examined. Molecular simulations reveal the ability of these compounds to form a hydrophobic cluster with Aβ42, which adopts different folds, affecting the propensity to populate fibril-like conformations. Furthermore, the curcumin bioisosteres exceeded the parent compound in activity against Aβ42 aggregation inhibition, glutamate-induced intracellular oxidative stress in HT22 cells, and neuroinflammation in microglial BV-2 cells. The most active compound prevented apoptosis of HT22 cells at a concentration of 2.5 μm (83 % cell survival), whereas curcumin only showed very low protection at 10 μm (21 % cell survival).
Collapse
Affiliation(s)
- Julian Hofmann
- Pharmaceutical and Medicinal ChemistryInstitute of, Pharmacy and Food ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Tiziana Ginex
- Department of Nutrition Food Science and GastronomyFaculty of Pharmacy, Institute of Theoretical and Computational, Chemistry and Institute of Biomedicine, Campus TorriberaUniversity of BarcelonaSanta Coloma de Gramenet08921Spain
| | - Alba Espargaró
- Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy Institute of Nanoscience and Nanotechnology, (IN2UB)University of Barcelona08028BarcelonaSpain
| | - Matthias Scheiner
- Pharmaceutical and Medicinal ChemistryInstitute of, Pharmacy and Food ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal ChemistryInstitute of, Pharmacy and Food ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Marc Aragó
- Department of Nutrition Food Science and GastronomyFaculty of Pharmacy, Institute of Theoretical and Computational, Chemistry and Institute of Biomedicine, Campus TorriberaUniversity of BarcelonaSanta Coloma de Gramenet08921Spain
| | - Christian Stigloher
- Imaging Core FacilityBiocenter/Theodor-Boveri-InstituteUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Raimon Sabaté
- Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy Institute of Nanoscience and Nanotechnology, (IN2UB)University of Barcelona08028BarcelonaSpain
| | - F. Javier Luque
- Department of Nutrition Food Science and GastronomyFaculty of Pharmacy, Institute of Theoretical and Computational, Chemistry and Institute of Biomedicine, Campus TorriberaUniversity of BarcelonaSanta Coloma de Gramenet08921Spain
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of, Pharmacy and Food ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
11
|
Pagano K, Tomaselli S, Molinari H, Ragona L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front Neurosci 2020; 14:619667. [PMID: 33414705 PMCID: PMC7783407 DOI: 10.3389/fnins.2020.619667] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-β (Aβ) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aβ oligomers and to the deposition of β-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aβ aggregation by direct interaction with Aβ peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aβ regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and β1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.
Collapse
Affiliation(s)
- Katiuscia Pagano
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Simona Tomaselli
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
12
|
Mizuno M, Mori K, Tsuchiya K, Takaki T, Misawa T, Demizu Y, Shibanuma M, Fukuhara K. Design, Synthesis, and Biological Activity of Conformationally Restricted Analogues of Silibinin. ACS OMEGA 2020; 5:23164-23174. [PMID: 32954167 PMCID: PMC7495755 DOI: 10.1021/acsomega.0c02936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 05/12/2023]
Abstract
Silibinin (Sib), one of the main components of milk thistle extract, has attracted considerable attention because of its various biological activities, which include antioxidant activity and potential effects in diabetes and Alzheimer's disease (AD). In a previous study, we synthesized catechin analogues by constraining the geometries of (+)-catechin and (-)-epicatechin. The constrained analogues exhibited enhanced bioactivities, with the only major difference between the two being their three-dimensional structures. The constrained geometry in (+)-catechin resulted in a high degree of planarity (PCat), while (-)-epicatechin failed to maintain planarity (PEC). The three-dimensional structure of Sib may be related to its ability to inhibit aggregation of amyloid beta (Aβ). We therefore introduced PCat and PEC into Sib to demonstrate how the constrained molecular geometry and differences in three-dimensional structures may enhance such activities. Introduction of PCat into Sib (SibC) resulted in effective inhibition of Aβ aggregation, α-glucosidase activity, and cell growth, suggesting that not only reduced flexibility but also the high degree of planarity may enhance the biological activity. SibC is expected to be a promising lead compound for the treatment of several diseases.
Collapse
Affiliation(s)
- Mirei Mizuno
- Division
of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazunori Mori
- Division
of Cancer Cell Biology, School of Pharmacy, Showa University, 1-5-8
Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Keisuke Tsuchiya
- Division
of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26
Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Takashi Takaki
- Division
of Electron Microscopy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Misawa
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26
Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26
Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Motoko Shibanuma
- Division
of Cancer Cell Biology, School of Pharmacy, Showa University, 1-5-8
Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kiyoshi Fukuhara
- Division
of Organic and Medicinal Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
13
|
Sheng C, Yang K, Wang X, Li H, Li T, Lin L, Liu Y, Yang Q, Wang X, Wang X, Sun Y, Han Y. Advances in Non-Pharmacological Interventions for Subjective Cognitive Decline: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2020; 77:903-920. [PMID: 32741806 DOI: 10.3233/jad-191295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Subjective cognitive decline (SCD) is considered the earliest symptomatic manifestation of preclinical Alzheimer’s disease (AD). Currently, given the lack of effective and curable pharmacological treatments for AD, non-pharmacological interventions (NPIs) for individuals with SCD may provide a valuable opportunity for the secondary prevention of AD. Objective: This systematic review and meta-analysis, conducted in accordance with the PRISMA guidelines, aimed to investigate the benefits of current NPIs in the population with SCD. Methods: The online electronic databases, including MEDLINE, Cochrane Central Register of Controlled Trials, EMBASE, PsycInfo, and CINAHL, were searched to identify randomized controlled trials of NPIs for SCD. Intervention strategies were psychological and health-related education interventions, mind-body therapy, lifestyle modification, cognitive training, and multidomain interventions. Outcomes included subjective memory, objective memory, global cognitive function, psychological well-being, and mood. Study quality was determined using the criteria of the Cochrane collaboration’s tool. The Hedges’ g of change was analyzed. Results: Eighteen studies were included in this review and meta-analysis. Overall, psychological and health-related education interventions exhibited a medium effect on objective memory function (Hedges’ g = 0.53, p = 0.01). Cognitive training led to a small effect on objective memory, which was marginal statistically (Hedges’ g = 0.19, p = 0.05). In addition, cognitive training also significantly improved subjective memory performance (Hedges’ g = 0.49, p = 0.0003) and psychological well-being (Hedges’ g = 0.27, p = 0.03). Conclusion: Overall, the psychological intervention and cognitive training may be beneficial to cognitive function and psychological well-being. NPIs may be effectively implemented in older adults with SCD.
Collapse
Affiliation(s)
- Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurology, the First Hospital of Tsinghua University, Beijing, China
| | - Kun Yang
- Evidence-Based Medicine Center, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiaoni Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongyan Li
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Taoran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Li Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yi Liu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qin Yang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiaoqi Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xue Wang
- Department of Library, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
14
|
Kobayashi H, Murata M, Kawanishi S, Oikawa S. Polyphenols with Anti-Amyloid β Aggregation Show Potential Risk of Toxicity Via Pro-Oxidant Properties. Int J Mol Sci 2020; 21:E3561. [PMID: 32443552 PMCID: PMC7279003 DOI: 10.3390/ijms21103561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Amyloid β (Aβ) aggregation has been the focus for a therapeutic target for the treatment of AD. Naturally occurring polyphenols have an inhibitory effect on Aβ aggregation and have attracted a lot of attention for the development of treatment strategies which could mitigate the symptoms of AD. However, considerable evidence has shown that the pro-oxidant mechanisms of polyphenols could have a deleterious effect. Our group has established an assay system to evaluate the pro-oxidant characteristics of chemical compounds, based on their reactivity with DNA. In this review, we have summarized the anti-Aβ aggregation and pro-oxidant properties of polyphenols. These findings could contribute to understanding the mechanism underlying the potential risk of polyphenols. We would like to emphasize the importance of assessing the pro-oxidant properties of polyphenols from a safety point of view.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| |
Collapse
|
15
|
Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21061992. [PMID: 32183348 PMCID: PMC7139812 DOI: 10.3390/ijms21061992] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease directly implicated in Alzheimer’s disease (AD) pathogenesis through amyloid-β (Aβ) deposition, which may cause the development and progression of dementia. Despite extensive studies to explore drugs targeting Aβ, clinical benefits have not been reported in large clinical trials in AD patients or presymptomatic individuals at a risk for AD. However, recent studies on CAA and AD have provided novel insights regarding CAA- and AD-related pathogenesis. This work has revealed potential therapeutic targets, including Aβ drainage pathways, Aβ aggregation, oxidative stress, and neuroinflammation. The functional significance and therapeutic potential of bioactive molecules such as cilostazol and taxifolin have also become increasingly evident. Furthermore, recent epidemiological studies have demonstrated that serum levels of a soluble form of triggering receptor expressed on myeloid cells 2 (TREM2) may have clinical significance as a potential novel predictive biomarker for dementia incidence. This review summarizes recent advances in CAA and AD research with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for CAA and AD.
Collapse
|
16
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:1267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer's pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
17
|
Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27:18. [PMID: 31906949 PMCID: PMC6943903 DOI: 10.1186/s12929-019-0609-7] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer disease (AD) accounts for 60-70% of dementia cases. Given the seriousness of the disease and continual increase in patient numbers, developing effective therapies to treat AD has become urgent. Presently, the drugs available for AD treatment, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate receptor, can only inhibit dementia symptoms for a limited period of time but cannot stop or reverse disease progression. On the basis of the amyloid hypothesis, many global drug companies have conducted many clinical trials on amyloid clearing therapy but without success. Thus, the amyloid hypothesis may not be completely feasible. The number of anti-amyloid trials decreased in 2019, which might be a turning point. An in-depth and comprehensive understanding of the contribution of amyloid beta and other factors of AD is crucial for developing novel pharmacotherapies.In ongoing clinical trials, researchers have developed and are testing several possible interventions aimed at various targets, including anti-amyloid and anti-tau interventions, neurotransmitter modification, anti-neuroinflammation and neuroprotection interventions, and cognitive enhancement, and interventions to relieve behavioral psychological symptoms. In this article, we present the current state of clinical trials for AD at clinicaltrials.gov. We reviewed the underlying mechanisms of these trials, tried to understand the reason why prior clinical trials failed, and analyzed the future trend of AD clinical trials.
Collapse
Affiliation(s)
- Li-Kai Huang
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, National Health Research Institute, Taipei, Taiwan
| | - Shu-Ping Chao
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, National Health Research Institute, Taipei, Taiwan.
- Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Irie K. New diagnostic method for Alzheimer’s disease based on the toxic conformation theory of amyloid β. Biosci Biotechnol Biochem 2020; 84:1-16. [DOI: 10.1080/09168451.2019.1667222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstract
Recent investigations suggest that soluble oligomeric amyloid β (Aβ) species may be involved in early onset of Alzheimer’s disease (AD). Using systematic proline replacement, solid-state NMR, and ESR, we identified a toxic turn at position 22 and 23 of Aβ42, the most potent neurotoxic Aβ species. Through radicalization, the toxic turn can induce formation of the C-terminal hydrophobic core to obtain putative Aβ42 dimers and trimers. Synthesized dimer and trimer models showed that the C-terminal hydrophobic core plays a critical role in the formation of high molecular weight oligomers with neurotoxicity. Accordingly, an anti-toxic turn antibody (24B3) that selectively recognizes a toxic dimer model of E22P-Aβ42 was developed. Sandwich enzyme-linked immunosorbent assay with 24B3 and 82E1 detected a significantly higher ratio of Aβ42 with a toxic turn to total Aβ42 in cerebrospinal fluid of AD patients compared with controls, suggesting that 24B3 could be useful for early onset of AD diagnosis.
Collapse
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas AH, Jaremko M. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 2019; 10:215-227. [PMID: 35492549 PMCID: PMC9047971 DOI: 10.1039/c9ra09350h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/14/2019] [Indexed: 01/03/2023] Open
Abstract
The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship. In general, aggregation does not occur under normal physiological conditions, yet it can be induced in the presence of certain metal ions. However, the extent of the influence of metal ion interactions on protein aggregation has not yet been fully comprehended. A consensus has thus been difficult to reach because the acceleration/inhibition of the aggregation of proteins in the presence of metal ions depends on several factors such as pH and the concentration of the aggregated proteins involved as well as metal concentration level of metal ions. Metal ions, like Cu2+, Zn2+, Pb2+ etc. may either accelerate or inhibit aggregation simply because the experimental conditions affect the behavior of biomolecules. It is clear that understanding the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications. This review focuses on the dependence of the aggregation of selected important biomolecules (peptides and proteins) on metal ion concentrations. We review proteins that are prone to aggregation, the result of which can cause serious neurodegenerative disorders. Furthering our understanding of the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications, such as finding therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria 09042 Monserrato Italy
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|