1
|
Yazici N, Kolci K, Reis R, Kırmızıbekmez H, Renda G. Cytoprotective Effect of Trachystemon orientalis against cigarette smoke extract- Induced toxicity on human bronchial epithelial cells. Fitoterapia 2025; 183:106568. [PMID: 40280250 DOI: 10.1016/j.fitote.2025.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Trachystemon orientalis D.Don is a perennial species belonging to the family Boraginaceae. It is predominantly distributed in the northern parts of Türkiye. The stems, roots, and aerial parts of the species are consumed as food and traditionally used in the treatment of various types of cancer. The aim of this study was to evaluate the cytoprotective effects of its extracts and metabolites against cigarette smoke extract (CSE)-induced toxicity on BEAS-2B cells. For the study, T. orientalis roots (A) and aerial parts (B) were extracted separately using 80 % methanol. B exhibited a higher cytoprotective effect than A on the BEAS-2B cell line for 24 h. Therefore, B was partitioned against n-hexane (B1) and n-butanol (B2) to yield sub-extracts. B2 exhibited the lowest cytotoxicity profile among the tested concentrations (0.1-1 mg/mL). Chromatographic separation on B2 led to the isolation of rosmarinic acid (1), kaempferol 3-O-glucoside (astragalin) (2), and kaempferol 7-O-glucoside (3). Notably, compound 2 was isolated for the first time from the genus Trachystemon, while compound 3 was obtained for the first time from the family Boraginaceae. The extract B2 (0.1 mg/mL), and isolated compounds 1 (50 μM), 2 (12.5 μM), and 3 (25 μM) exhibited statistically significant cytoprotective activity against CSE-induced cytotoxicity on human bronchial epithelia in the MTT assay. It is anticipated that these findings will provide valuable insights into the development of plant-based adjuvant therapies for respiratory diseases, with a particular focus on secondary metabolites that are responsible for cytoprotective activity.
Collapse
Affiliation(s)
- Nurdan Yazici
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye.
| | - Kübra Kolci
- Department of Toxicology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, İstanbul, Turkiye; Department of Toxicology, Institute of Health Science, Yeditepe University, İstanbul, Turkiye.
| | - Rengin Reis
- Department of Toxicology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, İstanbul, Turkiye.
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, İstanbul, Turkiye.
| | - Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye.
| |
Collapse
|
2
|
Xu WY, Dai YY, Yang SX, Chen H, Huang YQ, Luo PP, Wei ZH. Betaine combined with traditional Chinese medicine ointment to treat skin wounds in microbially infected diabetic mice. World J Diabetes 2025; 16:99745. [PMID: 39817220 PMCID: PMC11718449 DOI: 10.4239/wjd.v16.i1.99745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Skin wounds are highly common in diabetic patients, and with increasing types of pathogenic bacteria and antibiotic resistance, wounds and infections in diabetic patients are difficult to treat and heal. AIM To explore the effects of betaine ointment (BO) in promoting the healing of skin wounds and reducing the inflammation and apoptosis of skin cells in microbially infected diabetic mice. METHODS By detecting the minimum inhibitory concentrations (MICs) of betaine and plant monomer components such as psoralen, we prepared BO with betaine as the main ingredient, blended it with traditional Chinese medicines such as gromwell root and psoralen, and evaluated its antibacterial effects and safety in vitro and in vivo. The skin infection wound models of ordinary mice and diabetic mice were constructed, and the OTC drugs mupirocin ointment and Zicao ointment were used as controls to evaluate the antibacterial effects in vivo and the anti-inflammatory and anti-apoptotic effects of BO. RESULTS The MICs of betaine against microorganisms such as Staphylococcus aureus (S. aureus), Candida albicans and Cryptococcus neoformans ranged from 4 to 32 μg/mL. Gromwell root and psoralea, both of which contain antimicrobial components, mixed to prepare BO with MICs ranging from 16 to 64 μg/mL, which is 32-256 times lower than those of Zicao ointment, although the MIC is greater than that of betaine. After 15 days of treatment with BO for USA300-infected ordinary mice, the wound scab removal rates were 83.3%, while those of mupirocin ointment and Zicao ointment were 66.7% and 0%, respectively, and the differences were statistically significant. In diabetic mice, the wound scab removal rate of BO and mupirolacin ointment was 80.0%, but BO reduced wound inflammation and the apoptosis of skin cells and facilitated wound healing. CONCLUSION The ointment prepared by mixing betaine and traditional Chinese medicine can effectively inhibit common skin microorganisms and has a strong effect on the skin wounds of sensitive or drug-resistant S. aureus-infected ordinary mice and diabetic mice.
Collapse
Affiliation(s)
- Wen-Yan Xu
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yuan-Yuan Dai
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Shi-Xian Yang
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Yan-Qiang Huang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Clinical Prevention and Control Technology and Leading Drug for Microorganisms with Drug Resistance in Border Ethnic Areas, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Pei-Pei Luo
- Department of Gastroenterology, Wujin People’s Hospital Affiliated to Jiangsu University, Changzhou 213004, Jiangsu Province, China
| | - Zhong-Heng Wei
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Zakaria N, El-Sayed ASA, Ali MG. Phytochemical fingerprinting of phytotoxins as a cutting-edge approach for unveiling nature's secrets in forensic science. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:1. [PMID: 39747712 PMCID: PMC11695570 DOI: 10.1007/s13659-024-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
The integration of phytochemistry into forensic science has emerged as a groundbreaking frontier, providing unprecedented insights into nature's secrets through the precise application of phytochemical fingerprinting of phytotoxins as a cutting-edge approach. This study explores the dynamic intersection of phytochemistry and forensic science, highlighting how the unique phytochemical profiles of toxic plants and their secondary metabolites, serve as distinctive markers for forensic investigations. By utilizing advanced techniques such as Ultra-High-Performance Liquid Chromatography (UHPLC) and High-Resolution Mass Spectrometry (HRMS), the detection and quantification of plant-derived are made more accurate in forensic contexts. Real-world case studies are presented to demonstrate the critical role of plant toxins in forensic outcomes and legal proceedings. The challenges, potential, and future prospects of integrating phytochemical fingerprinting of plant toxins into forensic science were discussed. This review aims to illuminate phytochemical fingerprinting of plant toxins as a promising tool to enhance the precision and depth of forensic analyses, offering new insights into the complex stories embedded in plant toxins.
Collapse
Affiliation(s)
- Nabil Zakaria
- Phytochemistry lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - Mostafa G Ali
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Guo J, Jiang X, Tian Y, Yan S, Liu J, Xie J, Zhang F, Yao C, Hao E. Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications. Pharmaceuticals (Basel) 2024; 17:1700. [PMID: 39770541 PMCID: PMC11677886 DOI: 10.3390/ph17121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil. Research indicates that cinnamon oil possesses a wide range of pharmacological activities, covering antibacterial, anti-inflammatory, anti-tumor, and hypoglycemic effects. It is currently an active ingredient in over 500 patented medicines. Cinnamon oil has demonstrated significant inhibitory effects against various pathogens comprising Staphylococcus aureus, Salmonella, and Escherichia coli. Its mechanisms of action include disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, suggesting its potential as a natural antimicrobial agent. Its anti-inflammatory properties are evidenced by its ability to suppress inflammatory markers like vascular cell adhesion molecules and macrophage colony-stimulating factors. Moreover, cinnamon oil has shown positive effects in lowering blood pressure and improving metabolism in diabetic patients by enhancing glucose uptake and increasing insulin sensitivity. The main active components of cinnamon oil include cinnamaldehyde, cinnamic acid, and eugenol, which play key roles in its pharmacological effects. Recently, the applications of cinnamon oil in industrial fields, including food preservation, cosmetics, and fragrances, have also become increasingly widespread. Despite the extensive research supporting its medicinal value, more clinical trials are needed to determine the optimal dosage, administration routes, and possible side effects of cinnamon oil. Additionally, exploring the interactions between cinnamon oil and other drugs, as well as its safety in different populations, is crucial. Considering the current increase in antibiotic resistance and the demand for sustainable and effective medical treatments, this review emphasizes the necessity for further research into the mechanisms and safety of cinnamon oil to confirm its feasibility as a basis for new drug development. In summary, as a versatile natural product, cinnamon oil holds broad application prospects and is expected to play a greater role in future medical research and clinical practice.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xinya Jiang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
| | - Yu Tian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiaojiao Liu
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Chun Yao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China; (J.G.); (X.J.); (Y.T.); (S.Y.); (J.L.); (J.X.); (F.Z.)
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
5
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
6
|
Chrzanowska E, Denisow B, Ekiert H, Pietrzyk Ł. Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients-A Review. Molecules 2024; 29:5088. [PMID: 39519729 PMCID: PMC11547297 DOI: 10.3390/molecules29215088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
One of the challenges of the pharmaceutical and cosmetic industries is to deliver biochemical compounds that can be advantageous for the skin. Research on Boraginaceae taxa has confirmed their use in traditional medicine and proved the potential biological importance of various molecules in cosmetology. The main classes of valuable compounds associated with Boraginaceae taxa are fatty acids, including γ-linolenic acid, essential oils, phenolic acids (e.g., rosmarinic acid), flavonoids, anthocyanins, tannins, and saponins. Highly specific are naphthoquinone pigments (including shikonin) and allantoin. Another distinguishing feature is the accumulation of silica (silicon dioxide) in trichomes. Some taxa produce mucilages. However, pyrrolizidine alkaloids (PAs) with toxic properties are also found (mainly in Symphytum spp.); therefore, their applications should be avoided. Extracts or individual compounds of Boraginaceae plants are characterized by antioxidant, anti-inflammatory, antiseptic, anti-irritant, antiaging, and photoprotective activities. Boraginaceae products are widespread in the cosmetic industry as ingredients of creams, balms, lotions, gels, shampoos, lipsticks, perfumes, and deodorants. The most valuable for the cosmetic industry are raw materials obtained from the genera Alcanna Anchusa, Arnebia, Borago, Buglossoides, Cerinthe, Cordia, Echium, Ehretia, Eriodictyon, Glendora, Lappula, Lithospermum, Lycopsis, Macrotomia, Maharanga, Mertensia, Messerschmidia, Myosotis, Omphalodes, Onosma, Pulmonaria, Rindera, Symphytum, Trachystemon, and Trigonotis. Further research should focus on the search for active substances in other plants of the family.
Collapse
Affiliation(s)
- Ewelina Chrzanowska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland;
| | - Bożena Denisow
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland;
| | - Halina Ekiert
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland;
| | - Łukasz Pietrzyk
- Faculty of Medicine, Institute of Medical Sciences, The John Paul II Catholic University of Lublin, 1H Konstantynów Str., 20-708 Lublin, Poland;
| |
Collapse
|
7
|
Gadallah AH, Hafez RS, Fahim KM, Ahmed LI. Application of rosemary oil nano-emulsion as antimicrobial and antioxidant natural alternative in pasteurized cream and Karish cheese. Int J Food Microbiol 2024; 422:110823. [PMID: 38991433 DOI: 10.1016/j.ijfoodmicro.2024.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Essential oils possess significant antimicrobial and antioxidant properties and are increasingly used as natural substitutes for food preservation. Therefore, this study investigated the potential application of rosemary essential oil (REO) and REO nano-emulsion in the dairy plant. The antimicrobial effects of REO and REO nano-emulsion were determined by an agar well diffusion assay after chemical profiling by Gas Chromatography-Mass Spectrometry (GC-MS). The REO nano-emulsion was characterized by a Transmission Electron Microscope (TEM). The REO chemical profile revealed the presence of 42 chemical compounds, including 1, 8-cineole (9.72 %), and α-pinene (5.46 %) as major active components. REO nano-emulsion demonstrated significant antimicrobial activity compared to REO (P < 0.05) with a MIC value of 0.0001 mg/ml against Listeria monocytogenes and Aspergillus flavus and 0.001 mg/ml against Pseudomonas aeruginosa and Bacillus cereus. REO nano-emulsion enhanced the oxidative stability of pasteurized fresh cream, revealing a non-significant difference compared with that inoculated with butylated hydroxy anisol (BHA; synthetic antioxidant) (P˃ 0.05). Fortified cream and Karish cheese with REO nano-emulsion were evaluated organoleptically, and the results showed higher grades of overall acceptability when compared to control samples with a statistically significant difference (P < 0.05). Viability studies were estimated using the previously mentioned microorganisms in fortified fresh cream and Karish cheese with REO nano-emulsion. Results of the fortified cream showed a complete reduction of L. monocytogenes, A. flavus, and B. cereus on days 5, 7, and 10, respectively, and a 96.93 % reduction of P. aeruginosa by the end of the storage period. Regarding Karish cheese viability studies, C. albicans, A. flavus, and P. aeruginosa exhibited complete reduction on days 10, 10, and 15 of storage, respectively. In conclusion, REO nano-emulsion was recommended as a natural, safe, and effective antimicrobial and antioxidant additive in the dairy industry.
Collapse
Affiliation(s)
- Ahmed Hussein Gadallah
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Ragaa Shehata Hafez
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Karima Mogahed Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Lamiaa Ibrahim Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
8
|
Luca SV, Zengin G, Kulinowski Ł, Sinan KI, Skalicka-Woźniak K, Trifan A. Phytochemical profiling and bioactivity assessment of underutilized Symphytum species in comparison with Symphytum officinale. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3971-3981. [PMID: 38252561 DOI: 10.1002/jsfa.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/21/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Symphytum (comfrey) genus, particularly Symphytum officinale, has been empirically used in folk medicine mainly for its potent anti-inflammatory properties. In an attempt to shed light on the valorization of less known taxa, the current study evaluated the metabolite profile and antioxidant and enzyme inhibitory effects of nine Symphytum species. RESULTS Phenolic acids, flavonoids and pyrrolizidine alkaloids were the most representative compounds in all comfrey samples. Hierarchical cluster analysis revealed that, within the roots, S. grandiflorum was slightly different from S. ibericum, S. caucasicum and the remaining species. Within the aerial parts, S. caucasicum and S. asperum differed from the other samples. All Symphytum species showed good antioxidant and enzyme inhibitory activities, as evaluated in DPPH (up to 50.17 mg Trolox equivalents (TE) g-1), ABTS (up to 49.92 mg TE g-1), cupric reducing antioxidant capacity (CUPRAC, up to 92.93 mg TE g-1), ferric reducing antioxidant power (FRAP, up to 53.63 mg TE g-1), acetylcholinesterase (AChE, up to 0.52 mg galanthamine equivalents (GALAE) g-1), butyrylcholinesterase (BChE, up to 0.96 mg GALAE g-1), tyrosinase (up to 13.58 mg kojic acid equivalents g-1) and glucosidase (up to 0.28 mmol acarbose equivalents g-1) tests. Pearson correlation analysis revealed potential links between danshensu and ABTS/FRAP/CUPRAC, quercetin-O-hexoside and DPPH/CUPRAC, or rabdosiin and anti-BChE activity. CONCLUSIONS By assessing for the first time in a comparative manner the phytochemical-biological profile of a considerably high number of Symphytum samples, this study unveils the potential use of less common comfrey species as novel phytopharmaceutical or agricultural raw materials. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Łukasz Kulinowski
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | | | - Adriana Trifan
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| |
Collapse
|
9
|
Jarić S, Kostić O, Miletić Z, Marković M, Sekulić D, Mitrović M, Pavlović P. Ethnobotanical and ethnomedicinal research into medicinal plants in the Mt Stara Planina region (south-eastern Serbia, Western Balkans). JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:7. [PMID: 38200599 PMCID: PMC10782642 DOI: 10.1186/s13002-024-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Ethnobotanical research in Southeast Europe-one of the most important European hotspots for biocultural diversity-is significant for the acquisition of Traditional Ecological Knowledge related to plants as well as for encouraging the development of local environments. The current ethnobotanical research was conducted in the region of Mt Stara Planina (south-eastern Serbia), which is characterised by rich phytodiversity with a large number of endemic and relict plant species. The aim of the study was to document the diversity of uses of medicinal plants and of traditional knowledge on their therapeutic uses. METHODS Ethnobotanical data was collected through both open and semi-structured interviews with locals. Fifty-one inhabitants were interviewed (26 men and 25 women), aged 30-91, and data was analysed by means of use reports, citation frequency, use values (UV), and the informant consensus factor (ICF). RESULTS The study identified 136 vascular medicinal plant taxa and one lichen species belonging to 53 families and 116 genera. Lamiaceae (19), Rosaceae (18), and Asteraceae (17) had the highest species diversity. The plant parts most commonly used to make a variety of herbal preparations were the aerial parts (54 citations), leaves (35 citations), fruits (20 citations), flowers (18 citations), and roots (16 citations), while the most common forms of preparation were teas (60.78%), consumption of fresh tubers, leaves, roots, and fructus (6.86%), compresses (5.88%), juices (5.39%), decoctions (3.92%), 'travarica' brandy (3.92%), and syrups (2.45%). Of the recorded species, 102 were administered orally, 17 topically, and 18 both orally and topically. The plants with a maximum use value (UV = 1) were Allium sativum, Allium ursinum, Gentiana asclepiadea, Gentiana cruciata, Gentiana lutea, Hypericum perforatum, Thymus serpyllum and Urtica dioica. The highest ICF value (ICF = 0.95) was recorded in the categories of Skin and Blood, Blood Forming Organs, and Immune Mechanism. CONCLUSIONS This study shows that medicinal plants in the research area are an extremely important natural resource for the local population as they are an important component of their health culture and provide a better standard of living.
Collapse
Affiliation(s)
- Snežana Jarić
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia.
| | - Olga Kostić
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Zorana Miletić
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Milica Marković
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Dimitrije Sekulić
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Miroslava Mitrović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Pavle Pavlović
- Department of Ecology, Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| |
Collapse
|
10
|
Melnyk N, Popowski D, Strawa JW, Przygodzińska K, Tomczyk M, Piwowarski JP, Granica S. Skin microbiota metabolism of natural products from comfrey root (Symphytum officinale L.). JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116968. [PMID: 37506778 DOI: 10.1016/j.jep.2023.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Comfrey root (Symphytum officinale L., Boraginaceae) has been used in folk medicine for a long time to treat different diseases. It is recommended for swellings, phlebitis, contusions, gastro-duodenal ulcers, respiratory diseases, and metrorrhagia. Currently, preparations from S. officinale are only topically used due to its wound-healing effects, and for reducing inflammation and the treatment of broken bones, tendon damage, painful joints and muscles. Although it is a widespread plant material, little is known about the interaction of externally applied preparations of comfrey with the human skin microbiome. AIM OF THE STUDY The study aims to determine the interaction between human skin microbiota and the comfrey root extracts, by monitoring the biotransformation of the constituents present in the extract and evaluating changes in the population of the skin microbiota in an ex vivo setting. MATERIAL AND METHODS The comfrey root extract was incubated with the human skin microbiota from ten healthy donors. The UHPLC-DAD-MSn analysis determined the composition of the raw extract and the microbial metabolites. Bacterial genomic DNA was extracted and examined by amplification sequencing of the 16S rDNA to determine changes in the bacterial composition. RESULTS The hydroethanolic extract of comfrey root primarily consists of phenolic acids, pyrrolizidine alkaloids, and their derivatives, and lignans. The natural products present in the extract underwent biodegradation by the skin microbiota, leading to the formation of smaller molecules. It was observed that the skin microbial metabolism primarily focused on modifying the derivatives of pyrrolizidine alkaloids. It resulted in the production of deacetylated and deesterificated compounds. However, it did not lead to the conversion of these compounds into free alkaloids. CONCLUSIONS The microbiota-triggered biotransformation of the comfrey root extract was observed. A few N-oxides were metabolized to deacetylated and deesterificated forms in ex vivo conditions. It suggests that the intermittent external applications of comfrey preparations perchance are unlikely to pose a substantial risk. While it even may serve as a potential factor influencing the extract activity in treating skin diseases.
Collapse
Affiliation(s)
- Natalia Melnyk
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Dominik Popowski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland; Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, ul. Rakowiecka 36, 02-532, Warsaw, Poland.
| | - Jakub W Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland.
| | - Klaudia Przygodzińska
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland.
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
11
|
Nenni M, Karahuseyin S. Medicinal Plants, Secondary Metabolites, and Their Antiallergic Activities. BIOTECHNOLOGY OF MEDICINAL PLANTS WITH ANTIALLERGY PROPERTIES 2024:37-126. [DOI: 10.1007/978-981-97-1467-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Kılınc H, D’Urso G, Paolillo A, Alankus O, Piacente S, Masullo M. LC-MS and NMR Based Plant Metabolomics: A Comprehensive Phytochemical Investigation of Symphytum anatolicum. Metabolites 2023; 13:1051. [PMID: 37887376 PMCID: PMC10608505 DOI: 10.3390/metabo13101051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The application of metabolomics to the study of plants is growing because of the current development of analytical techniques. The most commonly used analytical technology driving plant metabolomics studies is Mass Spectrometry (MS) coupled to liquid chromatography (LC). In recent years, Nuclear Magnetic Resonance (NMR) spectroscopy, not requiring a previous chromatographic separation, has been receiving growing attention for metabolite fingerprinting of natural extracts. Herein, an integrated LC-MS and 1H NMR metabolomic approach provided a comprehensive phytochemical characterization of Symphytum anatolicum whole plant, taking into account both primary and specialized metabolites. Moreover, the NMR analyses provided direct quantitative information. Species belonging to the Symphytum genus, known as comfrey, have shown several biological activities including anti-inflammatory, analgesic, hepatoprotective, antifungal, and antibacterial. The LC-MS profile showed the presence of 21 main specialized metabolites, belonging to the classes of flavonoids, phenylpropanoids, salvianols, and oxylipins. The 1H NMR spectrum revealed the occurrence of metabolites including organic acids, phenolics, flavonoids, sugars, and amino acids. A quantitative analysis of these metabolites was performed and their concentration was obtained with respect to the known concentration of TSP, by means of the software package Chenomx which allows quantification of individual components in the NMR spectra. Furthermore, the phenolic content, antioxidant activity, glucosidase, and tyrosinase inhibitory activity of S. anatolicum extract were evaluated. The resulting bioactivity profile suggests how S. anatolicum represents a source of metabolites with health-promoting activity.
Collapse
Affiliation(s)
- Hilal Kılınc
- Department of Geological Engineering, Engineering Faculty, Dokuz Eylul University, Buca, 35370 İzmir, Turkey;
| | - Gilda D’Urso
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (G.D.); (M.M.)
| | - Annunziata Paolillo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (G.D.); (M.M.)
| | - Ozgen Alankus
- Chemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Sonia Piacente
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (G.D.); (M.M.)
| | - Milena Masullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; (G.D.); (M.M.)
| |
Collapse
|
13
|
Kimel K, Godlewska S, Gleńsk M, Gobis K, Ośko J, Grembecka M, Krauze-Baranowska M. LC-MS/MS Evaluation of Pyrrolizidine Alkaloids Profile in Relation to Safety of Comfrey Roots and Leaves from Polish Sources. Molecules 2023; 28:6171. [PMID: 37630423 PMCID: PMC10459857 DOI: 10.3390/molecules28166171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Comfrey (Symphytum officinale L.) has a long tradition of use in the treatment of musculoskeletal disorders. However, due to hepatotoxic pyrrolizidine alkaloids (PAs), the EMA restricts the use of comfrey root (CR) to external use only and for short periods of time. Recent studies indicate a low permeability of PAs across the skin, calling into question the safety of topical application of products containing comfrey preparations. The aim of our work was to develop and validate an HPLC method enabling the separation of isomeric PAs from comfrey and, on this basis, to assess the potential toxicity of CR and comfrey leaf (CL) obtained from various Polish sources. The qualitative and quantitative analysis of PAs via HPLC-MS/MS was performed in MRM mode. The results obtained confirmed a lower content of PAs in CL than in CR and showed a wide variation in the composition of PAs in CR, with a much more stable profile of PAs in CL. Factor analysis confirmed that CRs and CLs differ in PA content, which is influenced by the growth conditions and geographical origin. The determined concentrations of PAs prove that in some CRs available on the Polish herbal market, the content of PAs may exceed the daily dose considered safe.
Collapse
Affiliation(s)
- Katarzyna Kimel
- Department of Pharmacognosy with Medicinal Plants Garden, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland; (K.K.); (S.G.)
| | - Sylwia Godlewska
- Department of Pharmacognosy with Medicinal Plants Garden, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland; (K.K.); (S.G.)
| | - Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 211A Borowska St., 50-556 Wrocław, Poland;
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland;
| | - Justyna Ośko
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland
| | - Mirosława Krauze-Baranowska
- Department of Pharmacognosy with Medicinal Plants Garden, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland; (K.K.); (S.G.)
| |
Collapse
|
14
|
Marques MP, Varela C, Mendonça L, Cabral C. Nanotechnology-Based Topical Delivery of Natural Products for the Management of Atopic Dermatitis. Pharmaceutics 2023; 15:1724. [PMID: 37376172 DOI: 10.3390/pharmaceutics15061724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic eczematous inflammatory disease that may arise from environmental, genetic, and immunological factors. Despite the efficacy of current treatment options such as corticosteroids, such approaches are mainly focused on symptom relief and may present certain undesirable side effects. In recent years, isolated natural compounds, oils, mixtures, and/or extracts have gained scientific attention because of their high efficiency and moderate to low toxicity. Despite their promising therapeutic effects, the applicability of such natural healthcare solutions is somewhat limited by their instability, poor solubility, and low bioavailability. Therefore, novel nanoformulation-based systems have been designed to overcome these limitations, thus enhancing the therapeutic potential, by promoting the capacity of these natural drugs to properly exert their action in AD-like skin lesions. To the best of our knowledge, this is the first literature review that has focused on summarizing recent nanoformulation-based solutions loaded with natural ingredients, specifically for the management of AD. We suggest that future studies should focus on robust clinical trials that may confirm the safety and effectiveness of such natural-based nanosystems, thus paving the way for more reliable AD treatments.
Collapse
Affiliation(s)
- Mário Pedro Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Varela
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products (CIEPQPF), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Laura Mendonça
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
15
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Berganayeva G, Kudaibergenova B, Litvinenko Y, Nazarova I, Sydykbayeva S, Vassilina G, Izdik N, Dyusebaeva M. Medicinal Plants of the Flora of Kazakhstan Used in the Treatment of Skin Diseases. Molecules 2023; 28:4192. [PMID: 37241933 PMCID: PMC10221907 DOI: 10.3390/molecules28104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The skin shows the physiological condition of the body's organs and systems that prevent infections and physical damage. Throughout the ages, in folk medicine, phytotherapy was considered a primary form of treatment in all countries, including Kazakhstan, due to the abundance and availability of plant-based remedies. This paper discusses several medicinal plants that are traditionally used in the treatment of skin diseases in the Republic of Kazakhstan. The chemical composition of these plants was analyzed, with a particular focus on the biologically active basic compounds responsible for their therapeutic efficiency in treating skin ailments.
Collapse
Affiliation(s)
- Gulzat Berganayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Bates Kudaibergenova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Yuliya Litvinenko
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Irada Nazarova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after Ilyas Zhansugurov, 187A, Taldykorgan 040000, Kazakhstan;
| | - Gulzira Vassilina
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Nazerke Izdik
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Moldyr Dyusebaeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| |
Collapse
|
17
|
Ivanova T, Marchev A, Chervenkov M, Bosseva Y, Georgiev M, Kozuharova E, Dimitrova D. Catching the Green—Diversity of Ruderal Spring Plants Traditionally Consumed in Bulgaria and Their Potential Benefit for Human Health. DIVERSITY 2023; 15:435. [DOI: 10.3390/d15030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The global climate and societal challenges in the recent years urge us to strengthen food security; thus, the rediscovery of wild foods and foraging practices is also part of the sustainability agenda. Utilization of underappreciated sources such as ruderal plants could be a valuable option, especially for vulnerable parts of the society. We present data on traditional knowledge on spring edible ruderal plant taxa preserved in rural regions of Bulgaria, combining field studies in the period 2017–2022 that were compared to the available recent and historical ethnographic and (ethno)botanical literature. Semi-structured interviews were performed with representatives of 94 households in North and South Bulgaria, focusing on collection practices, used parts, and preparation methods. We list 65 edible ruderals, belonging to 22 plant families, of which 19 appeared only in the literature sources. Unlike in the Mediterranean tradition, edible ruderal plants in Bulgaria were regarded unfavorably, as poverty food. Amaranthaceae and Asteraceae were the most represented families, with 10 taxa each. About half of the taxa were collected for their leaves or whole young herbage that is used as pastry fillings, in stewed, and in cooked dishes. Taxa used in raw salads were mostly from the literature sources. The most diverse utilization was recorded in the southern-most regions of Bulgaria, where immediate tasting of the gathered plants was reported by the participants as the way to collect food plants. The bitter ones or those with an unappealing smell were considered non-edible and were avoided. References about biologically active compounds and potential benefits were collected, classified, and discussed in regard to their potential benefits for human health.
Collapse
Affiliation(s)
- Teodora Ivanova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Mihail Chervenkov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria
| | - Yulia Bosseva
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milen Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Dessislava Dimitrova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
18
|
Trifan A, Czerwińska ME, Zengin G, Esslinger N, Grubelnik A, Wolfram E, Skalicka-Woźniak K, Luca SV. Influence of pyrrolizidine alkaloids depletion upon the biological activity of Symphytum officinale L. extracts. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116010. [PMID: 36493995 DOI: 10.1016/j.jep.2022.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Comfrey (Symphytum officinale L., Boraginaceae) root preparations are used as both traditional remedies and therapeutic agents in treating pain and inflammation associated with joint, bone, and muscle ailments. Even though numerous phytochemicals contribute to the beneficial effects of comfrey, the presence of toxic pyrrolizidine alkaloids (PAs) overshadows its uses. AIM OF THE STUDY In this work, different PA-/mucilage-depleted/undepleted comfrey root extracts were subjected to detailed phytochemical characterization and biological evaluation. MATERIALS AND METHODS The phytochemical profiling was performed by LC-HRMS/MS. The quantification of PAs and major phenolic compounds was carried out by LC-MS/MS and LC-DAD. Antioxidant and enzyme inhibitory activity was determined by in vitro free radical scavenging, ion reducing, metal chelating, cholinesterase, tyrosinase, amylase, and glucosidase assays. Using an ex vivo model of LPS-stimulated neutrophils, their viability (as measured by flow cytometry) and the release of IL-1β, IL-8, and TNF-α were determined (ELISA assay). RESULTS 12 phenolic acids, six PAs, three organic acids, two fatty acids, and two sugars were identified in the obtained comfrey extracts. The PA-depleted materials contained PAs levels below 2 ppm, whereas the removal of mucilage increased the content of rosmarinic acid, globoidnan A, globoidnan B, and rabdosiin. PA-depletion did not significantly affect the antioxidant potential. However, the radical scavenging and metal reducing properties were higher in the mucilage-depleted extracts. Neither PA-depletion nor mucilage-depletion had considerable effects on the in vitro inhibitory activity of cholinesterases, tyrosinase, amylase, and glucosidase or release of ex vivo pro-inflammatory cytokines (e.g., IL-1β, IL-8, and TNF-α) in LPS-stimulated neutrophils. CONCLUSIONS In light of their superior safety profiles, PA-depleted comfrey extracts can be utilized further in cosmetic and pharmaceutical products.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania.
| | - Monika E Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097, Warsaw, Poland; Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | | | | | - Evelyn Wolfram
- Phytopharmacy and Natural Products Research Group, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
19
|
Syarifah AN, Suryadi H, Hayun H, Simamora A, Mun’im A. Detoxification of comfrey ( Symphytum officinale L.) extract using natural deep eutectic solvent (NADES) and evaluation of its anti-inflammatory, antioxidant, and hepatoprotective properties. Front Pharmacol 2023; 14:1012716. [PMID: 36937831 PMCID: PMC10020234 DOI: 10.3389/fphar.2023.1012716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Comfrey (Symphytum officinale L.) contains rosmarinic acid which has different pharmacological activities, such as antioxidant and anti-inflammatory activities. However, the medicinal use of comfrey is limited by the hepatotoxic effect of lycopsamine in comfrey, which overshadows the health benefits of rosmarinic acid. Natural deep eutectic solvents (NADES) have a wide range of extraction properties, that provides a new approach to the detoxification of comfrey. In the present study, betaine-based and choline chloride-based NADES were screened for selective extraction of rosmarinic acid over lycopsamine. Ultrasonication was used in conjunction with NADES extraction. The chemical profile of the NADES extracts on antioxidant, anti-inflammatory and hepatotoxic activities were investigated using some chemical reagents. Betaine-urea (1:2 molar ratio, 50% water) obtained the highest content of rosmarinic acid and a low level of lycopsamine (1.934 and 0.018 mg/g, respectively). Betaine-urea was also shown to be more effective to extract rosmarinic acid compared to methanol-UAE under the same conditions, which gave lower rosmarinic acid and higher lycopsamine levels (0.007 and 0.031 mg/g, respectively). Betaine-urea extracts showed higher antioxidant and anti-inflammatory properties as compared with other NADES extracts, however, had lower hepatotoxic profile. This study recommends the use of betaine-urea to detroxify comfrey to open wider opportunities for the development of comfrey for medicinal use.
Collapse
Affiliation(s)
- Andiri Niza Syarifah
- Graduate Program, Universitas Indonesia, Faculty of Pharmacy, Depok, Indonesia
- Department of Biology Pharmacy, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Herman Suryadi
- Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Hayun Hayun
- Laboratory of Pharmaceutical, Medicinal and Bioanalysis, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Adelina Simamora
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta, Indonesia
- National Metabolomic Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Abdul Mun’im
- National Metabolomic Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
- *Correspondence: Abdul Mun’im,
| |
Collapse
|
20
|
Luteoloside pretreatment attenuates anoxia-induced damage in cardiomyocytes by regulating autophagy mediated by 14-3-3η and the AMPKα-mTOR/ULK1 pathway. Mol Cell Biochem 2022; 478:1475-1486. [DOI: 10.1007/s11010-022-04611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
|
21
|
Melnyk N, Vlasova I, Skowrońska W, Bazylko A, Piwowarski JP, Granica S. Current Knowledge on Interactions of Plant Materials Traditionally Used in Skin Diseases in Poland and Ukraine with Human Skin Microbiota. Int J Mol Sci 2022; 23:ijms23179644. [PMID: 36077043 PMCID: PMC9455764 DOI: 10.3390/ijms23179644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Skin disorders of different etiology, such as dermatitis, atopic dermatitis, eczema, psoriasis, wounds, burns, and others, are widely spread in the population. In severe cases, they require the topical application of drugs, such as antibiotics, steroids, and calcineurin inhibitors. With milder symptoms, which do not require acute pharmacological interventions, medications, dietary supplements, and cosmetic products of plant material origin are gaining greater popularity among professionals and patients. They are applied in various pharmaceutical forms, such as raw infusions, tinctures, creams, and ointments. Although plant-based formulations have been used by humankind since ancient times, it is often unclear what the mechanisms of the observed beneficial effects are. Recent advances in the contribution of the skin microbiota in maintaining skin homeostasis can shed new light on understanding the activity of topically applied plant-based products. Although the influence of various plants on skin-related ailments are well documented in vivo and in vitro, little is known about the interaction with the network of the skin microbial ecosystem. The review aims to summarize the hitherto scientific data on plant-based topical preparations used in Poland and Ukraine and indicate future directions of the studies respecting recent developments in understanding the etiology of skin diseases. The current knowledge on investigations of interactions of plant materials/extracts with skin microbiome was reviewed for the first time.
Collapse
Affiliation(s)
- Natalia Melnyk
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Inna Vlasova
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Agnieszka Bazylko
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-225-720-9053
| |
Collapse
|
22
|
A Review of Moisturizing Additives for Atopic Dermatitis. COSMETICS 2022. [DOI: 10.3390/cosmetics9040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Atopic dermatitis, the most common form of eczema, is a chronic, relapsing inflammatory skin condition that occurs with dry skin, persistent itching, and scaly lesions. This debilitating condition significantly compromises the patient’s quality of life due to the intractable itching and other associated factors such as disfigurement, sleeping disturbances, and social stigmatization from the visible lesions. The treatment mainstay of atopic dermatitis involves applying topical glucocorticosteroids and calcineurin inhibitors, combined with regular use of moisturizers. However, conventional treatments possess a certain degree of adverse effects, which raised concerns among the patients resulting in non-adherence to treatment. Hence, the modern use of moisturizers to improve barrier repair and function is of great value. One of the approaches includes incorporating bioactive ingredients with clinically proven therapeutic benefits into dermocosmetics emollient. The current evidence suggests that these dermocosmetics emollients aid in the improvement of the skin barrier and alleviate inflammation, pruritus and xerosis. We carried out a critical and comprehensive narrative review of the literature. Studies and trials focusing on moisturizers that include phytochemicals, natural moisturizing factors, essential fatty acids, endocannabinoids, and antioxidants were identified by searching electronic databases (PubMed and MEDLINE). We introduce the current knowledge on the roles of moisturizers in alleviating symptoms of atopic dermatitis. We then further summarize the science and rationale of the active ingredients in dermocosmetics and medical device emollients for treating atopic dermatitis. Finally, we highlight the limitations of the current evidence and future perspectives of cosmeceutical research on atopic dermatitis.
Collapse
|
23
|
Sokolik OP, Prozorova GO. Current view on the problem of treating fibrocystic breast disease in terms of herbal medicine. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.79286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Fibrocystic breast disease, commonly called fibrocystic breasts or fibrocystic change, is a benign (noncancerous) condition, which is the most common pathology in women of reproductive age. Treatment of fibrocystic breast disease and concomitant pathologies can involve using herbs.
Materials and Methods: To make an analysis of literary sources on the development of fibrocystic breast disease in the pathogenesis of diseases of the female reproductive system (clinical human (75%) and animal studies (25%)) were published in the period of 2017–2021.
Results and discussion: The diversity of plants in the world is a promising ground for therapeutic improvisation, allowing for an individual approach to each patient, but, most importantly, creates possibilities for maneuvering in the event of ineffectiveness of any means. In some situations, herbal medicine is not only possible or permissible, but strictly mandatory, and is essentially the only effective therapeutic method, which is relatively safe provided the correct selection of combinations and control by a doctor who applies a certain method of phytotherapy, especially given a duration of treatment. The need for a deeper study is long overdue for the pharmacological capabilities of various plant raw materials in the treatment of not only this pathology, but others as well.
Conclusion: The development of phytotherapy should be based primarily on scientific developments, but this area can not be considered the prerogative of only phytotherapists, as herbal medicines should be in the arsenal of doctors of all specialties.
Collapse
|
24
|
Al-Harrasi A, Behl T, Upadhyay T, Chigurupati S, Bhatt S, Sehgal A, Bhatia S, Singh S, Sharma N, Vijayabalan S, Palanimuthu VR, Das S, Kaur R, Aleya L, Bungau S. Targeting natural products against SARS-CoV-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42404-42432. [PMID: 35362883 PMCID: PMC8972763 DOI: 10.1007/s11356-022-19770-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/13/2022] [Indexed: 06/01/2023]
Abstract
The human coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus; the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Natural products, secondary metabolites show positive leads with antiviral and immunotherapy treatments using genomic studies in silico docking. In addition, it includes the action of a mechanism targeting the SARS-CoV-2. In this literature, we aimed to evaluate the antiviral movement of the NT-VRL-1 unique terpene definition to Human coronavirus (HCoV-229E). The effects of 19 hydrolysable tannins on the SARS-CoV-2 were therefore theoretically reviewed and analyzed utilising the molecular operating surroundings for their C-Like protease 3CLpro catalytic dyad residues Angiotensin converting enzyme-2 (MOE 09). Pedunculagin, tercatan, and castalin were detected as interacting strongly with SARS-receptor Cov-2's binding site and catalytic dyad (Cys145 and His41). SARS-CoV-2 methods of subunit S1 (ACE2) inhibit the interaction of the receiver with the s-protein once a drug molecule is coupled to the s-protein and prevent it from infecting the target cells in alkaloids. Our review strongly demonstrates the evidence that natural compounds and their derivatives can be used against the human coronavirus and serves as an area of research for future perspective.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz, Oman
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shantini Vijayabalan
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor's University, Subang Jaya, Kuala Lumpur, Malaysia
| | - Vasanth Raj Palanimuthu
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Suprava Das
- Department of Pharmacology, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
25
|
Aborehab NM, El Bishbishy MH. Chondroprotection of fruit peels in a monosodium iodoacetate-induced osteoarthritis rat model via downregulation of Col1A1. Arch Pharm (Weinheim) 2022; 355:e2200028. [PMID: 35385163 DOI: 10.1002/ardp.202200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 11/10/2022]
Abstract
The potential of the fruit peels of mango, orange, cantaloupe, and pomegranate in the treatment of osteoarthritis (OA) was evaluated in a rat model. Their metabolic profiles were characterized using ultrahigh-performance liquid chromatography (UPLC)-electrospray ionization-mass spectroscopy and 66 albino rats were intra-articularly injected with monosodium iodoacetate in the knee joints. The extracts were orally administered at doses of 200 and 400 mg/kg for 28 days. Serum levels of IL-6 and tissue levels of cyclooxygenase-2 (COX-2), peroxisome proliferator-activated receptor-gamma (PPARγ), and alpha-smooth muscle actin (α-SMA) were measured using ELISA. COL1A1 expression was measured by quantitative polymerase chain reaction. Histopathological changes in the joints were examined. In the extracts, 85 metabolites were annotated, and the levels of interleukin (IL)-6, COX-2, α-SMA, malondialdehyde, and nitric oxide were significantly reduced, while PPARγ and glutathione levels were significantly raised in all treated groups compared to the OA group. All extracts downregulated the cartilage mRNA expressions for COL1A1 dose-dependently. Mango peel extract exhibited the best chondroprotective effect. The in silico study showed the link between mango extract metabolites and COX-2.
Collapse
Affiliation(s)
- Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
26
|
Mahmoudzadeh E, Nazemiyeh H, Hamedeyazdan S. Anti-inflammatory Properties of the Genus Symphytum L.: A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123949. [PMID: 36060906 PMCID: PMC9420230 DOI: 10.5812/ijpr.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
: The Symphytum genus has been mainly used in traditional medicine, containing its anti-inflammatory activity. Symphytum spp.’s active components, such as allantoin, polyphenols, flavonoids, and alkaloids, can act on several intentions in the signaling pathway, constrain pro-inflammatory enzymes, reducing the construction of inflammatory chemokine’s and cytokines, and decreasing oxidative stress, which afterward suppresses inflammation procedures. Preclinical and clinical trials have reported the prevailing anti-inflammatory effect of several Symphytum species. This review presents an overview of the anti-inflammatory activities of different products and bioactive constituents in this genus. The papers with the English language were gathered from 2000 to 2021. This review may provide a scientific base for establishing innovative and alternative techniques for isolating a single individual from this genus to attenuate inflammatory disorders. The Symphytum genus is waiting for researchers to develop safe and effective anti-inflammatory agents for additional investigation of other different mechanisms of action.
Collapse
Affiliation(s)
- Elaheh Mahmoudzadeh
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding Author: Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family. Pharmaceutics 2022; 14:pharmaceutics14010115. [PMID: 35057011 PMCID: PMC8779701 DOI: 10.3390/pharmaceutics14010115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
This study reports the first enzymatic synthesis leading to several oligomer analogues of poly[3-(3,4-dihydroxyphenyl)glyceric acid]. This biopolymer, extracted from plants of the Boraginaceae family has shown a wide spectrum of pharmacological properties, including antimicrobial activity. Enzymatic ring opening polymerization of 2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane (MDBPO) using lipase from Candida rugosa leads to formation of poly[2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane] (PMDBPO), with a degree of polymerization up to 5. Catalytic debenzylation of PMDBPO using H2 on Pd/C yields poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO) without loss in molecular mass. Antibacterial assessment of natural polyethers from different species of Boraginaceae family Symhytum asperum, S. caucasicum,S. grandiflorum, Anchusa italica, Cynoglossum officinale, and synthetic polymers, poly[2-methoxycarbonyl-3-(3,4-dimethoxyphenyl)oxirane (PMDMPO) and PMDHPO, reveals that only the synthetic analogue produced in this study (PMDHPO) exhibits a promising antimicrobial activity against pathogenic strains S.aureus ATCC 25923 and E.coli ATCC 25922 the minimum inhibitory concentration (MIC) being 100 µg/mL.
Collapse
|
28
|
Goudoulas TB, Vanderhaeghen S, Germann N. Micro-dispersed essential oils loaded gelatin hydrogels with antibacterial activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Cinnamon and Eucalyptus Oils Suppress the Inflammation Induced by Lipopolysaccharide In Vivo. Molecules 2021; 26:molecules26237410. [PMID: 34885991 PMCID: PMC8659246 DOI: 10.3390/molecules26237410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation caused by bacterial lipopolysaccharide (LPS) disrupts epithelial homeostasis and threatens both human and animal health. Therefore, the discovery and development of new anti-inflammatory drugs is urgently required. Plant-derived essential oils (EOs) have good antioxidant and anti-inflammatory activities. Thus, this study aims to screen and evaluate the effects of cinnamon oil and eucalyptus oil on anti-inflammatory activities. The associated evaluation indicators include body weight gain, visceral edema coefficient, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nitrogen monoxide (NO), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), Urea, Crea, ALT, TLR4, MyD88, NF-κB, IκB-α, iNOS, and Mn-SOD. In addition, tissue injury was determined by H&E staining. The results revealed that cinnamon oil and eucalyptus oil suppressed inflammation by decreasing SOD, TNF-α, and NF-κB levels. We also found that cinnamon oil increased the level of GSH-Px, MDA, and Mn-SOD, as well as the visceral edema coefficient of the kidney and liver. Altogether, these findings illustrated that cinnamon oil and eucalyptus oil exhibited wide antioxidant and anti-inflammatory activities against LPS-induced inflammation.
Collapse
|
30
|
Allantoin from Valuable Romanian Animal and Plant Sources with Promising Anti-Inflammatory Activity as a Nutricosmetic Ingredient. SUSTAINABILITY 2021. [DOI: 10.3390/su131810170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Helix aspersa (HA), Helix pomatia (HP) and Symphytum officinale are common organisms in Romania’s biosphere, widely known for their allantoin content and their therapeutic properties. Herein, the allantoin was separated and quantified from the aqueous extracts of Romanian comfrey root and the secretions of HA and HP snails. This study also focused on determining the antioxidant and anti-inflammatory activities of these Romanian allantoin-rich samples. The plant extracts were obtained through two methods: ultrasonic extraction and enzymatic ultrasonic extraction. A microplate method was used for the quantitative determination of allantoin content. The antioxidant activity was measured by using the DPPH radical scavenging method. The antioxidant capacity of the samples was studied in order to observe the type of interactions generated by the chemical complex present in their composition. High concentrations of allantoin were obtained by enzymatic ultrasonic extraction method (EUE—102 ± 0.74 μg/mL), and also in the water-soluble fraction of the snail secretion (FS1—22.051 μg/mL). The antioxidant screening suggests that Symphytum officinale and snail mucus extracts could be used as promising natural substitutes for synthetic antioxidants in products used for therapeutic purposes. The evaluation of anti-inflammatory activity was also investigated, allantoin-rich samples showing a promising action (FS1—81.87 ± 2.34%). In future, the inclusion of allantoin-rich extracts in various novel pharmaceutical forms for new therapeutic applications could be achieved. The study will continue with the formulation of a nutricosmetic product with snail mucus and Symphytum officinale extract as principal bioactive ingredients.
Collapse
|
31
|
Trifan A, Zengin G, Sinan KI, Esslinger N, Grubelnik A, Wolfram E, Skalicka-Woźniak K, Minceva M, Luca SV. Influence of the Post-Harvest Storage Time on the Multi-Biological Potential, Phenolic and Pyrrolizidine Alkaloid Content of Comfrey ( Symphytum officinale L.) Roots Collected from Different European Regions. PLANTS 2021; 10:plants10091825. [PMID: 34579358 PMCID: PMC8471851 DOI: 10.3390/plants10091825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
Comfrey (Symphytum officinale L.) roots are well-known bioactive ingredients included in various cosmeceutical and pharmaceutical preparations. In this study, the influence of the post-harvest storage on the chemico-biological potential of roots collected from different European regions and stored for up to six months was investigated. Total phenolic content (TPC) and total phenolic acid content (TPAC) were spectrophotometrically estimated, whereas the levels of individual phenolic and pyrrolizidine alkaloidal markers were determined by HPLC-DAD and HPLC-MS/MS, respectively. The changes in the biological potential was tracked via antioxidant (DPPH, ABTS, CUPRAC, and FRAP) and anti-enzymatic (cholinesterase, tyrosinase, glucosidase, and amylase) assays. TPC and TPAC varied from 6.48–16.57 mg GAE/g d.w. root and from 2.67–9.03 mg CAE/g, respectively. The concentration of the four phenolics (rosmarinic acid, globoidnan A, globoidnan B, rabdosiin) and six pyrrolizidine alkaloids generally showed maximum values at 1–3 months, after which their levels significantly decreased. With respect to the bioassays, the samples showed a wide range of antioxidant and anti-enzymatic effects; however, a direct storage time–bioactivity relationship was not observed. Similar conclusions were also revealed by the multivariate and correlation analyses. Our study could improve the current knowledge of the shelf-life properties of comfrey-based products and enhance their industrial exploitation.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
- Correspondence: (G.Z.); (S.V.L.)
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Nils Esslinger
- Alpinamed AG, 9306 Freidorf, Switzerland; (N.E.); (A.G.)
| | | | - Evelyn Wolfram
- Phytopharmacy and Natural Products Research Group, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- Correspondence: (G.Z.); (S.V.L.)
| |
Collapse
|
32
|
Butnariu M. Meet the Editorial Board Member. Curr Drug Deliv 2021. [DOI: 10.2174/156720181805210806155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine King Michael I of Romania Timisoara, Romania
| |
Collapse
|
33
|
Trifan A, Zengin G, Sinan KI, Wolfram E, Skalicka-Woźniak K, Luca SV. LC-HRMS/MS phytochemical profiling of Symphytum officinale L. and Anchusa ochroleuca M. Bieb. (Boraginaceae): Unveiling their multi-biological potential via an integrated approach. J Pharm Biomed Anal 2021; 204:114283. [PMID: 34329923 DOI: 10.1016/j.jpba.2021.114283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
This study was aimed at providing a comprehensive phytochemical characterization and multi-biological assessment of Symphytum officinale L., a medicinal plant with a noteworthy traditional use, and Anchusa ochroleuca M. Bieb., a Boraginaceae species from the Romanian flora. The dichloromethane, methanol and 65 % ethanol extracts obtained from the roots and aerial parts of both plants revealed the presence of numerous phenolic acids, oxygenated fatty acids, pyrrolizidine alkaloids (PAs) and flavonoids, as assessed by LC-HRMS/MS analysis. Consistent with their higher total phenolic content, the polar aerial part extracts of S. officinale and root extracts of A. ochroleuca showed the most significant antioxidant activities, as evaluated by DPPH (173.22-216.98 mg TE/g) and ABTS (219.41-311.97 mg TE/g) radical scavenging, CUPRAC (387.18-626.40 mg TE/g), FRAP (199.36-299.86 mg TE/g) and total antioxidant capacity (2.28-2.68 mmol TE/g). Furthermore, both plants exhibited good tyrosinase (19.11-43.89 mg KAE/g) and α-glucosidase (2.45-12.54 mmol ACAE/g) inhibitory effects. The orthogonal projections to latent structures discriminant analysis (OPLS-DA) allowed the objective differentiation between the roots and aerial parts of the two investigated species based on their phytochemical and biological profiles. The partial least square (PLS) analysis showed that several individual phenolic acids, such as danshensu, rabdosiin and rosmarinic acid, significantly contributed to the antioxidant potential of both Boraginaceae species, whilst the relative levels of sucrose were positively correlated with the anti-enzymatic properties. Overall, S. officinale and A. ochroleuca could be regarded as rich sources of bioactive phytochemicals that could further lead to developing novel phyto-pharmaceutical commodities.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, University Campus, 42130, Konya, Turkey.
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, University Campus, 42130, Konya, Turkey
| | - Evelyn Wolfram
- Phytopharmacy and Natural Products Research Group, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, 20-093, Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
34
|
Trifan A, Wolfram E, Esslinger N, Grubelnik A, Skalicka-Woźniak K, Minceva M, Luca SV. Globoidnan A, rabdosiin and globoidnan B as new phenolic markers in European-sourced comfrey (Symphytum officinale L.) root samples. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:482-494. [PMID: 33015885 DOI: 10.1002/pca.2996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Symphytum officinale L. (comfrey, Boraginaceae) is a cultivated or spontaneously growing medicinal plant that is traditionally used for the treatment of bone fractures, hematomas, muscle pains and joint pains. A wide range of topical preparations and dried roots for ex tempore applications are marketed in European drug stores or pharmacies. OBJECTIVE The aim of this study was to perform the qualitative and quantitative analysis of pyrrolizidine alkaloids (PAs) and phenolic compounds in the hydroethanolic extracts of 16 commercial comfrey root batches purchased from 12 different European countries. METHODS Liquid chromatography hyphenated with high-resolution tandem mass spectrometry (LC-HRMS/MS) was used for the profiling of PAs and phenolic compounds, whereas LC-MS/MS and liquid chromatography with diode array detection (LC-DAD) were used for their quantification. RESULTS 20 PAs (i.e. intermedine, lycopsamine, acetylintermedine, acetyllycopsamine, symphytine, symphytine-N-oxide), 17 phenolic compounds (i.e. caffeic and rosmarinic acids, rabdosiin, globoidnan A, globoidnan B) and 9 nonphenolic compounds (sugars, organic and fatty acids) were fully or partly annotated in the analysed samples. In addition, the quantitative analyses revealed that globoidnan B, rabdosiin and globoidnan A are new phenolic markers that can be used together with rosmarinic acid and PAs for the quality control of commercial comfrey root batches. CONCLUSIONS This study brings new insights into the phytochemical complexity of S. officinale, revealing not only numerous toxic PAs, but also a significant number of valuable phenolic compounds that could contribute to the bioactivities of comfrey-based preparations.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | - Evelyn Wolfram
- Phytopharmacy and Natural Products Research Group, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | | | | | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, Lublin, 20-093, Poland
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
35
|
Zengin G, Sinan KI, Ak G, Angeloni S, Maggi F, Caprioli G, Kaplan A, Çakılcıoğlu U, Akan H, Jugreet S, Mahomoodally MF. Preliminary investigation on chemical composition and bioactivity of differently obtained extracts from Symphytum aintabicum Hub.- Mor. &Wickens. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Trifan A, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Marcourt L, Wolfender JL, Wolfram E, Esslinger N, Grubelnik A, Luca SV. Symphytum officinale L.: Liquid-liquid chromatography isolation of caffeic acid oligomers and evaluation of their influence on pro-inflammatory cytokine release in LPS-stimulated neutrophils. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113169. [PMID: 32739565 DOI: 10.1016/j.jep.2020.113169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Symphytum officinale L. (comfrey, Boraginaceae) has been traditionally used for millennia in joint distortions, myalgia, bone fractures and hematomas. However, key activity-determining constituents and molecular mechanisms underlying its use have not been completely elucidated. AIM OF THE STUDY The objective of this study was to isolate and identify the major compounds from a hydroethanolic root extract of S. officinale and evaluate their antioxidant potential, alongside their effect on the cytokine production of ex vivo stimulated neutrophils, thus providing scientific support for the traditional use of comfrey root. MATERIAL AND METHODS Four caffeic acid oligomers were isolated from comfrey roots by liquid-liquid chromatography, their structures being established by MS and NMR analyses. In vitro antioxidant evaluation was performed by DPPH and ABTS assays. The cytotoxicity of isolated compounds was established by flow cytometry. The effect on cytokine release, such as interleukin (IL)-1β, IL-8 and tumor necrosis factor alpha (TNF-α), in lipopolysaccharide (LPS)-stimulated neutrophils was determined by enzyme-linked immunosorbent assay (ELISA). RESULTS The main constituents found in comfrey root were represented by four caffeic acid oligomers, namely globoidnan B (1), rabdosiin (2), rosmarinic acid (3) and globoidnan A (4). Rabdosiin, globoidnans A and B were isolated for the first time from S. officinale. In the in vitro antioxidant tests, compound 2 was the most active, with EC50 values in DPPH and ABTS assays of 29.14 ± 0.43 and 11.13 ± 0.39, respectively. Neutrophils' viability over the tested concentration domain of 12.5-50 μM was not altered. At 50 μM, all compounds significantly inhibited IL-1β release, with compound 3 (45.60% release vs. LPS stimulated neutrophils) being the most active, followed by compounds 1 (53.85%), 2 (69.89%) and 4 (60.68%). CONCLUSIONS The four caffeic acid oligomers reported in S. officinale root may contribute to the overall anti-inflammatory activity for which comfrey preparations are used in traditional medicine.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania.
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, 20-093, Lublin, Poland.
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Aleksandra Kruk
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, IPSWS, University of Geneva, CMU, 1211, Geneva 4, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, IPSWS, University of Geneva, CMU, 1211, Geneva 4, Switzerland.
| | - Evelyn Wolfram
- Phytopharmacy and Natural Products Research Group, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | | | - Simon Vlad Luca
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania; Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
37
|
Kumar N, Jose J. Current developments in the nanomediated delivery of photoprotective phytochemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38446-38471. [PMID: 32761528 DOI: 10.1007/s11356-020-10100-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Natural products have been used to protect the skin from harmful UV radiation for decades. Due to the ecotoxicological implications of synthetic sunscreen exposure in aquatic ecosystems, there is a greater need to explore alternative sources of UV filters. Recent research has focused on discovering novel UV absorbing photoprotective molecules from nature. In response to the excessive damage caused by UVB rays, plants induce the production of high concentrations of phytoprotective secondary metabolites and anti-oxidative enzymes. Despite promising UV absorbing and photoprotective properties, plant secondary metabolites have been underutilized in topical delivery due to low solubility and high instability. Numerous phytochemicals have been effectively nanosized, incorporated in formulations, and studied for their sustained effects in photoprotection. The present review outlines recent developments in nanosizing and delivering photoprotective crude plant extract and phytochemicals from a phytochemical perspective. We searched for articles using keywords: "UV damage," "skin photoprotection," "photodamage," and "nano delivery" in varied combinations. We identified and reviewed literature from 43 original research articles exploring nanosized phytochemicals and crude plant extracts with photoprotective activity. Nanosized phytochemicals retained higher amounts of bioactive compounds in the skin and acted as depots for their sustained release. Novel approaches in nanosizing considerably improved the photostability, efficacy, and water resistance of plant secondary metabolites. We further discuss the need for broad-spectrum sunscreen products, potential challenges, and future growth in this area.
Collapse
Affiliation(s)
- Nimmy Kumar
- Department of Pharmacognosy, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, 575018, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore, 575018, India.
| |
Collapse
|
38
|
Vaezi S, Haghighi HM, Farzad SA, Arabzadeh S, Kalalinia F. Bone Regeneration by Homeopathic Symphytum officinale. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Varvouni EF, Zengin G, Graikou K, Ganos C, Mroczek T, Chinou I. Phytochemical analysis and biological evaluation of the aerial parts from Symphytum anatolicum Boiss. and Cynoglottis barrelieri (All.) Vural & Kit Tan (Boraginaceae). BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Arroyo GV, Madrid AT, Gavilanes AF, Naranjo B, Debut A, Arias MT, Angulo Y. Green synthesis of silver nanoparticles for application in cosmetics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1304-1320. [PMID: 32715864 DOI: 10.1080/10934529.2020.1790953] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this work, we analyzed the advantages of using silver nanoparticles (AgNPs) synthesized with natural extracts in ultraviolet-visible spectroscopy (UV-Vis) protective cream. The photodegradation properties of the new UV-Vis protective milk show an increase in its absorption band compared to AgNP-free cream. Previous to the study of the AgNPs mixed within the body milk, we studied the optical UV-Vis properties of extracts at different collection times, as they can influence the spectral range of UV-Vis absorption of the hybrid compound (AgNPs + natural extract). Shape and size of the AgNPs differs from the type of reducing agent as well as the concentration of silver nitrate used. We also compared the cytotoxicity in cell lines and the antibacterial effect of the AgNPs without and with organic coating. All these studies showed that we obtained hybrid sun-protective body milk with a high degree of solar protection and with low cytotoxicity at a cellular level, thus improving its protective properties. The synthetized hybrid compound could be a possible cost-affordable alternative for the market.
Collapse
Affiliation(s)
- Geovanna V Arroyo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alison T Madrid
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alex F Gavilanes
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Blanca Naranjo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alexis Debut
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Marbel T Arias
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Yolanda Angulo
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| |
Collapse
|
41
|
Avila C, Breakspear I, Hawrelak J, Salmond S, Evans S. A systematic review and quality assessment of case reports of adverse events for borage (Borago officinalis), coltsfoot (Tussilago farfara) and comfrey (Symphytum officinale). Fitoterapia 2020; 142:104519. [PMID: 32105669 DOI: 10.1016/j.fitote.2020.104519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Symphytum officinale (comfrey), Tussilago farfara (coltsfoot) and Borago officinalis (borage) have long histories of therapeutic use, but their safety has been questioned due to the presence of unsaturated pyrrolizidine alkaloids (PAs). The evidence base underlying these concerns relies in part on case reports. This systematic review assesses these case reports for their reliability to inform this debate. METHOD Study selection was restricted to case reports describing possible pyrrolizidine alkaloid related harm and ingestion of comfrey, coltsfoot or borage. An extensive search of academic databases was conducted. Papers meeting the criteria were critically appraised. RESULTS The search resulted in 11 appropriate case reports, none of which involved borage. Nine reports were assessed for causality and indicated some degree of association between the material ingested and the adverse event. Lack of unequivocal identification of the species ingested compromised attribution and was a significant source of uncertainty. Three levels of identity confusions were found; misidentification or substitution at the level of the whole herb; omission of appropriate botanical identification and attribution of a specific PA to either comfrey or coltsfoot when it is a constituent found in other plants of established toxicity. CONCLUSION These cases are an unreliable body of evidence on which to draw conclusions about the safety of the oral consumption of Symphytum officinale and Tussilago farfara. Toxicological studies based on oral ingestion of phytochemically-complex preparations of these herbs may be the most accurate methodology for assessing clinical risk.
Collapse
Affiliation(s)
| | | | - Jason Hawrelak
- University of Tasmania, Australia; Australian Research Centre for Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | | | | |
Collapse
|
42
|
The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins (Basel) 2019; 11:toxins11110656. [PMID: 31717922 PMCID: PMC6891610 DOI: 10.3390/toxins11110656] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
Collapse
|