1
|
Ying D, Zhang T, Qi M, Han B, Dong B. Artificial Bone Materials for Infected Bone Defects: Advances in Antimicrobial Functions. ACS Biomater Sci Eng 2025; 11:2008-2036. [PMID: 40085817 DOI: 10.1021/acsbiomaterials.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Infected bone defects, caused by bacterial contamination following disease or injury, result in the partial loss or destruction of bone tissue. Traditional bone transplantation and other clinical approaches often fail to address the therapeutic complexities of these conditions effectively. In recent years, advanced biomaterials have attracted significant attention for their potential to enhance treatment outcomes. This review explores the pathogenic mechanisms underlying infected bone defects, including biofilm formation and bacterial internalization into bone cells, which allow bacteria to evade the host immune system. To control bacterial infection and facilitate bone repair, we focus on antibacterial materials for bone regeneration. A detailed introduction is given on intrinsically antibacterial materials (e.g., metal alloys, oxide materials, carbon-based materials, hydroxyapatite, chitosan, and Sericin). The antibacterial functionality of bone repair materials can be enhanced through strategies such as the incorporation of antimicrobial ions, surface modification, and the combined use of multiple materials to treat infected bone defects. Key innovations discussed include biomaterials that release therapeutic agents, functional contact biomaterials, and bioresponsive materials, which collectively enhance antibacterial efficacy. Research on the clinical translation of antimicrobial bone materials has also facilitated their practical application in infection prevention and bone healing. In conclusion, advancements in biomaterials provide promising pathways for developing more biocompatible, effective, and personalized therapies to reconstruct infected bone defects.
Collapse
Affiliation(s)
- Di Ying
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tianshou Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Mlachkova A, Dosseva-Panova V, Maynalovska H, Pashova-Tasseva Z. Nanoparticles as Strategies for Modulating the Host's Response in Periodontitis Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:476. [PMID: 40214523 PMCID: PMC11990483 DOI: 10.3390/nano15070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Periodontitis is a widespread disease, associated with challenges both in its diagnosis and in selecting from various therapeutic approaches, which do not always yield the expected success. This literature review was conducted to explore diverse therapeutic approaches, especially those focused on nanotechnologies, and their potential contribution to the successful modulation of the host's response. The effects of the existing microbial diversity and the imbalance of key microbial species in contributing to the progression and worsening of the host's response in periodontitis are well known. It is essential to understand the role of a well-structured treatment plan for periodontitis, providing opportunities for new research and innovative treatment strategies aimed at reducing the impact of periodontitis on oral and overall systemic health. This will be beneficial for dental professionals, enabling them to effectively prevent and treat periodontitis, ultimately improving the overall health and well-being of patients.
Collapse
Affiliation(s)
| | | | | | - Zdravka Pashova-Tasseva
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (A.M.); (V.D.-P.); (H.M.)
| |
Collapse
|
3
|
Xu K, Wen H, Song W, Aleem AR, Marimuthu M, Chen W, Zhan Q, Hakeem DA, Mahmoud ST. Label-free upconversion nanosensor for water safety monitoring of permanganate and dichromate ions. BMC Chem 2025; 19:60. [PMID: 40045376 PMCID: PMC11883987 DOI: 10.1186/s13065-025-01415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Water contaminated with heavy metal ions poses serious threat to the human health and environment protection. It is imperative to develop analytical tools to detect heavy metal ions. Herein, we propose autofluorescence free SiO2 modified upconversion nanosensor for label-free and fast determination of MnO4- and Cr2O72- anions. The highly efficient and multi-colour upconversion luminescence (UCL) of UCNPs@SiO2 was effectively quenched by MnO4- and Cr2O72- anions with fast response time of 2 and 1 min, respectively. The UCNPs@SiO2 nanosensor exhibits linear detection ranges of 0.6-2000, 2-2000 µM with the LOD at 0.15, 0.04 µM for MnO4- and Cr2O72- anions, respectively. The nanosensor was successfully applied for real lake and tap water samples with satisfactory results. The UCNPs@SiO2 UCL nanosensor demonstrates autofluorescence free and fast determination of MnO4- and Cr2O72- anions with high sensitivity, good specificity, low LOD, and wide linear detection range, holding great potential for food and environmental sample sensing.
Collapse
Affiliation(s)
- Kuncheng Xu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| | - Wei Song
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Abdur Raheem Aleem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Murugavelu Marimuthu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wang Chen
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Deshmukh Abdul Hakeem
- Department of Physics, United Arab Emirates University, Al-Ain, Abu Dhabi, 15551, UAE.
| | - Saleh T Mahmoud
- Department of Physics, United Arab Emirates University, Al-Ain, Abu Dhabi, 15551, UAE
| |
Collapse
|
4
|
Zhao W, Zhang Y, Chen J, Hu D. Revolutionizing oral care: Reactive oxygen species (ROS)-Regulating biomaterials for combating infection and inflammation. Redox Biol 2025; 79:103451. [PMID: 39631247 PMCID: PMC11664010 DOI: 10.1016/j.redox.2024.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The human oral cavity is home to a delicate symbiosis between its indigenous microbiota and the host, the balance of which is easily perturbed by local or systemic factors, leading to a spectrum of oral diseases such as dental caries, periodontitis, and pulp infections. Reactive oxygen species (ROS) play crucial roles in the host's innate immune defenses. However, in chronic inflammatory oral conditions, dysregulated immune responses can result in excessive ROS production, which in turn exacerbates inflammation and causes tissue damage. Conversely, the potent antimicrobial properties of ROS have inspired the development of various anti-infective therapies. Therefore, the strategic modulation of ROS by innovative biomaterials is emerging as a promising therapeutic approach for oral infection and inflammation. This review begins by highlighting the state-of-the-art of ROS-regulating biomaterials, which are designed to generate, scavenge, or modulate ROS in a bidirectional manner. We then delve into the latest innovations in these biomaterials and their applications in treating a range of oral diseases, including dental caries, endodontic and periapical conditions, periodontitis, peri-implantitis, and oral candidiasis. The review concludes with an overview of the current challenges and future potential of these biomaterials in clinical settings. This review provides novel insights for the ongoing development of ROS-based therapeutic strategies for oral diseases.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology Sichuan University, Chengdu, 610041, PR China.
| | - Danrong Hu
- Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
5
|
Wang D, Li Q, Xiao C, Wang H, Dong S. Nanoparticles in Periodontitis Therapy: A Review of the Current Situation. Int J Nanomedicine 2024; 19:6857-6893. [PMID: 39005956 PMCID: PMC11246087 DOI: 10.2147/ijn.s465089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.
Collapse
Affiliation(s)
- Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
6
|
Sun G, Huang S, Wang S, Li Y. Nanomaterial-based drug-delivery system as an aid to antimicrobial photodynamic therapy in treating oral biofilm. Future Microbiol 2024; 19:741-759. [PMID: 38683167 PMCID: PMC11259068 DOI: 10.2217/fmb-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Diverse microorganisms live as biofilm in the mouth accounts for oral diseases and treatment failure. For decades, the prevention and treatment of oral biofilm is a global challenge. Antimicrobial photodynamic therapy (aPDT) holds promise for oral biofilm elimination due to its several traits, including broad-spectrum antimicrobial capacity, lower possibility of resistance and low cytotoxicity. However, the physicochemical properties of photosensitizers and the biological barrier of oral biofilm have limited the efficiency of aPDT. Nanomaterials has been used to fabricate nanocarriers to improve photosensitizer properties and thus enhance antimicrobial effect. In this review, we have discussed the challenges of aPDT used in dentistry, categorized the nanomaterial-delivery system and listed the possible mechanisms involved in nanomaterials when enhancing aPDT effect.
Collapse
Affiliation(s)
- Guanwen Sun
- Department of stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Shan Huang
- Department of stomatology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Shaofeng Wang
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
- Xiamen Key Laboratory of Stomatological Disease Diagnosis & Treatment, Xiamen, China
| |
Collapse
|
7
|
Ateş B, Ulu A, Asiltürk M, Noma SAA, Topel SD, Dik G, Özhan O, Bakar B, Yıldız A, Vardı N, Parlakpınar H. Enhancement of enzyme activity by laser-induced energy propulsion of upconverting nanoparticles under near-infrared light: A comprehensive methodology for in vitro and in vivo applications. Int J Biol Macromol 2024; 260:129343. [PMID: 38242401 DOI: 10.1016/j.ijbiomac.2024.129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
If the appropriate immobilization method and carrier support are not selected, partial decreases in the activity of enzymes may occur after immobilization. Herein, to overcome this challenge, an excitation mechanism that enables energy transfer was proposed. Modified upconverting nanoparticles (UCNPs) were constructed and the important role of near-infrared (NIR) excitation in enhancing the catalytic activity of the enzyme was demonstrated. For this purpose, UCNPs were first synthesized via the hydrothermal method, functionalized with isocyanate groups, and then, PEG-L-ASNase was immobilized via covalent binding. UCNPs with and without PEG-L-ASNase were extensively characterized by different methods. These supports had immobilization yield and activity efficiency of >96 % and 78 %, respectively. Moreover, immobilized enzymes exhibited improved pH, thermal, and storage stability. In addition, they retained >65 % of their initial activity even after 20 catalytic cycles. Biochemical and histological findings did not indicate a trend of toxicity in rats due to UCNPs. Most importantly, PEG-L-ASNase activity was triggered approximately 5- and 2-fold under in vitro and in vivo conditions, respectively. Overall, it is anticipated that this pioneering work will shed new light on the realistic and promising usage of NIR-excited UCNPs for the immobilization of enzymes in expensive and extensive applications.
Collapse
Affiliation(s)
- Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | - Meltem Asiltürk
- Department of Material Science and Engineering, Faculty of Engineering, Akdeniz University, 07070 Antalya, Türkiye
| | - Samir Abbas Ali Noma
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye; Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Bursa, Türkiye
| | - Seda Demirel Topel
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Antalya Bilim University, 07190 Antalya, Türkiye
| | - Gamze Dik
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Onural Özhan
- Department of Medicinal Pharmacology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Büşra Bakar
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Azibe Yıldız
- Department of Histology and Embryology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Nigar Vardı
- Department of Histology and Embryology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Hakan Parlakpınar
- Department of Medicinal Pharmacology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| |
Collapse
|
8
|
Liu H, Yu Y, Dong A, Elsabahy M, Yang Y, Gao H. Emerging strategies for combating Fusobacterium nucleatum in colorectal cancer treatment: Systematic review, improvements and future challenges. EXPLORATION (BEIJING, CHINA) 2024; 4:20230092. [PMID: 38854496 PMCID: PMC10867388 DOI: 10.1002/exp.20230092] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotP. R. China
| | - Mahmoud Elsabahy
- Department of PharmaceuticsFaculty of PharmacyAssiut UniversityAssiutEgypt
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture ChemistryCollege of ChemistryJilin UniversityChangchunP. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| |
Collapse
|
9
|
Li J, Wang Y, Tang M, Zhang C, Fei Y, Li M, Li M, Gui S, Guo J. New insights into nanotherapeutics for periodontitis: a triple concerto of antimicrobial activity, immunomodulation and periodontium regeneration. J Nanobiotechnology 2024; 22:19. [PMID: 38178140 PMCID: PMC10768271 DOI: 10.1186/s12951-023-02261-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by the local microbiome and the host immune response, resulting in periodontal structure damage and even tooth loss. Scaling and root planning combined with antibiotics are the conventional means of nonsurgical treatment of periodontitis, but they are insufficient to fully heal periodontitis due to intractable bacterial attachment and drug resistance. Novel and effective therapeutic options in clinical drug therapy remain scarce. Nanotherapeutics achieve stable cell targeting, oral retention and smart release by great flexibility in changing the chemical composition or physical characteristics of nanoparticles. Meanwhile, the protectiveness and high surface area to volume ratio of nanoparticles enable high drug loading, ensuring a remarkable therapeutic efficacy. Currently, the combination of advanced nanoparticles and novel therapeutic strategies is the most active research area in periodontitis treatment. In this review, we first introduce the pathogenesis of periodontitis, and then summarize the state-of-the-art nanotherapeutic strategies based on the triple concerto of antibacterial activity, immunomodulation and periodontium regeneration, particularly focusing on the therapeutic mechanism and ingenious design of nanomedicines. Finally, the challenges and prospects of nano therapy for periodontitis are discussed from the perspective of current treatment problems and future development trends.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chengdong Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yachen Fei
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Meng Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengjie Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| |
Collapse
|
10
|
Yang LL, Li H, Liu D, Li K, Li S, Li Y, Du P, Yan M, Zhang Y, He W. Photodynamic therapy empowered by nanotechnology for oral and dental science: Progress and perspectives. NANOTECHNOLOGY REVIEWS 2023; 12. [DOI: 10.1515/ntrev-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
Abstract
Photodynamic therapy (PDT), as a noninvasive therapeutic modality, has significantly revolutionized the contemporary management of oral and dental health. Recently, PDT has witnessed significant technological advancements, especially with the introduction of biomaterials and nanotechnologies, thus highlighting its potential as a multi-functional tool in therapeutics. In this review, our objective was to provide a comprehensive overview of the advancements in nanotechnology-enhanced PDT for the treatment of oral diseases, encompassing dental caries, root canal infection, periodontal disease, peri-implant inflammation, tooth staining, and whitening, as well as precancerous lesions and tumors. Furthermore, we extensively deliberated upon the persisting challenges and prospective avenues of nanotechnology-enhanced PDT in the realm of oral diseases, which will open up new possibilities for the application of nanotechnology-enhanced PDT in clinical implementation.
Collapse
Affiliation(s)
- Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Hangshuo Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Kaiyuan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Songya Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Yuhan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Pengxi Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Miaochen Yan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| |
Collapse
|
11
|
Huang J, Xu S, Liu L, Zhang J, Xu J, Zhang L, Zhou X, Huang L, Peng J, Wang J, Gong Z, Chen Y. Targeted treatment of atherosclerosis with protein-polysaccharide nanoemulsion co-loaded with photosensitiser and upconversion nanoparticles. J Drug Target 2023; 31:1111-1127. [PMID: 37962293 DOI: 10.1080/1061186x.2023.2284093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Macrophages are the most abundant cell group in atherosclerosis (AS) lesions and play a vital role in all stages of AS progression. Recent research has shown that reactive oxygen species (ROS) generation from photodynamic therapy (PDT) induces macrophage autophagy to improve abnormal lipid metabolism and inflammatory environment. Especially in macrophage-derived foam cells, which has become a potential strategy for the treatment of AS. In this study, we prepared the conjugate (DB) of dextran (DEX) and bovine serum albumin (BSA). The DB was used as the emulsifier to prepare nanoemulsion loaded with upconversion nanoparticles (UCNPs) and chlorin e6 (Ce6) (UCNPs-Ce6@DB). The DEX modified on the surface of the nanoemulsion can recognise and bind to the scavenger receptor class A (SR-A) highly expressed on macrophages and promote the uptake of macrophage-derived foam cells in AS plates through SR-A-mediated endocytosis. In addition, UCNPs-Ce6@DB-mediated PDT enhanced ROS generation and induced autophagy in macrophage-derived foam cells, enhanced the expression of ABCA1, a protein closely related to cholesterol efflux, and inhibited the secretion of pro-inflammatory cytokines. Ultimately, UCNPs-Ce6@DB was shown to inhibit plaque formation in mouse models of AS. In conclusion, UCNPs-Ce6@DB offers a promising treatment for AS.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lina Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang Zhou
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Jiangsu, Nanjing, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023; 24:1-19. [PMID: 36582351 PMCID: PMC9763696 DOI: 10.1016/j.bioactmat.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Smart biomaterials can sense and react to physiological or external environmental stimuli (e.g., mechanical, chemical, electrical, or magnetic signals). The last decades have seen exponential growth in the use and development of smart dental biomaterials for antimicrobial applications in dentistry. These biomaterial systems offer improved efficacy and controllable bio-functionalities to prevent infections and extend the longevity of dental devices. This review article presents the current state-of-the-art of design, evaluation, advantages, and limitations of bioactive and stimuli-responsive and autonomous dental materials for antimicrobial applications. First, the importance and classification of smart biomaterials are discussed. Second, the categories of bioresponsive antibacterial dental materials are systematically itemized based on different stimuli, including pH, enzymes, light, magnetic field, and vibrations. For each category, their antimicrobial mechanism, applications, and examples are discussed. Finally, we examined the limitations and obstacles required to develop clinically relevant applications of these appealing technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín, Colombia
| | - Michelle Yu
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Sara Valliani
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christina Ta
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Kumaar NR, Nair SC. Nanomaterials: an intra-periodontal pocket drug-delivery system for periodontitis. Ther Deliv 2023; 14:227-249. [PMID: 37291865 DOI: 10.4155/tde-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Periodontitis is a microbiological condition that affects the tissues supporting the teeth. The fundamental to effective periodontal therapy is choosing the suitable antimicrobial and anti-inflammatory agent, together with the proper route of drug administration and delivery system. Intra-periodontal pocket approach with nano drug-delivery systems (NDDS) such as polymeric nanoparticles, gold nanoparticles, silica nanoparticles, magnetic nanoparticles, liposomes, polymersomes, exosomes, nano micelles, niosome, solid lipid nanoparticles, nano lipid carriers, nanocomposites, nanogels, nanofibers, scaffolds, dendrimers, quantum dots, etc., will be appropriate route of drug administration and delivery system. This NDDS delivers the drugs at the site of infection to inhibit growth and promote tissue regeneration. The present review focused on providing comprehensive information on the NDDS for periodontitis, which enhanced therapeutic outcomes via intra-periodontal pocket delivery.
Collapse
Affiliation(s)
- Nethish R Kumaar
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Sreeja C Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
14
|
Heat Shock Protein Inhibitors Show Synergistic Antibacterial Effects with Photodynamic Therapy on Caries-Related Streptococci In Vitro and In Vivo. mSphere 2023; 8:e0067922. [PMID: 36853046 PMCID: PMC10117063 DOI: 10.1128/msphere.00679-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Caries are chronic infections in which the cariogenic biofilm plays a critical role in disease occurrence and progression. Photodynamic therapy (PDT) is a new effective treatment that is receiving wide attention in the antibacterial field, but it can lead to the upregulation of heat shock proteins (HSPs), which enhances bacterial resistance. Herein, we incorporated HSP inhibitors with PDT to evaluate the effect on Streptococcus mutans, Streptococcus sobrinus, and Streptococcus sanguinis under planktonic conditions and on cariogenic biofilms. Additionally, a model of caries was established in 2-week-old rats, and anticaries properties were evaluated by Keyes' scoring. Importantly, the combination of HSP inhibitors and PDT had outstanding efficiency in inhibiting the growth of tested Streptococcus strains and the formation of either monomicrobial or multispecies biofilms in vitro. In addition, the quantity of colonized streptococci and the severity of carious lesions were also distinctly suppressed in vivo. Overall, the synergistic application of HSP inhibitors and PDT has promising potential in the prevention and treatment of dental caries. IMPORTANCE Effective therapies for the prevention and control of caries are urgently needed. Cariogenic streptococci play a key role in the occurrence and progression of caries. Recently, photodynamic therapy has been demonstrated to have good antibacterial efficiency, but it can cause a heat shock response in bacteria, which may weaken its practical effects. We indicate here an effective therapeutic strategy of combining heat shock protein inhibitors and photodynamic therapy, which shows excellent inhibition toward three dominant streptococci related to caries and suppression of carious progression in a rat model. Further development for clinical application is promising.
Collapse
|
15
|
Huang S, Qi M, Chen Y. Photonics-based treatments: Mechanisms and applications in oral infectious diseases. Front Microbiol 2023; 14:948092. [PMID: 36846804 PMCID: PMC9950554 DOI: 10.3389/fmicb.2023.948092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Infectious diseases remain a serious global challenge threatening human health. Oral infectious diseases, a major neglected global problem, not only affect people's lifestyles but also have an intimate association with systemic diseases. Antibiotic therapy is a common treatment. However, the emergence of new resistance problems hindered and enhanced the complication of the treatment. Currently, antimicrobial photodynamic therapy (aPDT) has long been the topic of intense interest due to the advantage of being minimally invasive, low toxicity, and high selectivity. aPDT is also becoming increasingly popular and applied in treating oral diseases such as tooth caries, pulpitis, periodontal diseases, peri-implantitis, and oral candidiasis. Photothermal therapy (PTT), another phototherapy, also plays an important role in resisting resistant bacterial and biofilm infections. In this mini-review, we summarize the latest advances in photonics-based treatments of oral infectious diseases. The whole review is divided into three main parts. The first part focuses on photonics-based antibacterial strategies and mechanisms. The second part presents applications for photonics-based treatments of oral infectious diseases. The last part discusses present problems in current materials and future perspectives.
Collapse
Affiliation(s)
- Shan Huang
- Department of Stomatology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Manlin Qi, ✉
| | - Yingxue Chen
- Department of Stomatology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
16
|
Xie Y, Sun Y, Sun J, Wang Y, Yu S, Zhou B, Xue B, Zheng X, Liu H, Dong B. Upconversion fluorescence-based PDT nanocomposites with self-oxygenation for malignant tumor therapy. Inorg Chem Front 2023; 10:93-107. [DOI: 10.1039/d2qi02217f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Upconversion fluorescence-based-PDT nanocomposites with self-oxygenation have excellent anti-tumor properties, including deep penetration of the excitation light source and the ability to remodel the anoxic microenvironment, and has feasibility in clinical application.
Collapse
Affiliation(s)
- Yingling Xie
- Department of Cell Biology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiao Sun
- Department of Cell Biology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yuda Wang
- Department of Cell Biology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Siyao Yu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Baigong Xue
- Department of Cell Biology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xianhong Zheng
- Department of Cell Biology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Haipeng Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Chang Chun 130021, P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Garcia de Carvalho G, Pacheco Mateo R, Costa E Silva R, Maquera Huacho PM, de Souza Rastelli AN, de Oliveira KT, Chierici Marcantonio RA, Zandim-Barcelos DL, Palomari Spolidorio DM. Chlorin-based photosensitizer under blue or red-light irradiation against multi-species biofilms related to periodontitis. Photodiagnosis Photodyn Ther 2022; 41:103219. [PMID: 36473689 DOI: 10.1016/j.pdpdt.2022.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In our previous study, Chlorin-e6 (Ce6) demonstrated a significant reduction of microorganisms' viability against single-species biofilm related to periodontitis once irradiated by red light (660 nm). Also, higher bacteria elimination was observed under blue light (450 nm) irradiation. However, the use of blue light irradiation of Ce6 for antimicrobial administration is poorly explored. This study evaluated the effect of chlorin-e6-mediated antimicrobial photodynamic therapy (aPDT) using different wavelengths (450 or 660 nm) against multi-species biofilms related to periodontitis. Streptococcus oralis, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans composed the mature biofilm developed under proper conditions for five days. aPDT was performed using different concentrations of Ce6 (100 and 200 μM), wavelengths (450 or 660 nm), and comparisons were made after qPCR assay and confocal laser scanning microscopy (CLSM) analysis. The greatest bacterial elimination was observed in the groups where Ce6 was used with blue light, for S. orallis (2.05 Log10 GeQ mL-1, p < 0.0001) and P. gingivalis (1.4 Log10 GeQ mL-1, p < 0.0001), aPDT with red light showed significant bacteria reduction only for S. orallis. aPDT with blue light demonstrated statistically higher elimination in comparison with aPDT with red light. The aPDT did not show a statistically significant effect when tested against A. actinomycetemcomitans and F. nucleatum (p=0.776 and 0.988, respectively). The aPDT using blue light showed a promising higher photobiological effect, encouraging researchers to consider it in the irradiation of Ce6 for further investigations.
Collapse
Affiliation(s)
- Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Rafaela Pacheco Mateo
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Rodrigo Costa E Silva
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Kleber Thiago de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | | | - Daniela Leal Zandim-Barcelos
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil.
| |
Collapse
|
18
|
Sun Y, Xu W, Jiang C, Zhou T, Wang Q, A L. Gold nanoparticle decoration potentiate the antibacterial enhancement of TiO 2 nanotubes via sonodynamic therapy against peri-implant infections. Front Bioeng Biotechnol 2022; 10:1074083. [PMID: 36466357 PMCID: PMC9713247 DOI: 10.3389/fbioe.2022.1074083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 09/22/2023] Open
Abstract
Inflammatory damage from bacterial biofilms usually causes the failure of tooth implantation. A promising solution for this challenge is to use an implant surface with a long-term, in-depth and efficient antibacterial feature. In this study, we developed an ultrasound-enhanced antibacterial implant surface based on Au nanoparticle modified TiO2 nanotubes (AuNPs-TNTs). As an artificial tooth surface, films based on AuNPs-TNTs showed excellent biocompatibility. Importantly, compared to bare titania surface, a larger amount of reactive oxygen radicals was generated on AuNPs-TNTs under an ultrasound treatment. For a proof-of-concept application, Porphyromonas gingivalis (P. gingivalis) was used as the model bacteria; the as-proposed AuNPs-TNTs exhibited significantly enhanced antibacterial activity under a simple ultrasound treatment. This antibacterial film offers a new way to design the surface of an artificial implant coating for resolving the bacterial infection induced failure of dental implants.
Collapse
Affiliation(s)
- Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Cong Jiang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tianyu Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiqi Wang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lan A
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| |
Collapse
|
19
|
Lv H, Liu J, Wang Y, Xia X, Li Y, Hou W, Li F, Guo L, Li X. Upconversion nanoparticles and its based photodynamic therapy for antibacterial applications: A state-of-the-art review. Front Chem 2022; 10:996264. [PMID: 36267658 PMCID: PMC9577018 DOI: 10.3389/fchem.2022.996264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Major medical advances in antibiotics for infectious diseases have dramatically improved the quality of life and greatly increased life expectancy. Nevertheless, the widespread and inappropriate exploitation of antibacterial agents has resulted in the emergence of multi-drug-resistant bacteria (MDR). Consequently, the study of new drugs for the treatment of diseases associated with multi-drug-resistant bacteria and the development of new treatments are urgently needed. Inspiringly, due to the advantages of a wide antimicrobial spectrum, fast sterilization, low resistance, and little damage to host tissues and normal flora, antibacterial photodynamic therapy (APDT), which is based on the interaction between light and a nontoxic photosensitizer (PS) concentrated at the lesion site to generate reactive oxygen species (ROS), has become one of the most promising antibacterial strategies. Recently, a burgeoning APDT based on a variety of upconversion nanoparticles (UCNPs) such as PS and near-infrared (NIR) light has been fully integrated in antibacterial applications and achieved excellent performances. Meanwhile, conjugated nanoparticles have been frequently reported in UCNP design, including surface-modified PS conjugates, antibiotic-PS conjugates, and dual or multiple antibacterial modal PS conjugates. This article provides an overview of the state-of-the-art design and bactericidal effects of UCNPs and their based APDTs. The first part discusses the design and mechanisms for UCNPs currently implemented in biomedicine. The second part focuses on the applications and antimicrobial effects of diverse APDT based on UCNPs in antibacterial-related infectious diseases.
Collapse
Affiliation(s)
- Hanlin Lv
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ying Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Wenxue Hou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Feng Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lantian Guo
- College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- *Correspondence: Xue Li,
| |
Collapse
|
20
|
Nanomaterials in Scaffolds for Periodontal Tissue Engineering: Frontiers and Prospects. Bioengineering (Basel) 2022; 9:bioengineering9090431. [PMID: 36134977 PMCID: PMC9495816 DOI: 10.3390/bioengineering9090431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The regeneration of periodontium represents important challenges to controlling infection and achieving functional regeneration. It has been recognized that tissue engineering plays a vital role in the treatment of periodontal defects, profiting from scaffolds that create the right microenvironment and deliver signaling molecules. Attributable to the excellent physicochemical and antibacterial properties, nanomaterials show great potential in stimulating tissue regeneration in tissue engineering. This article reviewed the up-to-date development of nanomaterials in scaffolds for periodontal tissue engineering. The paper also represented the merits and defects of different materials, among which the biocompatibility, antibacterial properties, and regeneration ability were discussed in detail. To optimize the project of choosing materials and furthermore lay the foundation for constructing a series of periodontal tissue engineering scaffolds, various nanomaterials and their applications in periodontal regeneration were introduced.
Collapse
|
21
|
The Potential Application of Natural Photosensitizers Used in Antimicrobial Photodynamic Therapy against Oral Infections. Pharmaceuticals (Basel) 2022; 15:ph15060767. [PMID: 35745686 PMCID: PMC9227410 DOI: 10.3390/ph15060767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Oral health problems and the emergence of antimicrobial resistance among pathogenic bacterial strains have become major global challenges and are essential elements that negatively affect general well-being. Antimicrobial photodynamic therapy (APDT) is based on a light source and oxygen that activates a nontoxic photosensitizer, resulting in microbial destruction. Synthetic and natural products can be used to help the APDT against oral microorganisms. The undesirable consequences of conventional photosensitizers, including toxicity, and cost encourage researchers to explore new promising photosensitizers based on natural compounds such as curcumin, chlorella, chlorophyllin, phycocyanin, 5-aminolevulinic acid, and riboflavin. In this review, we summarize in vitro studies describing the potential use of APDT therapy conjugated with some natural products against selected microorganisms that are considered to be responsible for oral infections.
Collapse
|
22
|
Effect of the technique of photodynamic therapy against the main microorganisms responsible for periodontitis: A systematic review of in-vitro studies. Arch Oral Biol 2022; 138:105425. [DOI: 10.1016/j.archoralbio.2022.105425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
|
23
|
An J, Ding N, Zhang Z. Mechanical and antibacterial properties of polymethyl methacrylate modified with zinc dimethacrylate. J Prosthet Dent 2022; 128:100.e1-100.e8. [DOI: 10.1016/j.prosdent.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
|
24
|
Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022; 346:300-316. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach to aid the fight against looming antibiotic resistance. aPDT harnesses the energy of light through photosenstizers to generate highly reactive oxygen species that can inactivate bacteria and fungi with no resistance. To date aPDT has shown great efficacy against microbes causing localized infections in the skin and the oral cavity. However, its wide application in clinical settings has been limited due to both physicochemical and biological challenges. Over the past decade nanomaterials have contributed to promoting photosensitizer performance and aPDT efficiency, yet further developments are required to establish accredited treatment options. In this review we discuss the challenges facing the clinical application of aPDT and the opportunities that nanotechnology may offer to promote the safety and efficiency of aPDT.
Collapse
Affiliation(s)
- Muhammed Awad
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Nicky Thomas
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Timothy J Barnes
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
25
|
Bing-Shuai ZHOU, Shi-Han XU, Song-Tao HU, Li-Heng SUN, Jie-Kai LYU, Rui SUN, Wei LIU, Xue BAI, Lin XU, Lin WANG, Bing HAN, Biao DONG. Recent progress of upconversion nanoparticles in the treatment and detection of various diseases. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Cao W, Yue L, Zhang Y, Wang Z. Photodynamic chitosan functionalized MoS 2 nanocomposite with enhanced and broad-spectrum antibacterial activity. Carbohydr Polym 2022; 277:118808. [PMID: 34893226 DOI: 10.1016/j.carbpol.2021.118808] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022]
Abstract
Bacterial infection accompanied by antibiotic resistance leads to the lack of effective antibacterial agents, which has become an imminent problem afflicting people. Therefore, development of highly effective and broad-spectrum disinfecting alternatives to tackle this challenge is of great necessity. In view of the different cell wall structures of bacteria, we designed photodynamic antibacterial system based on chlorin e6 (Ce6) loaded chitosan functionalized molybdenum sulfide (MoS2) nanocomposites (M-CS-Ce6). The nanocomposite can not only allow Ce6 to enter the cells of Gram-positive bacteria, but also destroy the cell wall permeability of Gram-negative bacteria and enhance the photo-antibacterial effect. 10 μg/mL of M-CS-Ce6 irradiated by 660 nm laser for 5 min, completely killed the target pathogens, exhibiting significantly enhanced photo-antibacterial performance against both Gram-positive and Gram-negative bacteria. Compared with other cationic photodynamic composites, M-CS-Ce6 had stronger and broad-spectrum photo-antibacterial effect. Taken together, M-CS-Ce6 could be a promising and safe broad-spectrum antibacterial agent.
Collapse
Affiliation(s)
- Wenbo Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
27
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
28
|
Chen G, Wu Y, Jin K, Lu H, Tao M, Wang T, Zhang J, Zhu X, Liu J, Zhang Y. A Biosynthesized Near-Infrared-Responsive Nanocomposite Biomaterial for Antimicrobial and Antibiofilm Treatment. ACS APPLIED BIO MATERIALS 2021; 4:7542-7553. [PMID: 35006699 DOI: 10.1021/acsabm.1c00790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photodynamic inactivation (PDI) has become an appealing alternative strategy to treat infections without developing resistance to microbes. In PDI treatment, near-infrared (NIR) light is preferred because it causes less damage to normal tissues and leads to better penetration in deep tissues. Here, we develop an NIR-responsive nanomedicine for efficient broad-spectrum antimicrobial photodynamic treatment. By harnessing the biosynthetic capability of a bacterial cellulose-producing microorganism, we construct a nanocomposite biomaterial to deliver and recycle the nanomedicine. Our simple one-step biosynthetic approach does not impede the antimicrobial potency of the nanomedicine under NIR activation and requires no chemical modification. The resulting nanocomposite has been tested in antimicrobial treatment of different microorganisms, exhibiting a great potential to eliminate pathogens in biofilms and to treat in vivo infections.
Collapse
Affiliation(s)
- Guiyuan Chen
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Mingyue Tao
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Tiantian Wang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yong Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.,Department of Biomedical Engineering, National University of Singapore, 119077 Singapore
| |
Collapse
|
29
|
Nanostructures as Targeted Therapeutics for Combating Oral Bacterial Diseases. Biomedicines 2021; 9:biomedicines9101435. [PMID: 34680553 PMCID: PMC8533418 DOI: 10.3390/biomedicines9101435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Pathogenic oral biofilms are now recognized as a key virulence factor in many microorganisms that cause the heavy burden of oral infectious diseases. Recently, new investigations in the nanotechnology field have propelled the development of novel biomaterials and approaches to control bacterial biofilms, either independently or in combination with other substances such as drugs, bioactive molecules, and photosensitizers used in antimicrobial photodynamic therapy (aPDT) to target different cells. Moreover, nanoparticles (NPs) showed some interesting capacity to reverse microbial dysbiosis, which is a major problem in oral biofilm formation. This review provides a perspective on oral bacterial biofilms targeted with NP-mediated treatment approaches. The first section aims to investigate the effect of NPs targeting oral bacterial biofilms. The second part of this review focuses on the application of NPs in aPDT and drug delivery systems.
Collapse
|
30
|
Jain P, Hassan N, Khatoon K, Mirza MA, Naseef PP, Kuruniyan MS, Iqbal Z. Periodontitis and Systemic Disorder-An Overview of Relation and Novel Treatment Modalities. Pharmaceutics 2021; 13:1175. [PMID: 34452136 PMCID: PMC8398110 DOI: 10.3390/pharmaceutics13081175] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Periodontitis, a major oral disease, affects a vast majority of the population but has been often ignored without realizing its long-fetched effects on overall human health. A realization in recent years of its association with severe diseases such as carditis, low birth weight babies, and preeclampsia has instigated dedicated research in this area. In the arena of periodontal medicines, the studies of past decades suggest a link between human periodontal afflictions and certain systemic disorders such as cardiovascular diseases, diabetes mellitus, respiratory disorders, preterm birth, autoimmune disorders, and cancer. Although, the disease appears as a locoregional infection, the periodontal pathogens, in addition their metabolic products and systemic mediators, receive access to the bloodstream, thereby contributing to the development of systemic disorders. Mechanism-based insights into the disease pathogenesis and association are highly relevant and shall be useful in avoiding any systemic complications. This review presents an update of the mechanisms and relationships between chronic periodontal infection and systemic disorders. Attention is also given to highlighting the incidence in support of this relationship. In addition, an attempt is made to propose the various periodonto-therapeutic tools to apprise the readers about the availability of appropriate treatment for the disease at the earliest stage without allowing it to progress and cause systemic adverse effects.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Karishma Khatoon
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | | | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| |
Collapse
|
31
|
Sun X, Sun J, Sun Y, Li C, Fang J, Zhang T, Wan Y, Xu L, Zhou Y, Wang L, Dong B. Oxygen Self‐Sufficient Nanoplatform for Enhanced and Selective Antibacterial Photodynamic Therapy against Anaerobe‐Induced Periodontal Disease. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202101040] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 07/31/2023]
Abstract
AbstractThe hypoxic microenvironment, continuous oxygen consumption, and poor excitation light penetration depth during antimicrobial photodynamic therapy (aPDT) tremendously hinder the effects on bacterial inactivation. Herein, a smart nanocomposite with oxygen‐self‐generation is presented for enhanced and selective antibacterial properties against anaerobe‐induced periodontal diseases. By encapsulating Fe3O4 nanoparticles, Chlorin e6 and Coumarin 6 in the amphiphilic silane, combined light (red and infrared) stimulated aPDT is realized due to the increased conjugate structure, the corresponding red‐shifted absorption, and the magnetic navigation performance. To address the hypoxic microenvironment problem, further modification of MnO2 nanolayer on the composites is carried out, and catalytical activity is involved for the decomposition of hydrogen peroxide produced in the metabolic processing, providing sufficient oxygen for aPDT in infection sites. Experiments in the cellular level and animal model proved that the rising oxygen content could effectively relieve the hypoxia in a periodontal pocket and enhance the ROS production, remarkably boosting aPDT efficacy. The increasing local level of oxygen also shows the selective inhibition of pathogenic and anaerobic bacteria, which determines the success of periodontitis treatment. Therefore, this finding is promising for combating anaerobic pathogens with enhanced and selective properties in periodontal diseases, even in other bacteria‐induced infections, for future clinical application.
Collapse
Affiliation(s)
- Xiaolin Sun
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Jiao Sun
- Department of Cell Biology Norman Bethune College of Medicine Jilin University Changchun 130021 China
| | - Yue Sun
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Chunyan Li
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Changchun 130021 China
| | - Jiao Fang
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Tianshou Zhang
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Changchun 130021 China
| | - Yao Wan
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 China
| | - Yanmin Zhou
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Lin Wang
- Department of Oral Implantology School of Dentistry Jilin University Changchun 130021 China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 China
| |
Collapse
|
32
|
The "Materials Chemistry" Section of Molecules: A Multidisciplinary Environment for Materials-Based Researches. Molecules 2020; 25:molecules25246035. [PMID: 33419366 PMCID: PMC7766884 DOI: 10.3390/molecules25246035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/19/2020] [Indexed: 11/17/2022] Open
Abstract
The "Materials Chemistry" Section of Molecules is an open access place for the dissemination of theoretical and experimental studies related to the chemical approaches to materials-based problems [...].
Collapse
|
33
|
Dias LD, Blanco KC, Mfouo-Tynga IS, Inada NM, Bagnato VS. Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100384] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Editorial for “Materials Chemistry” Section, in Journal Molecules. Molecules 2020; 25:molecules25225341. [PMID: 33207654 PMCID: PMC7696077 DOI: 10.3390/molecules25225341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
|
35
|
Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020; 18:154. [PMID: 33121496 PMCID: PMC7596946 DOI: 10.1186/s12951-020-00713-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
Multifunctional lanthanide-based upconversion nanoparticles (UCNPs), which feature efficiently convert low-energy photons into high-energy photons, have attracted considerable attention in the domain of materials science and biomedical applications. Due to their unique photophysical properties, including light-emitting stability, excellent upconversion luminescence efficiency, low autofluorescence, and high detection sensitivity, and high penetration depth in samples, UCNPs have been widely applied in biomedical applications, such as biosensing, imaging and theranostics. In this review, we briefly introduced the major components of UCNPs and the luminescence mechanism. Then, we compared several common design synthesis strategies and presented their advantages and disadvantages. Several examples of the functionalization of UCNPs were given. Next, we detailed their biological applications in bioimaging and disease treatment, particularly drug delivery and photodynamic therapy, including antibacterial photodynamic therapy. Finally, the future practical applications in materials science and biomedical fields, as well as the remaining challenges to UCNPs application, were described. This review provides useful practical information and insights for the research on and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Haojie Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Hao Shi
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haitao Wang
- School of Environmental Science and Engineering, Nankai University, Tianjin,, 300350, China
| | - Mengxi Zhu
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
36
|
Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J Control Release 2020; 324:104-123. [DOI: 10.1016/j.jconrel.2020.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
|
37
|
Zheng X, Sun J, Li W, Dong B, Song Y, Xu W, Zhou Y, Wang L. Engineering nanotubular titania with gold nanoparticles for antibiofilm enhancement and soft tissue healing promotion. J Electroanal Chem (Lausanne) 2020; 871:114362. [DOI: 10.1016/j.jelechem.2020.114362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Ambrósio JAR, Pinto BCDS, da Silva BGM, Passos JCDS, Beltrame Junior M, Costa MS, Simioni AR. BSA nanoparticles loaded-methylene blue for photodynamic antimicrobial chemotherapy (PACT): effect on both growth and biofilm formation by Candida albicans. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2182-2198. [DOI: 10.1080/09205063.2020.1795461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Milton Beltrame Junior
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| |
Collapse
|
39
|
Garcia de Carvalho G, Sanchez-Puetate JC, Donatoni MC, Maquera Huacho PM, de Souza Rastelli AN, de Oliveira KT, Palomari Spolidorio DM, Leal Zandim-Barcelos D. Photodynamic inactivation using a chlorin-based photosensitizer with blue or red-light irradiation against single-species biofilms related to periodontitis. Photodiagnosis Photodyn Ther 2020; 31:101916. [PMID: 32645434 DOI: 10.1016/j.pdpdt.2020.101916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Chlorin-e6 (Ce6), as a photosensitizer (PS), has demonstrated significant reduction of microorganisms' viability when irradiated by red light. However, the main absorption peak of this PS is located at blue light spectrum, which is less investigated. This study aimed to evaluate the effect of pure-chlorin-e6-mediated photodynamic inactivation (PDI) using different light sources (450 or 660 nm) against biofilms related to periodontitis. Streptococcus oralis, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans single-species biofilms were developed under proper conditions for five days. PDI was performed using different concentrations of Ce6 (100 and 200 mM), wavelengths (450 and 660 nm) and comparisons were made after colony forming unit and confocal laser scanning microscopy (CLSM) analysis. The use of light and PS were also individually tested. The greatest bacterial elimination was observed in the group where PDI was employed with blue light and concentration of 200 mM for all bacterial strains tested (4.01 log10 for A. actinomycetemcomitans, and total elimination for P. gingivalis and S. oralis), except for F. nucleatum, where 3.46 log10 reduction was observed when red light and 200 mM Ce6 were applied (p < 0.05). The antimicrobial effects of PDI mediated by Ce6 for all single pathogenic biofilms were confirmed by live/dead staining under CLSM analysis. For all single-species biofilms, the use of PDI mediated by chlorin-e6 photosensitizer under blue or red-light irradiation (450 and 660 nm) demonstrated a significant reduction in bacterial viability, but blue light showed a promising higher photobiological effect, encouraging its adjuvant use to basic periodontitis treatment.
Collapse
Affiliation(s)
- Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Julio Cesar Sanchez-Puetate
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Maria Carolina Donatoni
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Kleber Thiago de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Daniela Leal Zandim-Barcelos
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| |
Collapse
|
40
|
Li J, Zhang C, Yin M, Zhang Z, Chen Y, Deng Q, Wang S. Surfactant-Sensitized Covalent Organic Frameworks-Functionalized Lanthanide-Doped Nanocrystals: An Ultrasensitive Sensing Platform for Perfluorooctane Sulfonate. ACS OMEGA 2019; 4:15947-15955. [PMID: 31592465 PMCID: PMC6776982 DOI: 10.1021/acsomega.9b01996] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/04/2019] [Indexed: 05/20/2023]
Abstract
Perfluorooctane sulfonate (PFOS) known as a persistent organic pollutant has been attracting great interests due to its potential ecotoxicity. An approach capable of sensing ultra-trace PFOS is in urgent demand. Here, we developed an approach for highly sensitive sensing PFOS using surfactant-sensitized covalent organic frameworks (COFs)-functionalized upconversion nanoparticles (UCNPs) as a fluorescent probe. COFs-functionalized UCNPs (UCNPs@COFs) were obtained by solvothermal growth of 1,3,5-triformylbenzene and 1,4-phenylenediamine on the surface of UCNPs. COF's layer on the surface of UCNPs not only provides recognition sites for PFOS but also improves the fluorescence quantum yields from 2.15 to 5.12%. Trace PFOS can quench the fluorescence emission of UCNPs@COFs at 550 nm due to the high electronegativity of PFOS. Moreover, the fluorescence quenching response can be significantly strengthened in the presence of a surfactant, which causes more sensitivity. The fluorescence quenching degrees (F 0 - F) of the system are linear with the concentration of PFOS in the range of 1.8 × 10-13 to 1.8 × 10-8 M. The present sensor can sensitively and selectively detect PFOS in tap water and food packing with the limit of detection down to 0.15 pM (signal-to-noise ratio = 3), which is comparable to that of the liquid chromatography-mass spectrometry technique. The proposed approach realized a simple, fast, sensitive, and selective sensing PFOS, showing potential applications in various fields.
Collapse
Affiliation(s)
- Jing Li
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, China
| | - Caiyun Zhang
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, China
| | - Mingyuan Yin
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, China
| | - Zhen Zhang
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, China
| | - Yujie Chen
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, China
| | - Qiliang Deng
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, China
- Tianjin
Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|