1
|
Jimenez-Champi D, Romero-Orejon FL, Muñoz AM, Ramos-Escudero F. The Revalorization of Fishery By-Products: Types, Bioactive Compounds, and Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6624083. [PMID: 39105167 PMCID: PMC11300074 DOI: 10.1155/2024/6624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.
Collapse
Affiliation(s)
- Diana Jimenez-Champi
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Frank L. Romero-Orejon
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Ana María Muñoz
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Food Science and Nutrition InstituteUniversidad San Ignacio de Loyola (ICAN-USIL), Lima, Peru
| | - Fernando Ramos-Escudero
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Health Sciences FacultyUniversidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
2
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Kvangarsnes K, Dauksas E, Tolstorebrov I, Rustad T, Bartolomei M, Xu R, Lammi C, Cropotova J. Physicochemical and functional properties of rainbow trout ( Oncorhynchus mykiss) hydrolysate. Heliyon 2023; 9:e17979. [PMID: 37449127 PMCID: PMC10336833 DOI: 10.1016/j.heliyon.2023.e17979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Due to the continuous growth of the world population, there is an urgent need to find sustainable sources of high-quality protein. Fish side streams rich in essential nutrients and accounting for 60-70% of the whole fish, represent a sustainable source for recovery of valuable protein compounds. The present study aimed at extensive characterization of physicochemical, antioxidant and techno-functional properties of fish protein hydrolysate (FPH) obtained from farmed rainbow trout (Oncorhynchus mykiss). The FPH was produced from a minced rainbow trout raw material by enzymatic hydrolysis performed at 50 °C with addition of 0.05% w/w papain and 0.05% w/w bromelain. After inactivation of the proteases at 90 °C for 10 min, the content of the bioreactor was centrifuged, and the soluble protein fraction (FPH) was collected and freeze-dried. The total protein content of the FPH with 17.24% degree of hydrolysis was high (88.9%) and mainly represented by water-soluble proteins, while the lipid content was below 1%. In addition to the high protein content, trout hydrolysate had low protein oxidation values characterized by a relatively low total carbonyl content together with high amount of thiol groups (3.64 ± 0.31 and 20.7 ± 0.6 nmol/mg protein, respectively). No glass transition was detected in the differential scanning calorimetry (DSC) heat flow curves, suggesting lack of unfreezable solution formation in the FPH at freezing temperatures. The viscosity of FPH showed typical Newtonian behaviour. A peptidomic investigation (using HPLC-MS/MS technique) displayed chemical composition of the trout hydrolysate and identified peptide sequences which are present in the hydrolysate mixture, as well as proteins to which each peptide belongs to. In conclusion, it was suggested to use the obtained trout hydrolysate as a functional ingredient in the food and nutraceutical industry.
Collapse
Affiliation(s)
- Kristine Kvangarsnes
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Egidijus Dauksas
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Ignat Tolstorebrov
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, Varmeteknisk, 247, Gløshaugen, Trondheim, Norway
| | - Turid Rustad
- Department of Biotechnology and Food Science, Kjemi 3, Gløshaugen, Sem Sælands vei 8, Trondheim, Norway
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133, Milano, Italy
| | - Ruoxian Xu
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133, Milano, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133, Milano, Italy
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| |
Collapse
|
4
|
Yan X, Li S, Tu T, Li Y, Niu M, Tong Y, Yang Y, Xu T, Zhao J, Shen C, Wang S. Free amino acids identification and process optimization in greengage wine fermentation and flavor formation. J Food Sci 2023; 88:988-1003. [PMID: 36691797 DOI: 10.1111/1750-3841.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023]
Abstract
Greengage wine with low alcohol content is increasing in popularity owing to its fruity taste and rich nutrition. The key to wine aroma and taste is flavor substances like free amino acids (FAAs), volatile fatty acids, higher alcohols, and esters. Amino acid (AA) metabolisms in yeast are an important source of these secondary compounds, which vary with the fermentation conditions. This study explored and optimized the impact of different parameters (carbon source, inoculum, pH, temperature) on FAA contents and dynamics in greengage wine. The results demonstrated that total and essential amino acid (EAA) content rose with a higher proportion of glucose, less yeast inoculation, higher temperature, and higher initial pH. With the results obtained it was concluded that the condition of 22.4°C, pH 4.5, and 3% inoculation was optimum for a 14.9-fold increase of EAAs in fermented greengage wine. In the long run, the research will aid in the development of the greengage brewing industry.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shu Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China.,Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingyao Tu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yiqin Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Mansi Niu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yuqin Tong
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yang Yang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Tao Xu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caihong Shen
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Songtao Wang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| |
Collapse
|
5
|
Waiprib Y, Ingrungruengluet P, Worawattanamateekul W. Nanoparticles Based on Chondroitin Sulfate from Tuna Heads and Chitooligosaccharides for Enhanced Water Solubility and Sustained Release of Curcumin. Polymers (Basel) 2023; 15:polym15040834. [PMID: 36850119 PMCID: PMC9965308 DOI: 10.3390/polym15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This study aimed to separate chondroitin sulfate (CS) from the heads of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares), by-products derived from canned tuna processing, via a biological process. The use of 1% w/w papain and an incubation time of 48 h resulted in a degree of hydrolysis of 93.75 ± 2.94% and a CS content of 59.53 ± 1.77 mg/100 g. The FTIR spectra of extracted CS products exhibited identical functional groups found in commercially available CS. The molecular weights of CS extracted from skipjack and yellowfin tuna heads were 11.0 kDa and 7.7 kDa, respectively. Subsequently, a CH:CS ratio of 3:2 for CS and chitooligosaccharides (CH) was chosen as the optimal ratio for the preparation of spherical nanoparticles, with %EE, mean particle size, PDI, and zeta potential values of 50.89 ± 0.66%, 128.90 ± 3.29 nm, 0.27 ± 0.04, and -12.47 ± 2.06, respectively. The CU content was enhanced to 127.21 ± 1.66 μg/mL. The release of CU from this particular nanosystem involved mainly a drug diffusion mechanism, with a burst release in the first 3 h followed by a sustained release of CU over 24 h. The DPPH and ABTS scavenging activity results confirmed the efficient encapsulation of CU into CHCS nanoparticles. This study will provide a theoretical basis for CS derived from tuna head cartilages to be used as a functional component with specific functional properties in food and biomedical applications.
Collapse
Affiliation(s)
- Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-814592125
| | | | | |
Collapse
|
6
|
Song Y, Chen K, Lv L, Xiang Y, Du X, Zhang X, Zhao G, Xiao Y. Uncovering the biogeography of the microbial commmunity and its association with nutrient metabolism in the intestinal tract using a pig model. Front Nutr 2022; 9:1003763. [PMID: 36238459 PMCID: PMC9552906 DOI: 10.3389/fnut.2022.1003763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is a complex ecosystem that is essential for the metabolism, immunity and health of the host. The gut microbiota also plays a critical role in nutrient absorption and metabolism, and nutrients can influence the growth and composition of the gut microbiota. To gain a better understanding of the relationship between the gut microbial composition and nutrient metabolism, we used a pig model by collecting the contents of the different intestinal locations from six pigs to investigate microbial composition in different intestinal locations based on 16S rRNA gene sequencing and the concentrations of short-chain fatty acids (SCFAs), amino acids, fat, and crude ash in different intestinal locations using gas chromatography and chemical analysis. The results showed that the richness and diversity of intestinal microbial communities gradually increased from the small intestine to the large intestine. The relative abundance of Proteobacteria was higher in the jejunum and ileum, whereas the proportion of Firmicutes was higher in the cecum and colon. The concentrations of SCFAs were higher in the cecum and colon (P < 0.05). The concentrations of amino acids were higher in the small intestine than in the large intestine, while the amino acid content was significantly higher in the ascending colon than in the transverse colon and descending colon. The correlation analysis revealed that Ruminococcaceae UCG-005, Coriobacteriaceae_uncultured, [Eubacterium] hallii group, Mogibacterium and Lachnospiraceae AC2044 group had a higher positive correlation with SCFAs, crude ash and fat but had a negative correlation with amino acids in different gut locations of pigs. These findings may serve as fundamental data for using nutrient metabolism to regulate human and animal gut microbes and health and provide guidance for exploring host-microbe bidirectional interaction mechanisms and driving pathways.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, China
| | - Kai Chen
- Quality and Safety of Animal Products Group, Zhejiang Center of Animal Disease Control, Hangzhou, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Xiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Xiaojun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Guangmin Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yingping Xiao
| |
Collapse
|
7
|
Jorge A, Machado MG, Alexandre CM, Silva MGD, Almeida PR, Lança MJ. Proximate Composition, Nutritional Lipid Quality, and Health Indices of Largemouth Bass (Micropterus salmoides Lacépède, 1802) from Several Mediterranean Reservoirs. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.2008080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- André Jorge
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- MARE - Centro de Ciências do Mar e do Ambiente, Universidade de Évora, Évora, Portugal
| | - M. Graça Machado
- DEPARTAMENTO de ZOOTECNIA, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Carlos M. Alexandre
- MARE - Centro de Ciências do Mar e do Ambiente, Universidade de Évora, Évora, Portugal
| | - Marco Gomes da Silva
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro R. Almeida
- MARE - Centro de Ciências do Mar e do Ambiente, Universidade de Évora, Évora, Portugal
- Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - M. João Lança
- MED – Instituto Mediterrânico Para a Agricultura, Ambiente e Desenvolvimento & Departamento de Zootecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| |
Collapse
|
8
|
Ma CC, Wang XC, Tao NP. Hydroxyapatite From the Skull of Tuna ( Thunnus obesus) Head Combined With Chitosan to Restore Locomotive Function After Spinal Cord Injury. Front Nutr 2021; 8:734498. [PMID: 34497824 PMCID: PMC8419224 DOI: 10.3389/fnut.2021.734498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hydroxyapatite is an important fish bone calcium in tuna head, which is widely used to repair of bone defect. Chitosan is a degradable basic polysaccharide with good biocompatibility and bone guiding, which can achieve targeted delivery to the injured spinal cord after spinal cord injury (SCI). This study aimed to evaluate the beneficial effects of chitosan combined hydroxyapatite (chitosan-hydroxyapatite) nanoparticles on SCI. The result revealed the chitosan-hydroxyapatite particles were successfully constructed and the stability of particles was maintained at low temperature. Moreover, we found chitosan-hydroxyapatite administration could improve SCI, while chitosan alone treatment resulted in no significant increase of the Basso Beattie Bresnahan (BBB) scores compared with the control group. In addition, chitosan-hydroxyapatite particles also significantly reduced the lesion cavity volume and improved the dispersed structure, indicating it could promote the recovery of tissue function of SCI rats. This study explored the effects of chitosan-hydroxyapatite nanoparticles on the location and function of spinal cord injury, provided experimental evidence for further research on its application in spinal cord repair, and helped improve the efficient use of tuna heads.
Collapse
Affiliation(s)
- Chen-Chen Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xi-Chang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Ning-Ping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
9
|
Ali A, Wei S, Liu Z, Fan X, Sun Q, Xia Q, Liu S, Hao J, Deng C. Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kvangarsnes K, Kendler S, Rustad T, Aas GH. Induced oxidation and addition of antioxidant before enzymatic hydrolysis of heads of rainbow trout ( Oncorhynchus mykiss) - effect on the resulting oil and protein fraction. Heliyon 2021; 7:e06816. [PMID: 33997377 PMCID: PMC8093460 DOI: 10.1016/j.heliyon.2021.e06816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of freshness of heads of rainbow trout (Onchorhynchus mykiss) for hydrolysing fish protein was investigated. To simulate storage and transportation, hydrogen peroxide and iron was added to minced heads to induce oxidation in the raw material prior to one week of storage. The effect of antioxidant in retarding oxidative changes during hydrolysis or to the raw material was investigated by adding butylated hydroxy toluene (BHT) prior to hydrolysis or storage. Enzymatic hydrolysis was carried out using bromelain and papain. The oil fraction was separated from the water soluble proteins, and the soluble phase was freeze dried. Both the oil fraction and protein fraction from enzymatic hydrolysis was affected by oxidative state of raw material. FFA was significantly higher in those FPH made from raw material added pro-oxidants, addition of antioxidant did not affect the level of FFA. The solubility of proteins in dried fish protein hydrolysates (FPH) decreased significantly when using oxidized raw material. Although addition of antioxidant improved the solubility, it was still significantly lower compared to those FPHs not added pro-oxidants. The FPH with decreased solubility also had higher levels of carbonyl groups which indicate protein oxidation. However, the oxidative state of raw material did not affect fatty acid composition in oil fraction or the amino acid composition in the FPH.
Collapse
Affiliation(s)
- Kristine Kvangarsnes
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), PO Box 1517, 6025 Aalesund, Norway
| | - Sophie Kendler
- Faculty of Natural Sciences, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Turid Rustad
- Faculty of Natural Sciences, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Grete Hansen Aas
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), PO Box 1517, 6025 Aalesund, Norway
| |
Collapse
|
11
|
Quantitative analysis of carnosine, anserine, and homocarnosine in skeletal muscle of aquatic species from east China sea. Biochem Biophys Rep 2021; 25:100880. [PMID: 33385068 PMCID: PMC7770485 DOI: 10.1016/j.bbrep.2020.100880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 11/20/2022] Open
Abstract
Histidine-containing dipeptides (HCDs) are a family of non-protein, nitrogen-containing compounds with multiple physiological roles and are mainly present in excitable tissues of vertebrates. The distribution of HCDs in various animal species has been the subject of study for nearly 100 years. The aim of this research was to determine the content of the HCDs in the aquatic species collected from the Zhoushan fishing ground of the East China Sea. Using LC-MS/MS technology, the occurrence of carnosine, anserine, and homocarnosine in skeletal muscle of 38 aquatic species (26 teleosts, 6 molluscs, and 6 crustaceans) and chicken breast was investigated. Of the 38 aquatic species examined, 24 species (23 teleosts and 1 mollusc) contained considerable amounts (>5 ng/g wet tissue) of HCDs, and anserine was the major component of HCDs in their skeletal muscles. Only 5 teleosts contained homocarnosine. Most invertebrates, with the exception of the sepia Uroteuthis chinensis, did not contain HCDs. The present findings greatly expand the HCD distribution data and provide insight into understanding the roles of HCDs in different animals and a nutritional assessment for marine aquatic species. carnosine, anserine, and homocarnosine were determined in 38 marine species. Almost all the tested fish contain histidine-containing dipeptides. The highest value was presented in migratory pelagic fishes. The anserine is the major component in marine species. No HCD can be detected in invertebrates with the exception of the family Loliginidae.
Collapse
|
12
|
Caruso G, Floris R, Serangeli C, Di Paola L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar Drugs 2020; 18:md18120622. [PMID: 33297310 PMCID: PMC7762275 DOI: 10.3390/md18120622] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The search for new biological sources of commercial value is a major goal for the sustainable management of natural resources. The huge amount of fishery by-catch or processing by-products continuously produced needs to be managed to avoid environmental problems and keep resource sustainability. Fishery by-products can represent an interesting source of high added value bioactive compounds, such as proteins, carbohydrates, collagen, polyunsaturated fatty acids, chitin, polyphenolic constituents, carotenoids, vitamins, alkaloids, tocopherols, tocotrienols, toxins; nevertheless, their biotechnological potential is still largely underutilized. Depending on their structural and functional characteristics, marine-derived biomolecules can find several applications in food industry, agriculture, biotechnological (chemical, industrial or environmental) fields. Fish internal organs are a rich and underexplored source of bioactive compounds; the fish gut microbiota biosynthesizes essential or short-chain fatty acids, vitamins, minerals or enzymes and is also a source of probiotic candidates, in turn producing bioactive compounds with antibiotic and biosurfactant/bioemulsifier activities. Chemical, enzymatic and/or microbial processing of fishery by-catch or processing by-products allows the production of different valuable bioactive compounds; to date, however, the lack of cost-effective extraction strategies so far has prevented their exploitation on a large scale. Standardization and optimization of extraction procedures are urgently required, as processing conditions can affect the qualitative and quantitative properties of these biomolecules. Valorization routes for such raw materials can provide a great additional value for companies involved in the field of bioprospecting. The present review aims at collecting current knowledge on fishery by-catch or by-products, exploring the valorization of their active biomolecules, in application of the circular economy paradigm applied to the fishery field. It will address specific issues from a biorefinery perspective: (i) fish tissues and organs as potential sources of metabolites, antibiotics and probiotics; (ii) screening for bioactive compounds; (iii) extraction processes and innovative technologies for purification and chemical characterization; (iv) energy production technologies for the exhausted biomass. We provide a general perspective on the techno-economic feasibility and the environmental footprint of the production process, as well as on the definition of legal constraints for the new products production and commercial use.
Collapse
Affiliation(s)
- Gabriella Caruso
- Institute of Polar Sciences, National Research Council, 98122 Messina, Italy
- Correspondence: ; Tel.: +39-090-6015-423
| | - Rosanna Floris
- AGRIS-Sardegna, Servizio Ricerca Prodotti Ittici, Bonassai, 07100 Sassari, Italy;
| | | | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
13
|
Gasco L, Acuti G, Bani P, Dalle Zotte A, Danieli PP, De Angelis A, Fortina R, Marino R, Parisi G, Piccolo G, Pinotti L, Prandini A, Schiavone A, Terova G, Tulli F, Roncarati A. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1743209] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Laura Gasco
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Gabriele Acuti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Bani
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Antonella Dalle Zotte
- Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, PD, Italy
| | - Pier Paolo Danieli
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna De Angelis
- Dipartimento di Agraria, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Riccardo Fortina
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Rosaria Marino
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università degli Studi di Foggia, Foggia, Italy
| | - Giuliana Parisi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Firenze, Italy
| | - Giovanni Piccolo
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Luciano Pinotti
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milano, Italy
| | - Aldo Prandini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Achille Schiavone
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Genciana Terova
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Francesca Tulli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Alessandra Roncarati
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, MC, Italy
| |
Collapse
|