1
|
Leach IF, Klein JEMN. Oxidation States: Intrinsically Ambiguous? ACS CENTRAL SCIENCE 2024; 10:1406-1414. [PMID: 39071055 PMCID: PMC11273457 DOI: 10.1021/acscentsci.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
The oxidation state ( OS ) formalism is a much-appreciated good in chemistry, receiving wide application. However, like all formalisms, limitations are inescapable, some of which have been recently explored. Providing a broader context, we discuss the OS and its interpretation from a computational perspective for transition metal (TM) complexes. We define a broadly applicable and easy-to-use procedure to derive OS s based on quantum chemical calculations, via the use of localized orbitals, dubbed the Intrinsic OS . Applying this approach to a cobalt complex in five OS s, isolated by Hunter and co-workers (Inorg. Chem.2021, 60, 17445), we find that the calculated Intrinsic OS matches the formal OS , consistent with the experimental characterization. Through analysis of the delocalized orbitals, the ligand field of the Co(III) complex is found to be "inverted", despite every cobalt-ligand bond being classically dative from the localized perspective-a bonding scenario very similar to that of [Cu(CF3)4]-. This is not atypical but rather a natural consequence of these metals bonding in the high-valent region, and we propose a more restrictive definition of (locally) inverted bonding. Additionally, two bonding descriptors within the Intrinsic Bonding Orbital (IBO) framework (σ-gain and π-loss) are introduced, which enable facile quantification of electron-sharing covalency across a broad range of TM complexes.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747
AG Groningen, The
Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
3, 9747 AG Groningen, The Netherlands
| | - Johannes E. M. N. Klein
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
2
|
Gimferrer M, Danés S, Vos E, Yildiz CB, Corral I, Jana A, Salvador P, Andrada DM. Reply to the 'Comment on "The oxidation state in low-valent beryllium and magnesium compounds"' by S. Pan and G. Frenking, Chem. Sci., 2022, 13, DOI: 10.1039/D2SC04231B. Chem Sci 2023; 14:384-392. [PMID: 36687341 PMCID: PMC9811512 DOI: 10.1039/d2sc05769g] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
A recent article by Pan and Frenking challenges our assignment of the oxidation state of low valent group 2 compounds. With this reply, we show that our assignment of Be(+2) and Mg(+2) oxidation states in Be(cAACDip)2 and Mg(cAACDip)2 is fully consistent with our data. Some of the arguments exposed by Pan and Frenking were based on visual inspection of our figures, rather than a thorough numerical analysis. We discuss with numerical proof that some of the statements made by the authors concerning our reported data are erroneous. In addition, we provide further evidence that the criterion of the lowest orbital interaction energy in the energy decomposition analysis (EDA) method is unsuitable as a general tool to assess the valence state of the fragments. Other indicators based on natural orbitals for chemical valence (NOCV) deliver a more reliable bonding picture. We also emphasize the importance of using stable wavefunctions for any kind of analysis, including EDA.
Collapse
Affiliation(s)
- Martí Gimferrer
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/M. Aurelia Capmany 69 17003 Girona Spain
| | - Sergi Danés
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/M. Aurelia Capmany 69 17003 Girona Spain
- General and Inorganic Chemistry Department, University of Saarland Campus C4.1 66123 Saarbruecken Germany
| | - Eva Vos
- Departamento de Química, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Cantoblanco Madrid Spain
| | - Cem B Yildiz
- Department of Medicinal and Aromatic Plants, Aksaray University Hacilar Harmani 2 68100 Aksaray Turkey
| | - Inés Corral
- Departamento de Química, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Cantoblanco Madrid Spain
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad Gopanpally 500046 Hyderabad Telangana India
| | - Pedro Salvador
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/M. Aurelia Capmany 69 17003 Girona Spain
| | - Diego M Andrada
- General and Inorganic Chemistry Department, University of Saarland Campus C4.1 66123 Saarbruecken Germany
| |
Collapse
|
3
|
Leach IF, Sorbelli D, Belpassi L, Belanzoni P, Havenith RWA, Klein JEMN. How reduced are nucleophilic gold complexes? Dalton Trans 2022; 52:11-15. [PMID: 35877065 PMCID: PMC9764324 DOI: 10.1039/d2dt01694j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nucleophilic formal gold(-I) and gold(I) complexes are investigated via Intrinsic Bond Orbital analysis and Energy Decomposition Analysis, based on density functional theory calculations. The results indicate gold(0) centres engaging in electron-sharing bonding with Al- and B- based ligands. Multiconfigurational (CASSCF) calculations corroborate the findings, highlighting the gap between the electonic structures and the oxidation state formalism.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands,Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands
| | - Diego Sorbelli
- Department of Chemistry, Biology and Biotechnology, University of PerugiaVia Elce di Sotto806123 PerugiaItaly,CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC)Via Elce di Sotto806123 PerugiaItaly
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC)Via Elce di Sotto806123 PerugiaItaly
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of PerugiaVia Elce di Sotto806123 PerugiaItaly,CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC)Via Elce di Sotto806123 PerugiaItaly
| | - Remco W. A. Havenith
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands,Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands,Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University9000 GentBelgium
| | - Johannes E. M. N. Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands
| |
Collapse
|
4
|
Scharnhölz MT, Coburger P, Gravogl L, Klose D, Gamboa‐Carballo JJ, Le Corre G, Bösken J, Schweinzer C, Thöny D, Li Z, Meyer K, Grützmacher H. Bis(imidazolium)-1,3-diphosphete-diide: A Building Block for FeC 2 P 2 Complexes and Clusters. Angew Chem Int Ed Engl 2022; 61:e202205371. [PMID: 35661524 PMCID: PMC9796810 DOI: 10.1002/anie.202205371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 01/07/2023]
Abstract
Reaction of the 6π-electron aromatic four-membered heterocycle (IPr)2 C2 P2 (1) (IPr=1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene) with [Fe2 CO9 ] gives the neutral iron tricarbonyl complex [Fe(CO)3 -η3 -{(IPr)2 C2 P2 }] (2). Oxidation with two equivalents of the ferrocenium salt, [Fe(Cp)2 ](BArF24 ), affords the dicationic tricarbonyl complex [Fe(CO)3 -η4 -{(IPr)2 C2 P2 }](BArF24 )2 (4). The one-electron oxidation proceeds under concomitant loss of one CO ligand to give the paramagnetic dicarbonyl radical cation complex [Fe(CO)2 -η4 -{(IPr)2 C2 P2 }](BArF24 ) (5). Reduction of 5 allows the preparation of the neutral dicarbonyl complex [Fe(CO)2 -η4 -{(IPr)2 C2 P2 }] (6). An analysis by various spectroscopic techniques (57 Fe Mössbauer, EPR) combined with DFT calculations gives insight into differences of the electronic structure within the members of this unique series of iron carbonyl complexes, which can be either described as electron precise or Wade-Mingos clusters.
Collapse
Affiliation(s)
| | - Peter Coburger
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Lisa Gravogl
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstr. 191058ErlangenGermany
| | - Daniel Klose
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Juan José Gamboa‐Carballo
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland,Higher Institute of Technologies and Applied Sciences (InSTEC)University of HavanaAve. S. Allende 111010600HavanaCuba
| | - Grégoire Le Corre
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Jonas Bösken
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Clara Schweinzer
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Debora Thöny
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University510275GuangzhouChina,State Key Laboratory of Elemento-Organic ChemistryNankai University30071TianjinChina
| | - Karsten Meyer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstr. 191058ErlangenGermany
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 18093ZürichSwitzerland
| |
Collapse
|
5
|
Scharnhölz MT, Coburger P, Gravogl L, Klose D, Gamboa-Carballo JJ, Le Corre G, Bösken J, Schweinzer C, Thöny D, Meyer K, Li Z, Grützmacher H. Bis(imidazolium)‐1,3‐diphosphete‐diide: A Building Block for FeC2P2 Complexes and Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. T. Scharnhölz
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - P. Coburger
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - L. Gravogl
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemie GERMANY
| | - D. Klose
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - J. J. Gamboa-Carballo
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - G. Le Corre
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - J. Bösken
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - C. Schweinzer
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - D. Thöny
- ETH Zürich: Eidgenossische Technische Hochschule Zurich Chemistry and Applied Biosciences SWITZERLAND
| | - K. Meyer
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemie GERMANY
| | - Z. Li
- Sun Yat-Sen University Chemistry CHINA
| | - Hansjörg Grützmacher
- ETH Hönggerberg Deptmartment of Chemistry Vladimir Prelog Weg 1 8093 Zürich SWITZERLAND
| |
Collapse
|
6
|
Gimferrer M, Aldossary A, Salvador P, Head-Gordon M. Oxidation State Localized Orbitals: A Method for Assigning Oxidation States Using Optimally Fragment-Localized Orbitals and a Fragment Orbital Localization Index. J Chem Theory Comput 2021; 18:309-322. [PMID: 34929084 DOI: 10.1021/acs.jctc.1c01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation states represent the ionic distribution of charge in a molecule and are significant in tracking redox reactions and understanding chemical bonding. While effective algorithms already exist based on formal Lewis structures as well as using localized orbitals, they exhibit differences in challenging cases where effects such as redox noninnocence are at play. Given a density functional theory (DFT) calculation with chosen total charge and spin multiplicity, this work reports a new approach to obtaining fragment-localized orbitals that is termed oxidation state localized orbitals (OSLO), together with an algorithm for assigning the oxidation state using the OSLOs and an associated fragment orbital localization index (FOLI). Evaluating the FOLI requires fragment populations, and for this purpose a new version of the intrinsic atomic orbital (IAO) scheme is introduced in which the IAOs are evaluated using a reference minimal basis formed from on-the-fly superposition of atomic density (IAO-AutoSAD) calculations in the target basis set and at the target level of theory. The OSLO algorithm is applied to a range of challenging cases including high valent metal oxide complexes, redox noninnocent NO and dithiolate transition metal complexes, a range of carbene-containing TM complexes, and other examples including the potentially inverted ligand field in [Cu(CF3)4]-. Across this range of cases, OSLO produces generally satisfactory results. Furthermore, in borderline cases, the OSLOs and associated FOLI values provide direct evidence of the emergence of covalent interactions between fragments that nicely complements existing approaches.
Collapse
Affiliation(s)
- Martí Gimferrer
- Institut de Química Computacional i Catàlsi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Abdulrahman Aldossary
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Pedro Salvador
- Institut de Química Computacional i Catàlsi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia, Spain
| | - Martin Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Gimferrer M, Danés S, Andrada DM, Salvador P. Unveiling the Electronic Structure of the Bi(+1)/Bi(+3) Redox Couple on NCN and NNN Pincer Complexes. Inorg Chem 2021; 60:17657-17668. [PMID: 34766771 PMCID: PMC8653152 DOI: 10.1021/acs.inorgchem.1c02252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Low-valent group
15 compounds stabilized by pincer ligands have
gained particular interest, given their direct access to fine-tune
their reactivity by the coordination pattern. Recently, bismuth has
been employed in a variety of catalytic transformations by taking
advantage of the (+1/+3) redox couple. In this work, we present a
detailed quantum–chemical study on the electronic structure
of bismuth pincer complexes from two different families, namely, bis(ketimine)phenyl
(NCN) and triamide bismuthinidene (NNN). The use of the so-called
effective oxidation state analysis allows the unambiguous assignation
of the bismuth oxidation state. In contrast to previous studies, our
calculations suggest a Bi(+1) assignation for NCN pincer ligands,
while Bi(+3) character is found for NNN pincer complexes. Notably,
regardless of its oxidation state, the central bismuth atom disposes
of up to two lone pairs for coordinating Lewis acids, as indicated
by very high first and second proton affinity values. Besides, the
Bi–NNN systems can also accommodate two Lewis base ligands,
indicating also ambiphilic behavior. The effective fragment orbital
analysis of Bi and the ligand allows monitoring of the intricate electron
flow of these processes, revealing the noninnocent nature of the NNN
ligand, in contrast with the NCN one. By the dissection of the electron
density into effective fragment orbitals, we are able to quantify
and rationalize the Lewis base/acid character. Effective oxidation state analysis sheds
light on the electronic
structure of chemical systems. The oxidation state of bismuthinidene
pincer complexes can be assigned as Bi(+1) or Bi(+3) depending on
the nature of the ligands. Despite this assignation, the reactivity
pattern as Lewis base or acid is similar. The occupation of the effective
fragment orbitals gives a straightforward method to quantify the reactivity.
Collapse
Affiliation(s)
- Martí Gimferrer
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Sergi Danés
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.,Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, 66123 Saarbrücken, Federal Republic of Germany
| | - Diego M Andrada
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, 66123 Saarbrücken, Federal Republic of Germany
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
8
|
Popp J, Riggenmann T, Schröder D, Ampßler T, Salvador P, Klüfers P. Bent and Linear {CoNO} 8 Entities: Structure and Bonding in a Prototypic Class of Nitrosyls. Inorg Chem 2021; 60:15980-15996. [PMID: 34612642 DOI: 10.1021/acs.inorgchem.1c00998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among the isoelectronic ligands CN-, CO, and NO+, an oblique bonding to the metal is well-established for the nitrosyl ligand, with M-N-O angles down to ≈120°. In the last decades, the nitrosyl community got into the habit of addressing a bent-bonded nitrosyl ligand as 1NO-. Thus, because various redox forms of a nitrosyl ligand seem to exist, the ligand is considered to be "noninnocent" because of the obvious ambiguity of an oxidation state (OS) assignment of the ligand and metal. Among the bent-bonded species, the low-spin {CoNO}8 class is prototypic. From this class, some 20 new nitrosyl compounds, the X-ray structure determinations of which comply with strict quality criteria, were analyzed with respect to the OS issue. As a result, the effective OS method shows a low-spin d8 CoI-NO+ couple instead of a negative OS of the ligand at the BP86/def2-TZVP (+D3, +CPCM with infinite permittivity) level of theory. The same holds for some new members of the linear subclass of {CoNO}8 compounds. For all compounds, a largely invariable "real" charge of ≈ -0.3 e was obtained from population analyses. All of these electron-rich d8 species strive to manage Pauli repulsion between the metal electrons and the lone pair at the nitrosyl's nitrogen atom, with the bending of the CoNO unit as the most frequent escape.
Collapse
Affiliation(s)
- Jens Popp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Tobias Riggenmann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Daniel Schröder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Torsten Ampßler
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi i Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Peter Klüfers
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
9
|
Aghazada S, Munz D, Heinemann FW, Scheurer A, Meyer K. A Crystalline Iron Terminal Methylidene. J Am Chem Soc 2021; 143:17219-17225. [PMID: 34613738 DOI: 10.1021/jacs.1c08202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron methylidene species are alleged intermediates in the Fischer-Tropsch process and in olefin cyclopropanation, yet iron methylidene complexes with unambiguously established molecular and electronic structures remain elusive. In this study, we characterize an iron terminal methylidene complex by single-crystal X-ray diffractometry (scXRD), CHN combustion elemental analysis, 1H/13C/31P/1H-13C NMR, and zero-field 57Fe Mössbauer spectroscopy and study its reactivity. A series of closely related complexes in different oxidation states were synthesized, isolated and characterized in order to validate the electronic structure of the title methylidene complex. The computational analysis substantiates the proposed Fischer-type electronic description while emphasizing high Fe═CH2 bond covalency, considerable double bond order, and thus, substantial alkylidene character.
Collapse
Affiliation(s)
- Sadig Aghazada
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, D-91058 Erlangen, Germany
| | - Dominik Munz
- Saarland University, Inorganic Chemistry: Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Frank W Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, D-91058 Erlangen, Germany
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, D-91058 Erlangen, Germany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, D-91058 Erlangen, Germany
| |
Collapse
|
10
|
Jiang XL, Xu CQ, Lu JB, Cao CS, Schmidbaur H, Schwarz WHE, Li J. Electronic Structure and Spectroscopic Properties of Group-7 Tri-Oxo-Halides MO 3X (M = Mn-Bh, X = F-Ts). Inorg Chem 2021; 60:9504-9515. [PMID: 34152757 DOI: 10.1021/acs.inorgchem.1c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 24 trioxide halide molecules MO3X of the manganese group (M = Mn-Bh; X = F-Ts), which are iso-valence-electronic with the famous MnO4- ion, have been quantum-chemically investigated by quasi-relativistic density-functional and ab initio correlated approaches. Geometric and electronic structures, valence and oxidation numbers, vibrational and electronic spectral properties, energetic stabilities of the monomers in the gas phase, and the decay mode of MnO3F have been investigated. The light Mn-3d species are most strongly electron-correlated, indicating that the concept of a closed-shell Lewis-type single-configurational structure [Mn+7(d0) O-2(p6)3 F-(p6)] reaches its limits. The concept of real-valued spin orbitals φ(r)·α and φ(r)·β breaks down for the heavy Bh-6d, At-6p and Ts-7p elements because of the dominating spin-orbit coupling. The vigorous decomposition of MnO3F at ambient conditions starts by the autocatalyzed release of n O2 and the formation of MnmO3m-2nFm clusters, triggered by the electron-depleted "oxylic" character of the oxide ligands in MnO3X.
Collapse
Affiliation(s)
- Xue-Lian Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Bo Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chang-Su Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hubert Schmidbaur
- Department Chemie, Technische Universität München, Garching 85747, Germany
| | - W H Eugen Schwarz
- Department of Chemistry, Tsinghua University, Beijing 100084, China.,Department Chemie, Universität Siegen, Siegen 57068, Germany
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Štekláč M, Breza M. On the relation between oxidation states and d-electron populations of the 1st row transition metal complexes I. Tetrachloro complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Gimferrer M, Van der Mynsbrugge J, Bell AT, Salvador P, Head-Gordon M. Facing the Challenges of Borderline Oxidation State Assignments Using State-of-the-Art Computational Methods. Inorg Chem 2020; 59:15410-15420. [DOI: 10.1021/acs.inorgchem.0c02405] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martí Gimferrer
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jeroen Van der Mynsbrugge
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexis T. Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|