1
|
Hassan HS, Feleafel MN, El-Lahot MSRA, El-Hefny M, Rahman TFMA, Mohamed AA, Abd-Elkader DY, Mahdy RM. Biostimulants for enhancing productivity, bioactive components, and the essential oils of garlic with the potential antifungal activity. AMB Express 2024; 14:130. [PMID: 39604786 PMCID: PMC11602910 DOI: 10.1186/s13568-024-01790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
To feed the world's growing population, the agriculture sector has recently had to strike a balance between reducing its detrimental effects on ecosystems and human health and boosting resource efficiency and production. In reality, pesticides and fertilizers are vital to agriculture and are useful instruments that farmers can employ to increase yield and guarantee steady productivity throughout the seasons under both favorable and unfavorable conditions. Therefore, in the present study, fertilizing with potassium citrate as a foliar spray and humic acid (HA) as a soil application allowed for the evaluation of vegetative growth parameters (plant height, number of leaves/plant), total phenolic content, total carbohydrate, antioxidant activity, the essential oil (EO) composition, and bulb yield of garlic (Allium sativum L.). These were carried out in two field experiments throughout the 2020-2021 and 2021-2022 growth seasons. A gas chromatography-mass spectroscopy (GC-MS) apparatus was performed to determine the chemical composition of the isolated EOs. The antifungal activity of the EOs was assessed against two fungi, Fusarium proliferatum and Macrophomina phaseolina, that cause geranium plants to wilt and decay. The findings indicated that applying HA at a rate of 2 g/L with potassium citrate at a rate of 5 or 10 mL/L produced garlic bulbs with the highest levels of productivity and diameter. The diverse treatments between HA with potassium citrate resulted in significant variations in the bioactive components, such as total phenol content, antioxidant activity, total carbohydrate, and sulfur content. The analysis of the EOs revealed the presence of dimethyl trisulfide, diallyl disulfide, methyl 2-propenyl trisulfide, allitridin, and methyl allyl disulfide and allyl tetrasulfide as main compounds. By gradually increasing the concentration of the garlic EO to 4000 µg/mL compared to the control, the inhibition percentage of fungal growth of F. proliferatum and M. phaseolina was increased. In conclusion, a high concentration of HA with potassium citrate (5 or 10 mL/L), may be suitable and highly appreciated as a fertilizer application to enhance the productivity and EOs content of garlic plants.
Collapse
Affiliation(s)
- Hanaa S Hassan
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mostafa N Feleafel
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mina S R Abd El-Lahot
- Department of Food Science and Technology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mervat El-Hefny
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Taghreed F M Abdel Rahman
- Department of Ornamental, Medicinal and Aromatic Plant Diseases, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Abeer A Mohamed
- Plant Pathology Institute, Agricultural Research Center (ARC), Alexandria, 21616, Egypt
| | - Doaa Y Abd-Elkader
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - R M Mahdy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Judžentienė A, Pečiulytė D, Nedveckytė I. In Situ Antimicrobial Properties of Sabinene Hydrate, a Secondary Plant Metabolite. Molecules 2024; 29:4252. [PMID: 39275100 PMCID: PMC11396819 DOI: 10.3390/molecules29174252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
The objective of this research was to investigate natural products for their potential against pathogenic microorganisms. Sabinene hydrate (SH), a monoterpenoid, is synthesised by numerous different plants as a secondary metabolite. At present, there is a lack of definite investigations regarding the antimicrobial activity of SH itself and its different isomers. The antimicrobial effects of commercially available SH (composed mainly of trans-isomer) were evaluated within a range of concentrations in three types of contact tests: solid and vapor diffusion and the macro-broth dilution method. Moreover, the effects of SH on the rate of linear growth and spore germination were also examined. Ethanolic SH solutions were tested against an array of microorganisms, including blue-stain fungi (Ceratocystis polonica, Ophiostoma bicolor, O. penicillatum), frequently originating from bark beetle galleries; three fungal strains (Musicillium theobromae, Plectosphaerella cucumerina, and Trichoderma sp.) isolated from a sapwood underneath bark beetle galleries (Ips typographus) on spruce (Picea abies) stems; Verticillium fungicola, isolated from diseased I. typographus larvae; two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa); five yeasts (Candida albicans, C. krusei, C. parapsilosis, Saccharomyces cerevisiae, and Rhodotorula muscilaginosa), and two saprophytic fungi (Aspergillus niger and Penicillium notatum). In solid agar disc diffusion tests, Gram-positive bacteria exhibited greater susceptibility to SH than Gram-negative bacteria, followed by yeasts and fungi. The most resistant to SH in both the disc diffusion and broth macro-dilution methods were P. aeruginosa, A. niger, and Trichoderma sp. strains. Blue-stain fungi and fungi isolated from the Picea sapwood were the most resistant among the fungal strains tested. The minimum inhibition concentrations (MICs) generated by SH and determined using a disc volatilization method were dependent on the fungal species and played an important role in the development of microorganism inhibition. The two Gram-positive bacteria, B. subtilis and S. aureus (whose MICs were 0.0312 and 0.0625 mg/mL, respectively), were the organisms most susceptible to SH, followed by the Gram-negative bacterium, E. coli (MIC = 0.125 mg/mL) and two yeasts, C. albicans and C. kruei (MIC was 0.125 mg/mL and 0.25 mg/mL, respectively). C. parapsilosis (MIC = 0.75 mg/mL) was the yeast most resistant to SH. The investigation of antimicrobial properties of plant secondary metabolites is important for the development of a new generation of fungicides.
Collapse
Affiliation(s)
- Asta Judžentienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Avenue 7, LT-10257 Vilnius, Lithuania
| | - Dalė Pečiulytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Avenue 7, LT-10257 Vilnius, Lithuania
| | - Irena Nedveckytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Avenue 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Sepasi M, Iranbakhsh A, Saadatmand S, Ebadi M, Oraghi Ardebili Z. Silicon nanoparticles (SiNPs) stimulated secondary metabolism and mitigated toxicity of salinity stress in basil (Ocimum basilicum) by modulating gene expression: a sustainable approach for crop protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16485-16496. [PMID: 38319425 DOI: 10.1007/s11356-024-32260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
The underlying mechanisms through which silicon oxide nanoparticles (SiNPs) can confer salinity resistance to plants are poorly understood. This study explored the efficacy of supplementing nutrient solution with SiNPs (20-30 nm; 10 mg kg-1 soil) to stimulate metabolism and alleviate the risks associated with salinity (0.73 g kg-1 soil) in basil seedlings. For this purpose, variations in photosynthetic indices, proline osmoprotectant, antioxidant markers, phenylpropanoid metabolism, and transcriptional behaviors of genes were investigated. SiNPs increased shoot fresh weight (38%) and mitigated the risk associated with the salinity stress by 14%. SiNPs alleviated the inhibitory effects of salinity on the total chlorophyll concentration by 15%. The highest increase (twofold) in proline content was recorded in the SiNP-treated seedlings grown under salinity. The nano-supplement enhanced the activity of enzymatic antioxidants, including peroxidase (2.5-fold) and catalase (4.7-fold). SiNPs induced the expression of gamma-cadinene synthase (CDS) and caffeic acid O-methyltransferase (COMT) genes by 6.5- and 18.3-fold, respectively. SiNPs upregulated the eugenol synthase (EGS1) and fenchol synthase (FES) genes by six- and nine-fold, respectively. Salinity transcriptionally downregulated the geraniol synthase (GES) gene, while this gene displayed an upward trend in response to SiNPs by eight-fold. The nano-supplement transcriptionally stimulated the R-linalool synthase (LIS) gene by 3.3-fold. The terpinolene synthase (TES) gene displayed a similar trend to that of the GES gene. The highest expression (25-fold) of the phenylalanine ammonia-lyase (PAL) gene was recorded in seedlings supplemented with SiNPs. The physiological and molecular assessments demonstrated that employing SiNPs is a sustainable strategy for improving plant primary/secondary metabolism and crop protection.
Collapse
Affiliation(s)
- Maryam Sepasi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
4
|
Shasmita, Swain BB, Mishra S, Mohapatra PK, Naik SK, Mukherjee AK. Chemopriming for induction of disease resistance against pathogens in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111769. [PMID: 37328072 DOI: 10.1016/j.plantsci.2023.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Rice is an important grain crop of Asian population. Different fungal, bacterial and viral pathogens cause large reduction in rice grain production. Use of chemical pesticides, to provide protection against pathogens, has become incomplete due to pathogens resistance and is cause of environmental concerns. Therefore, induction of resistance in rice against pathogens via biopriming and chemopriming with safe and novel agents has emerged on a global level as ecofriendly alternatives that provide protection against broad spectrum of rice pathogens without any significant yield penalty. In the past three decades, a number of chemicals such as silicon, salicylic acid, vitamins, plant extract, phytohormones, nutrients etc. have been used to induce defense against bacterial, fungal and viral rice pathogens. From the detailed analysis of abiotic agents used, it has been observed that silicon and salicylic acid are two potential chemicals for inducing resistance against fungal and bacterial diseases in rice, respectively. However, an inclusive evaluation of the potential of different abiotic agents to induce resistance against rice pathogens is lacking due to which the studies on induction of defense against rice pathogens via chemopriming has become disproportionate and discontinuous. The present review deals with a comprehensive analysis of different abiotic agents used to induce defense against rice pathogens, their mode of application, mechanism of defense induction and the effect of defense induction on grain yield. It also provides an account of unexplored areas, which might be taken into attention to efficiently manage rice diseases. DATA AVAILABILITY STATEMENT: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Collapse
Affiliation(s)
- Shasmita
- Molecular Plant Pathology Laboratory, Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India; Department of Botany, Ravenshaw University, Cuttack 753003, Odisha, India
| | | | - Smrutirekha Mishra
- Department of Botany, Ravenshaw University, Cuttack 753003, Odisha, India
| | | | | | - Arup Kumar Mukherjee
- Molecular Plant Pathology Laboratory, Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| |
Collapse
|
5
|
Moyse J, Lecomte S, Marcou S, Mongelard G, Gutierrez L, Höfte M. Overview and Management of the Most Common Eukaryotic Diseases of Flax ( Linum usitatissimum). PLANTS (BASEL, SWITZERLAND) 2023; 12:2811. [PMID: 37570965 PMCID: PMC10420651 DOI: 10.3390/plants12152811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Flax is an important crop cultivated for its seeds and fibers. It is widely grown in temperate regions, with an increase in cultivation areas for seed production (linseed) in the past 50 years and for fiber production (fiber flax) in the last decade. Among fiber-producing crops, fiber flax is the most valuable species. Linseed is the highest omega-3 oleaginous crop, and its consumption provides several benefits for animal and human health. However, flax production is impacted by various abiotic and biotic factors that affect yield and quality. Among biotic factors, eukaryotic diseases pose a significant threat to both seed production and fiber quality, which highlights the economic importance of controlling these diseases. This review focuses on the major eukaryotic diseases that affect flax in the field, describing the pathogens, their transmission modes and the associated plant symptoms. Moreover, this article aims to identify the challenges in disease management and provide future perspectives to overcome these biotic stresses in flax cultivation. By emphasizing the key diseases and their management, this review can aid in promoting sustainable and profitable flax production.
Collapse
Affiliation(s)
- Julie Moyse
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium; (J.M.); (S.M.)
- Centre de Ressources Régionales en Biologie Moléculaire, University of Picardie Jules Verne, UFR Sciences, 33 Rue St-Leu, 80039 Amiens, France;
| | - Sylvain Lecomte
- LINEA–Semences, 20 Avenue Saget, 60210 Grandvilliers, France;
| | - Shirley Marcou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium; (J.M.); (S.M.)
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, University of Picardie Jules Verne, UFR Sciences, 33 Rue St-Leu, 80039 Amiens, France;
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire, University of Picardie Jules Verne, UFR Sciences, 33 Rue St-Leu, 80039 Amiens, France;
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium; (J.M.); (S.M.)
| |
Collapse
|
6
|
Paramalingam P, Baharum NA, Abdullah JO, Hong JK, Saidi NB. Antifungal Potential of Melaleuca alternifolia against Fungal Pathogen Fusarium oxysporum f. sp. cubense Tropical Race 4. Molecules 2023; 28:molecules28114456. [PMID: 37298932 DOI: 10.3390/molecules28114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Fusarium wilt of bananas caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4) poses the most serious threat to banana production globally. The disease has been managed using chemical fungicides, yet the control levels are still unsatisfactory. This study investigated the antifungal activities of tea tree (Melaleuca alternifolia) essential oil (TTO) and hydrosol (TTH) against Foc TR4 and their bioactive components. The potential of TTO and TTH in inhibiting the growth of Foc TR4 was evaluated in vitro using agar well diffusion and spore germination assays. Compared to the chemical fungicide, TTO effectively suppressed the mycelial growth of Foc TR4 at 69%. Both the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of TTO and TTH were established at 0.2 µg/µL and 50% v/v, respectively, suggesting the fungicidal nature of the plant extracts. The disease control efficacies were also demonstrated by a (p ≤ 0.05) delayed Fusarium wilt symptom development in the susceptible banana plants with reduced LSI dan RDI scores from 70% to around 20-30%. A GC/MS analysis of TTO identified terpinen-4-ol, eucalyptol, and α-terpineol as the major components. In contrast, an LC/MS analysis of TTH identified different compounds, including dihydro-jasmonic acid and methyl ester. Our findings indicate the potential of tea tree extracts as natural alternatives to chemical fungicides to control Foc TR4.
Collapse
Affiliation(s)
- Pavitra Paramalingam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nadiya Akmal Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jeum Kyu Hong
- Division of Horticultural Science, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
7
|
Natural Plant Extracts and Microbial Antagonists to Control Fungal Pathogens and Improve the Productivity of Zucchini (Cucurbita pepo L.) In Vitro and in Greenhouse. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Natural plant extracts and microbial antagonists have the potential for use in increasing the fungal resistance and productivity of horticulture plants. Methods: The purpose of this study was to evaluate the ability of both natural plant extracts and microbial antagonists as a biotical control of some fungal pathogens, i.e., Fusarium ssp., Exserohilum ssp. and Nigrospora ssp., along with improving the growth and productivity performance of zucchini under greenhouse conditions. Eucalyptus camaldulensis leaf extract (LE), Citrus sinensis LE, Ficus benghalensis fruit extract (FE), and two microbial antagonists Pseudomonas fluorescens (accession no. MW647093) and Trichoderma viride (accession no. MW647090) were tested under in vitro and in vivo conditions. Through morphological characteristics and the internal transcribed spacer (ITS) region, Fusarium solani (accession no. MW947256), F. oxysporum (accession no. MW947254), Exserohilum rostratum (accession no. MW947255), and Nigrospora lacticolonia (accession no. MW947253) were identified. HPLC analysis was used for the identification of phenolic compounds (PCs) and flavonoid compounds (FCs) in the extracts. Results: The highest inhibition percentage of fungal growth (IPFG) against F. oxysporum was obtained with P. fluorescens, T. viride, and E. camaldulensis LE (4000 mg/L); F. solani with P. fluorescens, T. viride, and C. sinensis LE (4000 mg/L); Exserohilum rostratum with P. fluorescens, Ficus benghalensis FE (4000 mg/L) and E. camaldulensis LE (4000 mg/L), and N. lacticolonia with P. fluorescens. Using HPLC analysis, the abundant PCs in E. camaldulensis LE were pyrogallol, and caffeic acid, those in C. sinensis LE were syringic acid and ferulic acid, and those in F. benghalensis FE were gallic acid and syringic acid. In addition, the abundant FCs in E. camaldulensis LE were kaempferol, and naringin, those in C. sinensis LE were hesperidin and quercetin, and those in F. benghalensis FE were kaempferol and quercetin. Under greenhouse experiments, T. viride and E. camaldulensis LE (4000 mg/L) followed by P. fluorescens + T. viride treatments gave the best results of zucchini plants in terms of leaf area, fruits number per plant, yield per plant, and total yield (marketable and non-marketable). Conclusions: Plant extracts and bioagents can be used to control some zucchini fungal pathogens and increase the productivity performance of zucchini plants.
Collapse
|
8
|
Truzzi E, Benvenuti S, Bertelli D, Francia E, Ronga D. Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin ( Lavandula x intermedia Emeric ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules 2021; 26:6157. [PMID: 34684738 PMCID: PMC8537348 DOI: 10.3390/molecules26206157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, it has been shown that biostimulants can efficiently enhance plant metabolic processes, leading to an increased production of essential oil (EO) in aromatic plants. The present study aimed to evaluate the effects of two different commercial biostimulants composed of amino acids and seaweed extract, normally used for food organic crops, on the production and composition of EO and hydrosol of Lavandula x intermedia, cultivar "Grosso". The products were applied during 2020 growing season on lavender crops in three different locations of the Northern Italian (Emilia-Romagna Region) Apennines. Plants were harvested and EOs extracted by steam distillation and analyzed by gas chromatography. Both biostimulants affected the yield of EO per plant (+11% to +49% depending on the treatment/farm combination) without significantly changing the chemical composition of EOs and hydrosols. Conversely, the composition of EOs and hydrosols are related to the location, and the main compounds of "Grosso" cultivar, limonene, 1,8-cineole, cis-ocimene, linalool, camphor, borneol, terpinen-4-ol, and linalyl acetate, show different ratios at the experimental test sites. The differences might be due to the sunlight exposure and various maintenance of the crops over the years. In conclusion, these results suggest that the employment of biostimulants on lavandin crops do not endanger the quality of the EO while increasing biomass production and promoting the sustainability of the crop.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (D.B.); (E.F.)
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (D.B.); (E.F.)
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (D.B.); (E.F.)
| | - Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (D.B.); (E.F.)
- Centre BIOGEST–SITEIA, Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Domenico Ronga
- Pharmacy Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| |
Collapse
|
9
|
Salem MZM, Mohamed AA, Ali HM, Al Farraj DA. Characterization of Phytoconstituents from Alcoholic Extracts of Four Woody Species and Their Potential Uses for Management of Six Fusarium oxysporum Isolates Identified from Some Plant Hosts. PLANTS 2021; 10:plants10071325. [PMID: 34209682 PMCID: PMC8309064 DOI: 10.3390/plants10071325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/30/2022]
Abstract
Background: Trees are good sources of bioactive compounds as antifungal and antioxidant activities. Methods: Management of six molecularly identified Fusarium oxysporum isolates (F. oxy 1, F. oxy 2, F. oxy 3, F. oxy 4, F. oxy 5 and F. oxy 6, under the accession numbers MW854648, MW854649, MW854650, MW854651, and MW854652, respectively) was assayed using four extracts from Conium maculatum leaves, Acacia saligna bark, Schinus terebinthifolius wood and Ficus eriobotryoides leaves. All the extracts were analyzed using HPLC-VWD for phenolic and flavonoid compounds and the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene-linoleic acid (BCB) bleaching assays. Results: In mg/kg extract, the highest amounts of polyphenolic compounds p-hydroxy benzoic, benzoic, gallic, and rosmarinic acids, with 444.37, 342.16, 311.32 and 117.87, respectively, were observed in C. maculatum leaf extract; gallic and benzoic acids with 2551.02, 1580.32, respectively, in A. saligna bark extract; quinol, naringenin, rutin, catechol, and benzoic acid with 2530.22, 1224.904, 798.29, 732.28, and 697.73, respectively, in S. terebinthifolius wood extract; and rutin, o-coumaric acid, p-hydroxy benzoic acid, resveratrol, and rosmarinic acid with 9168.03, 2016.93, 1009.20, 1156.99, and 574.907, respectively, in F. eriobotryoides leaf extract. At the extract concentration of 1250 mg/L, the antifungal activity against the growth of F. oxysporum strains showed that A. saligna bark followed by C. maculatum leaf extracts had the highest inhibition percentage of fungal growth (IPFG%) against F. oxy 1 with 80% and 79.5%, F. oxy 2 with 86.44% and 78.9%, F. oxy 3 with 86.4% and 84.2%, F. oxy 4 with 84.2, and 82.1%, F. oxy 5 with 88.4% and 86.9%, and F. oxy 6 with 88.9, and 87.1%, respectively. For the antioxidant activity, ethanolic extract from C. maculatum leaves showed the lowest concentration that inhibited 50% of DPPH free radical (3.4 μg/mL). Additionally, the same extract observed the lowest concentration (4.5 μg/mL) that inhibited BCB bleaching. Conclusions: Extracts from A. saligna bark and C. maculatum leaves are considered potential candidates against the growth of F. oxysporum isolates—a wilt pathogen—and C. maculatum leaf as a potent antioxidant agent.
Collapse
Affiliation(s)
- Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Abeer A. Mohamed
- Plant Pathology Institute, Agriculture Research Center (ARC), Alexandria 21616, Egypt;
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence:
| | - Dunia A. Al Farraj
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
10
|
Abd-Elkader DY, Salem MZM, Komeil DA, Al-Huqail AA, Ali HM, Salah AH, Akrami M, Hassan HS. Post-Harvest Enhancing and Botrytis cinerea Control of Strawberry Fruits Using Low Cost and Eco-Friendly Natural Oils. AGRONOMY 2021; 11:1246. [DOI: 10.3390/agronomy11061246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This work investigates an experimental study for using low-cost and eco-friendly oils to increase the shelf life of strawberry fruit. Three natural oils were used: (i) Eucalyptus camaldulensis var obtuse, (ii) Mentha piperita green aerial parts essential oils (EOs), and (iii) Moringa oleifera seeds n-hexane fixed oil (FO). Furthermore, a mixture of EOs from E. camaldulensis var obtusa and M. piperita (1/1 v/v) was used. The treated fruits were stored at 5 °C and 90% relative humidity (RH) for 18 days. HPLC was used to analyse the changes in phenolic compounds during the storage periods. The effects of biofumigation through a slow-release diffuser of EOs (E. camaldulensis var obtusa and M. piperita), or by coating with M. oleifera FO, were evaluated in terms of control of post-harvest visual and chemical quality of strawberry fruits. The post-harvest resistance of strawberry fruits to Botrytis cinerea fungal infection was also evaluated. As a result, the EO treatments significantly reduced the change in visual and chemical quality of strawberry fruit. Additionally, changes in the titratable acidity of moringa FO-coated strawberry fruits were delayed. EO treatments improved total soluble solids, total phenols, ascorbic acid, antioxidants and peroxidase. E. camaldulensis var obtusa and M. piperita (1/1 v/v) EO-vapour fruit exhibited a slower rate of deterioration, compared to other treatments in all tested, in two experiments. The lowest colour change (ΔE) was observed inthe fruit treated with E. camaldulensis var obtusa EO and M. oleifera FO. HPLC showed changes in phenolic compounds’ concentration, where p-coumaric acid, caffeic acid, gallic acid, ferulic acid and ellagic acid were mostly identified in the fruits treated with the oils. SEM examination confirmed the potential decrease in fungal growth as the fruits were treated with EOs. In conclusion, the treatment of EOs during different storage periods showed promising characterisations for strawberry fruit quality.
Collapse
|
11
|
Moumni M, Allagui MB, Mezrioui K, Ben Amara H, Romanazzi G. Evaluation of Seven Essential Oils as Seed Treatments against Seedborne Fungal Pathogens of Cucurbita maxima. Molecules 2021; 26:molecules26082354. [PMID: 33919567 PMCID: PMC8073776 DOI: 10.3390/molecules26082354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/03/2022] Open
Abstract
Essential oils are gaining interest as environmentally friendly alternatives to synthetic fungicides for management of seedborne pathogens. Here, seven essential oils were initially tested in vivo for disinfection of squash seeds (Cucurbita maxima) naturally contaminated by Stagonosporopsis cucurbitacearum, Alternaria alternata, Fusarium fujikuro, Fusarium solani, Paramyrothecium roridum, Albifimbria verrucaria, Curvularia spicifera, and Rhizopus stolonifer. The seeds were treated with essential oils from Cymbopogon citratus, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and Origanum majorana (#1 and #2). Incidence of S. cucurbitacearum was reduced, representing a range between 67.0% in L. nobilis to 84.4% in O. majorana #2. Treatments at 0.5 mg/mL essential oils did not affect seed germination, although radicles were shorter than controls, except with C. citratus and O. majorana #1 essential oils. Four days after seeding, seedling emergence was 20%, 30%, and 10% for control seeds and seeds treated with C. citratus essential oil (0.5 mg/mL) and fungicides (25 g/L difenoconazole plus 25 g/L fludioxonil). S. cucurbitacearum incidence was reduced by ~40% for plantlets from seeds treated with C. citratus essential oil. These data show the effectiveness of this essential oil to control the transmission of S. cucurbitacearum from seeds to plantlets, and thus define their potential use for seed decontamination in integrated pest management and organic agriculture.
Collapse
Affiliation(s)
- Marwa Moumni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (M.M.); (K.M.)
- Laboratory of Plant Protection, National Institute for Agronomic Research of Tunisia, University of Carthage, 2080 Ariana, Tunisia; (M.B.A.); (H.B.A.)
| | - Mohamed Bechir Allagui
- Laboratory of Plant Protection, National Institute for Agronomic Research of Tunisia, University of Carthage, 2080 Ariana, Tunisia; (M.B.A.); (H.B.A.)
| | - Kaies Mezrioui
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (M.M.); (K.M.)
- Laboratory of Plant Protection, National Institute for Agronomic Research of Tunisia, University of Carthage, 2080 Ariana, Tunisia; (M.B.A.); (H.B.A.)
| | - Hajer Ben Amara
- Laboratory of Plant Protection, National Institute for Agronomic Research of Tunisia, University of Carthage, 2080 Ariana, Tunisia; (M.B.A.); (H.B.A.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (M.M.); (K.M.)
- Correspondence: ; Tel.: +39-071-2204336
| |
Collapse
|
12
|
Hassan SM, El-Bebany AF, Salem MZM, Komeil DA. Productivity and Post-Harvest Fungal Resistance of Hot Pepper as Affected by Potassium Silicate, Clove Extract Foliar Spray and Nitrogen Application. PLANTS 2021; 10:plants10040662. [PMID: 33808406 PMCID: PMC8066216 DOI: 10.3390/plants10040662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
In the present study, growth and productivity of hot pepper planted in the two successive summer seasons of 2017 and 2018 were evaluated under the effect of foliar spray of variable doses of potassium silicate (PS), and clove water extract (CWE) with different rates of nitrogen (N) fertilization application. The post-harvest resistance of hot pepper fruits to Alternaria alternata fungal infection, was also evaluated. Maximum plant height was achieved with the application of the highest rates of N, PS and CWE, while the intermediate rates were sufficient to reach the maximum number of branches, the highest leaf dry matter and chlorophyll accumulation. Fruit yield progressively increased with increasing the applied N rate. The foliar application of PS and CWE exerted a limited, yet positive effect on fruit yield. Generally, the least amount of fruit yield, amounting to 18.84 and 18.00 t ha−1, resulted from the application of the lowest N rate (144 kg ha−1) in the absence of PS and CWE. The highest significant fruit yield, amounting to 31.71 and 31.22 t ha−1, for 2017 and 2018, respectively, accompanied the application of the maximum levels of the three factors. The application of high N rates increased the post-harvest Alternaria fruit rot severity. The positive effect of CWE application in counterbalancing the negative effects associated with the high rates of N and PS may be related to the presence of phenolic and flavonoid compounds ellagic acid, benzoic acid, catechol gallic acid, rutin, myricetin, quercetin, apigenin and kaempferol as identified by High Performance Liquid Chromatography (HPLC).
Collapse
Affiliation(s)
- Shimaa M. Hassan
- Department of Vegetable crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Ahmed F. El-Bebany
- Department of Plant Pathology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Doaa A. Komeil
- Department of Plant Pathology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
- Correspondence:
| |
Collapse
|
13
|
Ali HM, Elgat WAAA, EL-Hefny M, Salem MZM, Taha AS, Al Farraj DA, Elshikh MS, Hatamleh AA, Abdel-Salam EM. New Approach for Using of Mentha longifolia L. and Citrus reticulata L. Essential Oils as Wood-Biofungicides: GC-MS, SEM, and MNDO Quantum Chemical Studies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1361. [PMID: 33799760 PMCID: PMC7998113 DOI: 10.3390/ma14061361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Fungi growing on wood cause deterioration of stored food materials or discoloration of the wood itself, and the search for new and safe bioagents is recently needed. METHODS Essential oils (EOs) from aerial parts from Mentha longifolia L. and Citrus reticulata L., analyzed by gas chromatography-mass spectrometry (GC-MS), were tested for their antifungal activity by the vapor method against four common fungi, Aspergillus flavus, A. niger, A. fumigatus, and Fusarium culmorum, and confirmed by SEM examination as the oils applied on wood samples. RESULTS The most abundant compounds identified in the EO from M. longifolia were menthone and eucalyptol; in C. reticulata EO, they were β-caryophyllene, β-caryophyllene oxide, and β-elemene. EOs from M. longifolia and C. reticulata, at 500 and 250 µL/mL, showed potent antifungal activity against A. flavus and A. fumigatus, with 100% fungal mycelial inhibition growth (FMIG). C. reticulata and M. longifolia EOs, at 125 µL/mL, observed FMIG values of 98% and 95%, respectively, against A. fumigatus. M. longifolia EO, at 500 and 250 µL/mL, showed potent activity against A. niger, with 100% FMIG. F. culmorum completely inhibited (100% FMIG) EOs from M. longifolia and C. reticulata applied at 500 µL/mL. Pinus roxburghii Sarg. Wood, treated with M. longifolia at 125 µL/mL, showed inhibition zone values of 7.33 and 21.33 mm against A. flavus and A. niger, respectively. CONCLUSIONS Both oils possessed good wood-biofungicide activity with the vapor method, as clearly shown by the SEM examination. These activities suggest their possible use as natural wood preservatives.
Collapse
Affiliation(s)
- Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.M.A.); (D.A.A.F.); (M.S.E.); (A.A.H.); (E.M.A.-S.)
- Agriculture Research Center, Timber Trees Research Department, Sabahia Horticulture Research Station, Horticulture Research Institute, Alexandria 21526, Egypt
| | - Wael A. A. Abo Elgat
- Restoration Department, High Institute of Tourism, Hotel Management and Restoration, Abukir, Alexandria 21526, Egypt;
| | - Mervat EL-Hefny
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Ayman S. Taha
- Conservation Department, Faculty of Archaeology, Aswan University, Aswan 81528, Egypt;
| | - Dunia A. Al Farraj
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.M.A.); (D.A.A.F.); (M.S.E.); (A.A.H.); (E.M.A.-S.)
| | - Mohamed S. Elshikh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.M.A.); (D.A.A.F.); (M.S.E.); (A.A.H.); (E.M.A.-S.)
| | - Ashraf A. Hatamleh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.M.A.); (D.A.A.F.); (M.S.E.); (A.A.H.); (E.M.A.-S.)
| | - Eslam M. Abdel-Salam
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.M.A.); (D.A.A.F.); (M.S.E.); (A.A.H.); (E.M.A.-S.)
| |
Collapse
|