1
|
Elkhenany H, Soliman MW, Atta D, El-Badri N. Innovative Marine-Sourced Hydroxyapatite, Chitosan, Collagen, and Gelatin for Eco-Friendly Bone and Cartilage Regeneration. J Biomed Mater Res A 2025; 113:e37833. [PMID: 39508545 DOI: 10.1002/jbm.a.37833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
In recent years, the exploration of sustainable alternatives in the field of bone tissue engineering has led researchers to focus on marine waste byproducts as a valuable resource. These marine resources, often overlooked remnants of various industries, exhibit a rich composition of hydroxyapatite, collagen, calcium carbonate, and other minerals essential to the complex framework of bone structure. Marine waste by-products can emit gases such as methane and carbon dioxide, highlighting the urgency to repurpose these materials for innovative tissue regeneration solutions, offering a sustainable approach to address environmental challenges while advancing medical science. Using these discarded materials offers a promising pathway for sustainable development in regenerative medicine. This review investigates the distinctive properties of marine waste byproducts, emphasizing their capacity to be recycled effectively to contribute to the rebuilding of bone and cartilage tissue during regeneration processes. We also highlight the compatibility of these resources with biological materials such as platelet-rich plasma (PRP), stem cells, exosomes, and natural bioproducts, as well as nanoparticles (NPs) and polymers. By using the natural potential of these resources, we simultaneously address environmental challenges and promote innovative solutions in skeletal tissue engineering, initiating a new era of environmentally green biomedical research.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mariam Waleed Soliman
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| | - Dina Atta
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
2
|
Seo J, Kang J, Kim J, Han H, Park M, Shin M, Lee K. Smart Contact Lens for Colorimetric Visualization of Glucose Levels in the Body Fluid. ACS Biomater Sci Eng 2024; 10:4035-4045. [PMID: 38778794 DOI: 10.1021/acsbiomaterials.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Frequent blood glucose monitoring is a crucial routine for diabetic patients. Traditional invasive methods can cause discomfort and pain and even pose a risk of infection. As a result, researchers have been exploring noninvasive techniques. However, a limited number of products have been developed for the market due to their high cost. In this study, we developed a low-cost, highly accessible, and noninvasive contact lens-based glucose monitoring system. We functionalized the surface of the contact lens with boronic acid, which has a strong but reversible binding affinity to glucose. To achieve facile conjugation of boronic acid, we utilized a functional coating layer called poly(tannic acid). The functionalized contact lens binds to glucose in body fluids (e.g., tear) and releases it when soaked in an enzymatic cocktail, allowing for the glucose level to be quantified through a colorimetric assay. Importantly, the transparency and oxygen permeability of the contact lens, which are crucial for practical use, were maintained after functionalization, and the lenses showed high biocompatibility. Based on the analysis of colorimetric data generated by the smartphone application and ultraviolet-visible (UV-vis) spectra, we believe that this contact lens has a high potential to be used as a smart diagnostic tool for monitoring and managing blood glucose levels.
Collapse
Affiliation(s)
- Jeongin Seo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jumi Kang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Jungwoo Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Hyeju Han
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, South Korea
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41940, South Korea
| |
Collapse
|
3
|
Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon 2024; 10:e23779. [PMID: 38223705 PMCID: PMC10784177 DOI: 10.1016/j.heliyon.2023.e23779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.
Collapse
Affiliation(s)
- Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yaxin Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Zihe Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Qianying Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingbo Shi
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Chao Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
4
|
Elkhenany H, Elkodous MA, Mansell JP. Ternary nanocomposite potentiates the lysophosphatidic acid effect on human osteoblast (MG63) maturation. Nanomedicine (Lond) 2023; 18:1459-1475. [PMID: 37815159 DOI: 10.2217/nnm-2023-0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aim: This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Materials & methods: Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP. Results: TNC had no cytotoxic effect on MG63. The addition of TNC to EB1089-FHBP cotreatment enhanced the maturation of MG63, as supported by the greater alkaline phosphatase activity and OPN and OCN gene expression. Conclusion: TNC could serve as a promising carrier for FHBP, opening up possibilities for its application in bone regeneration.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical & Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-Cho, Toyohashi, Aichi, 441-8580, Japan
| | - Jason Peter Mansell
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
5
|
Mansell JP, Tanatani A, Kagechika H. An N-Cyanoamide Derivative of Lithocholic Acid Co-Operates with Lysophosphatidic Acid to Promote Human Osteoblast (MG63) Differentiation. Biomolecules 2023; 13:1113. [PMID: 37509149 PMCID: PMC10377543 DOI: 10.3390/biom13071113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Less-calcaemic vitamin D receptor (VDR) agonists have the potential to promote osteoblast maturation in a bone regenerative setting. The emergence of lithocholic acid (LCA) as a bona fide VDR agonist holds promise as an adjunct for arthroplasty following reports that it was less calcaemic than calcitriol (1,25D). However, LCA and some earlier derivatives, e.g., LCA acetate, had to be used at much higher concentrations than 1,25D to elicit comparable effects on osteoblasts. However, recent developments have led to the generation of far more potent LCA derivatives that even outperform the efficacy of 1,25D. These new compounds include the cyanoamide derivative, Dcha-150 (also known as AY2-79). In light of this significant development, we sought to ascertain the ability of Dcha-150 to promote human osteoblast maturation by monitoring alkaline phosphatase (ALP) and osteocalcin (OC) expression. The treatment of MG63 cells with Dcha-150 led to the production of OC. When Dcha-150 was co-administered with lysophosphatidic acid (LPA) or an LPA analogue, a synergistic increase in ALP activity occurred, with Dcha-150 showing greater potency compared to 1,25D. We also provide evidence that this synergy is likely attributed to the actions of myocardin-related transcription factor (MRTF)-serum response factor (SRF) gene transcription following LPA-receptor-induced cytoskeletal reorganisation.
Collapse
Affiliation(s)
- Jason P Mansell
- School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
6
|
Pawlik A, Jarosz M, Socha RP, Sulka GD. The Impacts of Crystalline Structure and Different Surface Functional Groups on Drug Release and the Osseointegration Process of Nanostructured TiO 2. Molecules 2021; 26:1723. [PMID: 33808785 PMCID: PMC8003584 DOI: 10.3390/molecules26061723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
In implantable materials, surface topography and chemistry are the most important in the effective osseointegration and interaction with drug molecules. Therefore, structural and surface modifications of nanostructured titanium dioxide (TiO2) layers are reported in the present work. In particular, the modification of annealed TiO2 samples with -OH groups and silane derivatives, confirmed by X-ray photoelectron spectroscopy, is shown. Moreover, the ibuprofen release process was studied regarding the desorption-desorption-diffusion (DDD) kinetic model. The results proved that the most significant impact on the release profile is annealing, and further surface modifications did not change its kinetics. Additionally, the cell adhesion and proliferation were examined based on the MTS test and immunofluorescent staining. The obtained data showed that the proposed changes in the surface chemistry enhance the samples' hydrophilicity. Moreover, improvements in the adhesion and proliferation of the MG-63 cells were observed.
Collapse
Affiliation(s)
- Anna Pawlik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Krakow, Poland; (A.P.); (G.D.S.)
| | - Magdalena Jarosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Krakow, Poland; (A.P.); (G.D.S.)
| | - Robert P. Socha
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, 30239 Krakow, Poland;
| | - Grzegorz D. Sulka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Krakow, Poland; (A.P.); (G.D.S.)
| |
Collapse
|