1
|
Yadav S, Rahim MS, Devi A, Sharma RK. Revolutionizing Speciality Teas: Multi-omics prospective to breed anthocyanin-rich tea. Food Res Int 2025; 209:116312. [PMID: 40253154 DOI: 10.1016/j.foodres.2025.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
Variations in metabolite accumulation particularly anthocyanins have been of keen interest to the global tea industry due to their potential health benefits. Previous studies on tea genome, transcriptome, and metabolome provided an integrated spectrum of bioactive metabolites biosynthesis in tea plants. However, comprehending knowledge of anthocyanin biosynthesis and its accumulation in tea plants needed to be unified with multi-omics approaches that can build a complete depiction of the regulatory genomic machinery for improving quality characteristics in tea. Furthermore, true visualization, interpretation, and precise dissection of key traits required significant enrichment of multi-omics data for integration of machine learning. This review emphasizes the role of genetics, epigenetics, and transcriptional regulation of early (EBG) and late biosynthetic genes (LBG) involved in anthocyanin biosynthesis and accumulation in purple tea. Additionally, other factors including key transcription factors, transporters, photosynthesis, vacuole pH, and co-biosynthesis of other flavonoids were discussed. We envision an integration of pangenome and genome-wide strategies (GWAS, mGWAS, EWAS) which can offer new insights for the breeding of anthocyanin-rich tea cultivars to fetch better trade revenue and nutraceutical benefits.
Collapse
Affiliation(s)
- Shimran Yadav
- Molecular Genetics and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, -176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammed Saba Rahim
- Molecular Genetics and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, -176061, India
| | - Amna Devi
- Molecular Genetics and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, -176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ram Kumar Sharma
- Molecular Genetics and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, -176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Salazar PB, Fanzone M, Zabala BA, Rodriguez Vaquero MJ, Cilli E, Barroso PA, Minahk C, Acuña L. A byproduct from the Valles Calchaquíes vineyards (Argentina) rich in phenolic compounds: a tool against endemic Leishmania dissemination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97377-97385. [PMID: 37592068 DOI: 10.1007/s11356-023-29276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Vineyard-derived pomace is a byproduct of the wine industry that can have a negative impact on the environment if it is only disposed of or used as a fertilizer. Owing to its polyphenol content, grape pomace is an alternative to biocontrol undesirable microorganisms. In the present study, we characterized the phenolic composition of red and white grape pomace from Valles Calchaquíes, Argentina, and explored its activity against Leishmania (Leishmania) amazonensis, an etiological agent of American tegumentary leishmaniasis, a neglected endemic disease in northern Argentina. Red and white pomace extracts similarly reduced Leishmania viability after a 48-h treatment, with the fractions containing a higher proportion of phenolic compounds being more active. Both extracts stimulated ATPase activity on the parasite plasma membranes, with white grape pomace having a stronger effect than red grape pomace. In addition, the extracts displayed fairly good anticholinesterase activity, which may have contributed to their anti-Leishmania activity. These results reinforce the potential applicability of grape pomace as an antimicrobial agent for the development of biopesticides.
Collapse
Affiliation(s)
- Paula B Salazar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Martín Fanzone
- EEA Mendoza INTA (Estación Experimental Agropecuaria Mendoza-Instituto Nacional de Tecnología Agropecuaria), San Martin 3853, Mayor Drummond (5507), Luján de Cuyo, Mendoza, Argentina
| | - Brenda A Zabala
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental "Dr. Miguel Ángel Basombrio", CONICET/Universidad Nacional de Salta (UNSa), A4408FVY, Salta, Argentina
| | - María J Rodriguez Vaquero
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho, 491, San Miguel de Tucumán, Argentina
| | - Eduardo Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Paola A Barroso
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental "Dr. Miguel Ángel Basombrio", CONICET/Universidad Nacional de Salta (UNSa), A4408FVY, Salta, Argentina
| | - Carlos Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
| | - Leonardo Acuña
- Unidad de Biotecnología y Protozoarios, Instituto de Patología Experimental "Dr. Miguel Ángel Basombrio", CONICET/Universidad Nacional de Salta (UNSa), A4408FVY, Salta, Argentina
| |
Collapse
|
3
|
Barazorda-Ccahuana HL, Goyzueta-Mamani LD, Candia Puma MA, Simões de Freitas C, de Sousa Vieria Tavares G, Pagliara Lage D, Ferraz Coelho EA, Chávez-Fumagalli MA. Computer-aided drug design approaches applied to screen natural product's structural analogs targeting arginase in Leishmania spp. F1000Res 2023; 12:93. [PMID: 37424744 PMCID: PMC10323282 DOI: 10.12688/f1000research.129943.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Leishmaniasis is a disease with high mortality rates and approximately 1.5 million new cases each year. Despite the new approaches and advances to fight the disease, there are no effective therapies. Methods: Hence, this study aims to screen for natural products' structural analogs as new drug candidates against leishmaniasis. We applied Computer-aided drug design (CADD) approaches, such as virtual screening, molecular docking, molecular dynamics simulation, molecular mechanics-generalized Born surface area (MM-GBSA) binding free estimation, and free energy perturbation (FEP) aiming to select structural analogs from natural products that have shown anti-leishmanial and anti-arginase activities and that could bind selectively against the Leishmania arginase enzyme. Results: The compounds 2H-1-benzopyran, 3,4-dihydro-2-(2-methylphenyl)-(9CI), echioidinin, and malvidin showed good results against arginase targets from three parasite species and negative results for potential toxicities. The echioidinin and malvidin ligands generated interactions in the active center at pH 2.0 conditions by MM-GBSA and FEP methods. Conclusions: This work suggests the potential anti-leishmanial activity of the compounds and thus can be further in vitro and in vivo experimentally validated.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa, Peru
| | - Mayron Antonio Candia Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
- Universidad Católica de Santa María, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Arequipa, Peru
| | - Camila Simões de Freitas
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele de Sousa Vieria Tavares
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de Minas Gerais, Departamento de Patologia Clínica, COLTEC, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
| |
Collapse
|
4
|
Orabi MAA, Alqahtani OS, Alyami BA, Al Awadh AA, Abdel-Sattar ES, Matsunami K, Hamdan DI, Abouelela ME. Human Lung Cancer (A549) Cell Line Cytotoxicity and Anti- Leishmania major Activity of Carissa macrocarpa Leaves: A Study Supported by UPLC-ESI-MS/MS Metabolites Profiling and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:ph15121561. [PMID: 36559012 PMCID: PMC9784246 DOI: 10.3390/ph15121561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer and cutaneous leishmaniasis are critical diseases with a relatively higher incidence in developing countries. In this research, the activity of Carissa macrocarpa leaf hydromethanolic extract and its solvent-fractions (n-hexane, EtOAc, n-butanol, and MeOH) against the lung adenocarcinoma cell line (A549) and Leishmania major was investigated. The MeOH fraction exhibited higher cytotoxic activity (IC50 1.57 ± 0.04 μg/mL) than the standard drug, etoposide (IC50 50.8 ± 3.16 μg/mL). The anti-L. major results revealed strong growth inhibitory effects of the EtOAc fraction against L. major promastigotes (IC50 27.52 ± 0.7 μg/mL) and axenic amastigotes (29.33 ± 4.86% growth inhibition at 100 μg/mL), while the butanol fraction exerted moderate activity against promastigotes (IC50 73.17 ± 1.62), as compared with miltefosine against promastigotes (IC50 6.39 ± 0.29 μg/mL) and sodium stibogluconate against axenic amastigotes (IC50 22.45 ± 2.22 μg/mL). A total of 102 compounds were tentatively identified using UPLC-ESI-MS/MS analysis of the total extract and its fractions. The MeOH fraction was found to contain several flavonoids and flavan-3-ol derivatives with known cytotoxic properties, whereas the EtOAc fractions contained triterpene, hydroxycinnamoyl, sterol, and flavanol derivatives with known antileishmanial activity. Molecular docking of various polyphenolics of the MeOH fraction with HDAC6 and PDK3 enzymes demonstrates high binding affinity of the epicatechin 3-O-β-D-glucopyranoside and catechin-7-O-β-D-glucopyranoside toward HDAC6, and procyanidin C2, procyanidin B5 toward PDK3. These results are promising and encourage the pursuit of preclinical research using C. macrocarpa's MeOH fraction as anti-lung cancer and the EtOAc fraction as an anti-L. major drug candidates.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University 1988, Najran 66454, Saudi Arabia
- Correspondence: or ; Tel.: +966-557-398-835
| | - Omaish Salman Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University 1988, Najran 66454, Saudi Arabia
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University 1988, Najran 66454, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University 1988, Najran 66454, Saudi Arabia
| | - El-Shaymaa Abdel-Sattar
- Department of Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Dalia I. Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom 32511, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| |
Collapse
|
5
|
Brioschi MBC, Coser EM, Coelho AC, Gadelha FR, Miguel DC. Models for cytotoxicity screening of antileishmanial drugs: what has been done so far? Int J Antimicrob Agents 2022; 60:106612. [PMID: 35691601 DOI: 10.1016/j.ijantimicag.2022.106612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
A growing number of studies have demonstrated the in vitro potential of an impressive number of antileishmanial candidates in the past years. However, the lack of uniformity regarding the choice of cell types for cytotoxicity assays may lead to uncomparable and inconclusive data. In vitro assays relying solely on non-phagocytic cell models may not represent a realistic result as the effect of an antileishmanial agent should ideally be presented based on its cytotoxicity profile against reticuloendothelial system cells. In the present review, we have assembled studies published in the scientific literature from 2015 to 2021 that explored leishmanicidal candidates, emphasising the main host cell models used for cytotoxicity assays. The pros and cons of different host cell types as well as primary cells and cell lines are discussed in order to draw attention to the need to establish standardised protocols for preclinical testing when assessing new antileishmanial candidates.
Collapse
Affiliation(s)
- Mariana B C Brioschi
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Elizabeth M Coser
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Adriano C Coelho
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Alves MSD, Sena-Lopes Â, das Neves RN, Casaril AM, Domingues M, Birmann PT, da Silva ET, de Souza MVN, Savegnago L, Borsuk S. In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitol Res 2022; 121:2697-2711. [PMID: 35857093 DOI: 10.1007/s00436-022-07598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
Trichomoniasis is a great public health burden worldwide and the increase in treatment failures has led to a need for finding alternative molecules to treat this disease. In this study, we present in vitro and in silico analyses of two 2,8-bis(trifluoromethyl) quinolines (QDA-1 and QDA-2) against Trichomonas vaginalis. For in vitro trichomonacidal activity, up to seven different concentrations of these drugs were tested. Molecular docking, biochemical, and cytotoxicity analyses were performed to evaluate the selectivity profile. QDA-1 displayed a significant effect, completely reducing trophozoites viability at 160 µM, with an IC50 of 113.8 µM, while QDA-2 at the highest concentration reduced viability by 76.9%. QDA-1 completely inhibited T. vaginalis growth and increased reactive oxygen species production and lipid peroxidation after 24 h of treatment, but nitric oxide accumulation was not observed. In addition, molecular docking studies showed that QDA-1 has a favorable binding mode in the active site of the T. vaginalis enzymes purine nucleoside phosphorylase, lactate dehydrogenase, triosephosphate isomerase, and thioredoxin reductase. Moreover, QDA-1 presented a level of cytotoxicity by reducing 36.7% of Vero cells' viability at 200 µM with a CC50 of 247.4 µM and a modest selectivity index. In summary, the results revealed that QDA-1 had a significant anti-T. vaginalis activity. Although QDA-1 had detectable cytotoxicity, the concentration needed to eliminate T. vaginalis trophozoites is lower than the CC50 encouraging further studies of this compound as a trichomonacidal agent.
Collapse
Affiliation(s)
- Mirna Samara Dié Alves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Angela Maria Casaril
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Micaela Domingues
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Paloma Taborda Birmann
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Emerson Teixeira da Silva
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil
| | - Marcus Vinicius Nora de Souza
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil.,Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21945-970, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
7
|
In Vitro Antiviral Activity of Green Tea Polyphenon-60 against Avian Paramyxoviruses. Vet Med Int 2021; 2021:3411525. [PMID: 34912537 PMCID: PMC8668330 DOI: 10.1155/2021/3411525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/23/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Avian paramyxoviruses (APMVs) have caused an economically significant drop in global domestic poultry production because of their high morbidity and mortality rates. Polyphenols are the major components of green tea that have great antiviral effects. This study aimed to evaluate the anti-APMV activities of polyphenon-60. Twelve APMV-1 strains representing three different pathotypes, two strains of APMV-2, one strain of APMV-3, and one strain of APMV-7 were propagated in chicken embryos. To determine the cytotoxic effect, chicken embryo fibroblasts were treated with the test compound in various concentrations. To assess the antiviral properties, time-dependent, dose-dependent, and virulence-dependent experiments were conducted in both cell and chicken embryo models. A reduction in virus titers was measured by the hemagglutination test. The inhibitory effect on virus adsorption to the chicken red blood cell (RBC) surface was examined by the hemagglutination inhibition test. The results showed that lentogenic and mesogenic APMV-1 strains, APMV-3 strain, and APMV-7 strain were significantly inhibited (
) by polyphenon-60 at 50 μg/ml, while the 50% cytotoxic concentration of the compound was 345 μg/ml. Polyphenon-60 also exhibited the inhibitory activity against hemagglutination by NDV. Taken together, the results suggest that polyphenon-60 has shown promise as an antiviral agent that has wide safety margins against APMVs, and challenge studies to evaluate its efficacy in chickens are necessary.
Collapse
|
8
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
9
|
García-Bustos MF, Moya Álvarez A, Pérez Brandan C, Parodi C, Sosa AM, Buttazzoni Zuñiga VC, Pastrana OM, Manghera P, Peñalva PA, Marco JD, Barroso PA. Development of a Fluorescent Assay to Search New Drugs Using Stable tdTomato- Leishmania, and the Selection of Galangin as a Candidate With Anti-Leishmanial Activity. Front Cell Infect Microbiol 2021; 11:666746. [PMID: 34150675 PMCID: PMC8213385 DOI: 10.3389/fcimb.2021.666746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
Antimonials continue to be considered the first-line treatment for leishmaniases, but its use entails a wide range of side effects and serious reactions. The search of new drugs requires the development of methods more sensitive and faster than the conventional ones. We developed and validated a fluorescence assay based in the expression of tdTomato protein by Leishmania, and we applied this method to evaluate the activity in vitro of flavonoids and reference drugs. The pIR1SAT/tdTomato was constructed and integrated into the genome of Leishmania (Leishmania) amazonensis. Parasites were selected with nourseothricin (NTC). The relation of L. amaz/tc3 fluorescence and the number of parasites was determined; then the growth in vitro and infectivity in BALB/c mice was characterized. To validate the fluorescence assay, the efficacy of miltefosine and meglumine antimoniate was compared with the conventional methods. After that, the method was used to assess in vitro the activity of flavonoids; and the mechanism of action of the most active compound was evaluated by transmission electron microscopy and ELISA. A linear correlation was observed between the emission of fluorescence of L. amaz/tc3 and the number of parasites (r2 = 0.98), and the fluorescence was stable in the absence of NTC. No differences were observed in terms of infectivity between L. amaz/tc3 and wild strain. The efficacy of miltefosine and meglumine antimoniate determined by the fluorescence assay and the microscopic test showed no differences, however, in vivo the fluorescence assay was more sensitive than limiting dilution assay. Screening assay revealed that the flavonoid galangin (GAL) was the most active compound with IC50 values of 53.09 µM and 20.59 µM in promastigotes and intracellular amastigotes, respectively. Furthermore, GAL induced mitochondrial swelling, lipid inclusion bodies and vacuolization in promastigotes; and up-modulated the production of IL-12 p70 in infected macrophages. The fluorescence assay is a useful tool to assess the anti-leishmanial activity of new compounds. However, the assay has some limitations in the macrophage-amastigote model that might be related with an interfere of flavanol aglycones with the fluorescence readout of tdTomato. Finally, GAL is a promising candidate for the development of new treatment against the leishmaniasis.
Collapse
Affiliation(s)
- María Fernanda García-Bustos
- Escuela Universitaria en Ciencias de la Salud y Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta, Salta, Argentina
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
- Facultad de Ciencias de la Salud, Universidad Nacional de Salta, Salta, Argentina
| | - Agustín Moya Álvarez
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| | - Cecilia Pérez Brandan
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| | - Cecilia Parodi
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| | - Andrea Mabel Sosa
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| | - Valeria Carolina Buttazzoni Zuñiga
- Escuela Universitaria en Ciencias de la Salud y Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta, Salta, Argentina
| | - Oscar Marcelo Pastrana
- Escuela Universitaria en Ciencias de la Salud y Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta, Salta, Argentina
| | - Paula Manghera
- Escuela Universitaria en Ciencias de la Salud y Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta, Salta, Argentina
| | - Pablo Alejandro Peñalva
- Escuela Universitaria en Ciencias de la Salud y Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta, Salta, Argentina
| | - Jorge Diego Marco
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| | - Paola Andrea Barroso
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
10
|
Méndez D, Escalona-Arranz JC, Foubert K, Matheeussen A, Van der Auwera A, Piazza S, Cuypers A, Cos P, Pieters L. Chemical and Pharmacological Potential of Coccoloba cowellii, an Endemic Endangered Plant from Cuba. Molecules 2021; 26:935. [PMID: 33578815 PMCID: PMC7916587 DOI: 10.3390/molecules26040935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/26/2022] Open
Abstract
Coccoloba cowellii Britton (Polygonaceae) is an endemic and critically endangered plant that only grows in Camagüey, a province of Cuba. In this study, a total of 13 compounds were identified in a methanolic leaf extract, employing a dereplication of the UHPLC-HRMS data by means of feature-based molecular networking (FBMN) analysis in the Global Natural Products Social Molecular Network (GNPS), together with the interpretation of the MS/MS data and comparison with the literature. The major constituents were glucuronides and glycosides of myricetin and quercetin, as well as epichatechin-3-O-gallate, catechin, epicatechin and gallic acid, all of them being reported for the first time in C. cowellii leaves. The leaf extract was also tested against various microorganisms, and it showed a strong antifungal effect against Candida albicans ATCC B59630 (azole-resistant) (IC50 2.1 µg/mL) and Cryptococcus neoformans ATCC B66663 (IC50 4.1 µg/mL) with no cytotoxicity (CC50 > 64.0 µg/mL) on MRC-5 SV2 cells, determined by the resazurin assay. Additionally, the extract strongly inhibited COX-1 and COX-2 enzyme activity using a cell-free experiment in a dose-dependent manner, being significantly more active on COX-1 (IC50 4.9 µg/mL) than on COX-2 (IC50 10.4 µg/mL). The constituents identified as well as the pharmacological activities measured highlight the potential of C. cowellii leaves, increasing the interest in the implementation of conservation strategies for this species.
Collapse
Affiliation(s)
- Daniel Méndez
- Chemistry Department, Faculty of Applied Sciences, University of Camagüey, Carretera de Circunvalación Km 5 ½, Camagüey 74650, Cuba;
| | - Julio C. Escalona-Arranz
- Pharmacy Department, Faculty of Natural and Exact Sciences, Oriente University, Avenida Patricio Lumumba s/n, Santiago de Cuba 90500, Cuba;
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium; (K.F.); (A.V.d.A.)
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium;
| | - Anastasia Van der Auwera
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium; (K.F.); (A.V.d.A.)
| | - Stefano Piazza
- Laboratory of Pharmacognosy, Department of Pharmacological and Biomolecular Sciences, University of Milan/UNIMI, IT-20133 Milan, Italy;
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium;
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium;
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium; (K.F.); (A.V.d.A.)
| |
Collapse
|
11
|
Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms 2021; 9:microorganisms9020267. [PMID: 33525448 PMCID: PMC7911663 DOI: 10.3390/microorganisms9020267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/03/2023] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania in rodent infectivity studies. Here, we review research on these natural products with a focus on their promise for the development of treatment strategies as well as unique structural and pharmacokinetic/pharmacodynamic features of the most promising agents.
Collapse
|