1
|
Marinacci B, D'Agostino I, Angeli A, Carradori S, Melfi F, Grande R, Corsiani M, Ferraroni M, Agamennone M, Tondo AR, Zara S, Puca V, Pellegrini B, Vagaggini C, Dreassi E, Patrauchan MA, Capasso C, Nicolotti O, Carta F, Supuran CT. Inhibition of Pseudomonas aeruginosa Carbonic Anhydrases, Exploring Ciprofloxacin Functionalization Toward New Antibacterial Agents: An In-Depth Multidisciplinary Study. J Med Chem 2024; 67:19077-19102. [PMID: 39453626 DOI: 10.1021/acs.jmedchem.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ciprofloxacin (CPX) is one of the most employed antibiotics in clinics to date. However, the rise of drug-resistant bacteria is dramatically impairing its efficacy, especially against life-threatening pathogens, such as Pseudomonas aeruginosa. This Gram-negative bacterium is an opportunistic pathogen, often infecting immuno-compromised patients with severe or fatal outcomes. The evidence of the possibility of exploiting Carbonic Anhydrase (CA, EC: 4.2.1.1) enzymes as pharmacological targets along with their role in P. aeruginosa virulence inspired the derivatization of CPX with peculiar CA-inhibiting chemotypes. Thus, a large library of CPX derivatives was synthesized and tested on a panel of bacterial CAs and human isoenzymes I and II. Selected derivatives were evaluated for antibacterial activity, revealing bactericidal and antibiofilm properties for some compounds. Importantly, promising preliminary absorption, distribution, metabolism, and excretion (ADME) properties in vitro were found and no cytotoxicity was detected for some representative compounds when tested in Galleria mellonella larvae.
Collapse
Affiliation(s)
- Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Andrea Angeli
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Micol Corsiani
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry ″Ugo Schiff″, University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Mariangela Agamennone
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anna Rita Tondo
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Susi Zara
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Puca
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Benedetta Pellegrini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, 80131 Napoli, Italy
| | - Orazio Nicolotti
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Li C, Shi T, Fan W, Yuan M, Li L, Yu Z, Chen Z, Xu Q. High-level and -yield orotic acid production in Escherichia coli through systematic modular engineering and "Chaos to Order Cycles" fermentation. BIORESOURCE TECHNOLOGY 2024; 411:131345. [PMID: 39182798 DOI: 10.1016/j.biortech.2024.131345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Orotic acid is widely used in healthcare and cosmetic industries. However, orotic acid-producing microorganisms are auxotrophic, which results in inefficient microbial production. Herein, a plasmid-free, uninduced, non-auxotrophic orotic acid hyperproducer was constructed from Escherichia coli W3110. Initially, the orotic acid degradation pathway was blocked and the carbamoyl phosphate supply was enriched. Subsequently, pyr operon from Bacillus subtilis F126 was heterologously expressed and precursors' supply was optimized. Thereafter, pyrE was dynamically regulated to reconstruct the non-auxotrophic pathway. Employing fed-batch cultivation, orotic acid titer, yield, and productivity of strain Ora21 reached 182.5 g/L, 0.58 g/g, and 3.80 g/L/h, respectively, the highest levels reported so far. Finally, a novel "Chaos to Order Cycles (COC)" fermentation was developed, which effectively increased the yield to 0.63 g/g. This research is a remarkable achievement in orotic acid production by microbial fermentation and has vast potential for industrial applications.
Collapse
Affiliation(s)
- Changgeng Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Tangen Shi
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wenjing Fan
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Meng Yuan
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lanxiao Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zichen Yu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zhichao Chen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Ferraroni M. Bacterial β-carbonic anhydrases. Enzymes 2024; 55:65-91. [PMID: 39222999 DOI: 10.1016/bs.enz.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
β-Carbonic anhydrases (β-CA; EC 4.2.1.1) are widespread zinc metalloenzymes which catalyze the interconversion of carbon dioxide and bicarbonate. They have been isolated in many pathogenic and non-pathogenic bacteria where they are involved in multiple roles, often related to their growth and survival. β-CAs are structurally distant from the CAs of other classes. In the active site, located at the interface of a fundamental dimer, the zinc ion is coordinated to two cysteines and one histidine. β-CAs have been divided in two subgroups depending on the nature of the fourth ligand on the zinc ion: class I have a zinc open configuration with a hydroxide ion completing the metal coordination, which is the catalytically active species in the mechanism proposed for the β-CAs similar to the well-known of α-CAs, while in class II an Asp residue substitute the hydroxide. This latter active site configuration has been showed to be typical of an inactive form at pH below 8. An Asp-Arg dyad is thought to play a key role in the pH-induced catalytic switch regulating the opening and closing of the active site in class II β-CAs, by displacing the zinc-bound solvent molecule. An allosteric site well-suited for bicarbonate stabilizes the inactive form. This bicarbonate binding site is composed by a triad of well conserved residues, strictly connected to the coordination state of the zinc ion. Moreover, the escort site is a promiscuous site for a variety of ligands, including bicarbonate, at the dimer interface, which may be the route for bicarbonate to the allosteric site.
Collapse
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Firenze, Italia.
| |
Collapse
|
4
|
Carta F. Non-sulfonamide bacterial CA inhibitors. Enzymes 2024; 55:193-212. [PMID: 39222991 DOI: 10.1016/bs.enz.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Non-sulfonamide chemical moieties able to inhibit the bacterial (b) expressed Carbonic Anhydrases (CAs; EC 4.2.1.1) constitute an important alternative to the prototypic modulators discussed in Chapter 6, as give access to large and variegate chemical classes, also of the natural origin. This contribution reports the main classes of compounds profiled in vitro on the bCAs and thus may be worth developing for the validation process of this class of enzymes.
Collapse
Affiliation(s)
- Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
5
|
Supuran CT. Challenges for developing bacterial CA inhibitors as novel antibiotics. Enzymes 2024; 55:383-411. [PMID: 39222998 DOI: 10.1016/bs.enz.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Acetazolamide, methazolamide, ethoxzolamide and dorzolamide, classical sulfonamide carbonic anhydrase (CA) inhibitors (CAIs) designed for targeting human enzymes, were also shown to effectively inhibit bacterial CAs and were proposed for repurposing as antibacterial agents against several infective agents. CAs belonging to the α-, β- and/or γ-classes from pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, vacomycin resistant enterococci (VRE), Vibrio cholerae, Mycobacterium tuberculosis, Pseudomonas aeruginosa and other bacteria were considered as drug targets for which several classes of potent inhibitors have been developed. Treatment of some of these pathogens with various classes of such CAIs led to an impairment of the bacterial growth, reduced virulence and for drug resistant bacteria, a resensitization to clinically used antibiotics. Here I will discuss the strategies and challenges for obtaining CAIs with enhanced selectivity for inhibiting bacterial versus human enzymes, which may constitute an important weapon for addressing the drug resistance to β-lactams and other clinically used antibiotics.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Giovannuzzi S, Nikitjuka A, Pereira Resende BR, Smietana M, Nocentini A, Supuran CT, Winum JY. Boron-containing carbonic anhydrases inhibitors. Bioorg Chem 2024; 143:106976. [PMID: 38000350 DOI: 10.1016/j.bioorg.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Over the last decades, the medicinal chemistry of boron-based compounds has been extensively explored, designing valuable small molecule drugs to tackle diseases and conditions, such as cancer, infections, inflammatory and neurological disorders. Notably, boron has proven to also be a valuable element for the development of inhibitors of the metalloenzymes carbonic anhydrases (CAs), a class of drug targets with significant potential in medicinal chemistry. Incorporating boron into carbonic anhydrase inhibitors (CAIs) can modulate the ligand ability to recognize the target and/or influence selectivity towards different CA isoforms, using the tail approach and boron-based tails. The electron-deficient nature of boron and its associated properties have also led to the discovery of novel zinc-binding CAIs, such as boronic acids and the benzoxaboroles, capable of inhibiting the CAs upon a Lewis acid-base mechanism of action. The present manuscript reviews the state-of-the-art of boron-based CAIs. As research in the applications of boron compounds in medicinal chemistry continues, it is anticipated that new boron-based CAIs will soon expand the current array of such compounds. However, further research is imperative to fully unlock the potential of boron-based CAIs and to advance them towards clinical applications.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Anna Nikitjuka
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Bruna Rafaela Pereira Resende
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | |
Collapse
|
7
|
Benito G, D'Agostino I, Carradori S, Fantacuzzi M, Agamennone M, Puca V, Grande R, Capasso C, Carta F, Supuran CT. Erlotinib-containing benzenesulfonamides as anti- Helicobacter pylori agents through carbonic anhydrase inhibition. Future Med Chem 2023; 15:1865-1883. [PMID: 37886837 DOI: 10.4155/fmc-2023-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Aim: Development of dual-acting antibacterial agents containing Erlotinib, a recognized EGFR inhibitor used as an anticancer agent, with differently spaced benzenesulfonamide moieties known to bind and inhibit Helicobacter pylori carbonic anhydrase (HpCA) or the antiviral Zidovudine. Methods & materials: Through rational design, ten derivatives were obtained via a straightforward synthesis including a click chemistry reaction. Inhibitory activity against a panel of pathogenic carbonic anhydrases and antibacterial susceptibility of H. pylori ATCC 43504 were assessed. Docking studies on α-carbonic anhydrase enzymes and EGFR were conducted to gain insight into the binding mode of these compounds. Results & conclusion: Some compounds proved to be strong inhibitors of HpCA and showed good anti-H. pylori activity. Computational studies on the targeted enzymes shed light on the interaction hotspots.
Collapse
Affiliation(s)
- Germán Benito
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | | | - Simone Carradori
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Mariangela Agamennone
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Valentina Puca
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Rossella Grande
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
- Center for Advanced Studies & Technology, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture & Food Sciences, National Research Council, Institute of Biosciences & Bioresources, Naples, 80131, Italy
| | - Fabrizio Carta
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| |
Collapse
|
8
|
Jiang S, Wu H, Yao Z, Li R, Ma Q, Xie X. Phenotype-genotype mapping reveals the betaine-triggered L-arginine overproduction mechanism in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 386:129540. [PMID: 37488018 DOI: 10.1016/j.biortech.2023.129540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The production phenotype improvement of industrial microbes is extremely needed and challenging. Environmental factors optimization provides insightful ideas to trigger the superior production phenotype by activating potential genetic determiners. Here, phenotype-genotype mapping was used to dissect the betaine-triggered L-arginine overproduction mechanism and mine beneficial genes for further improving production phenotype. The comparative transcriptomic analysis revealed a novel role for betaine in modulating global gene transcription. Guided by this finding, 4 novel genes (cynX, cynT, pyrB, and rhaB) for L-arginine biosynthesis were identified via reverse engineering. Moreover, the rhaB deletion was demonstrated as a common metabolic engineering strategy to improve ATP pool in E. coli. By combinatorial genes manipulation, the L-arginine titer and yield increased by 17.9% and 28.9% in a 5-L bioreactor without betaine addition. This study revealed the molecular mechanism of gene transcription regulation by betaine and developed a superior L-arginine overproducer that does not require betaine.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zhuoyue Yao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Ran Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
9
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
10
|
Supuran CT. An overview of novel antimicrobial carbonic anhydrase inhibitors. Expert Opin Ther Targets 2023; 27:897-910. [PMID: 37747071 DOI: 10.1080/14728222.2023.2263914] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Four different genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) are present in bacteria, α-, β-, γ- and ι-CAs. They play relevant functions related to CO2, HCO3-/H+ ions homeostasis, being involved in metabolic biosynthetic pathways, pH regulation, and represent virulence and survival factors for bacteria in various niches. Bacterial CAs started to be considered druggable targets in the last decade, as their inhibition impairs survival, growth, and virulence of these pathogens. AREAS COVERED Significant advances were registered in the last years for designing effective inhibitors of sulfonamide type for Helicobacter pylori α-CA, Neisseria gonorrhoeae α-CA, vacomycin-resistant enterococci (VRE) α- and γ-CAs, for which the in vivo validation has also been achieved. MIC-s in the range of 0.25-4.0 µg/mL for wild type and drug resistant N. gonorrhoeae strains, and of 0.007-2.0 µg/mL for VRE were observed for some 1,3,4-thiadiazole-2-sulfonamides, and acetazolamide was effective in gut decolonization from VRE. EXPERT OPINION Targeting bacterial CAs from other pathogens, among which Vibrio cholerae, Mycobacterium tuberculosis, Brucella suis, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Porphyromonas gingivalis, Clostridium perfringens, Streptococcus mutans, Burkholderia pseudomallei, Francisella tularensis, Escherichia coli, Mammaliicoccus (Staphylococcus) sciuri, Pseudomonas aeruginosa, may lead to novel antibacterials devoid of drug resistance problems.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
11
|
De Luca V, Carginale V, Supuran CT, Capasso C. The gram-negative bacterium Escherichia coli as a model for testing the effect of carbonic anhydrase inhibition on bacterial growth. J Enzyme Inhib Med Chem 2022; 37:2092-2098. [PMID: 35899716 PMCID: PMC9341340 DOI: 10.1080/14756366.2022.2101644] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Carbonic anhydrases, catalysing the reversible CO2 hydration reaction, contribute in all living organisms to the maintenance of stable metabolic functions depending on intracellular concentrations of carbon dioxide, bicarbonate, and protons. Recent studies have examined how CAs affect bacterial lifecycle, considering these enzymes druggable targets due to interference with their activities by using inhibitors or activators. Here, we propose Escherichia coli cells as a model for testing the effect of acetazolamide (AZA), a potent CA inhibitor, on bacterial survival by evaluating E. coli growth through its glucose consumption. AZA, at concentrations higher than 31.2 µg/mL, was able to impair E. coli growth and glucose uptake. AZA is a good inhibitor of the two recombinant E. coli CAs, the β-CA CynT2, and the γ-CA EcoCAγ, with KIs of 227 and 248 nM, respectively. This study provides a proof-of-concept, low-cost method for identifying effective CA inhibitors capable of impairing bacterial metabolism.
Collapse
Affiliation(s)
- Viviana De Luca
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - Vincenzo Carginale
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Florence, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| |
Collapse
|
12
|
May Sulfonamide Inhibitors of Carbonic Anhydrases from Mammaliicoccus sciuri Prevent Antimicrobial Resistance Due to Gene Transfer to Other Harmful Staphylococci? Int J Mol Sci 2022; 23:ijms232213827. [PMID: 36430304 PMCID: PMC9693918 DOI: 10.3390/ijms232213827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Mammaliicoccus sciuri, previously known as Staphylococcus sciuri, is a Gram-positive bacterium involved in gene transfer phenomena that confer resistance to multiple antibiotics. These plasmid-encoded genes can be easily transferred to other pathogenic staphylococci. Because antibiotic resistance is rising, inhibiting M. sciuri proliferation may be a credible strategy for restricting antimicrobial resistance gene transfer to other pathogenic bacteria. Recently, it has been shown that blocking bacterial carbonic anhydrases (CAs, EC 4.2.1.1), metalloenzymes sustaining bacterial metabolic activities, can reduce pathogen survival and fitness. Here, the recombinant M. sciuri γ-CA (MscCAγ) has been cloned and purified, utilizing the DNA recombinant technology. Its kinetic properties for the CO2 hydration reaction, as well as the sulfonamide inhibition profile, were investigated and compared with those reported earlier for MscCAβ (previously described as SauBCA) and the two off-target human CA isoforms (hCA I and hCA II). The recombinant MscCAγ showed significant hydratase activity. Moreover, the MscCAγ sulfonamide inhibitory profile was different from that of MscCAβ, implying that a varied amino acid set typifies the catalytic pocket of the two enzymes. These differences provide additional evidence for the possibility of developing novel CA class-specific inhibitors.
Collapse
|
13
|
Aspatwar A, Barker H, Aisala H, Zueva K, Kuuslahti M, Tolvanen M, Primmer CR, Lumme J, Bonardi A, Tripathi A, Parkkila S, Supuran CT. Cloning, purification, kinetic and anion inhibition studies of a recombinant β-carbonic anhydrase from the Atlantic salmon parasite platyhelminth Gyrodactylus salaris. J Enzyme Inhib Med Chem 2022; 37:1577-1586. [PMID: 35637617 PMCID: PMC9176631 DOI: 10.1080/14756366.2022.2080818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A β-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCAβ has a significant catalytic activity for the physiological reaction, CO2 + H2O ⇋ HCO3− + H+ with a kcat of 1.1 × 105 s−1 and a kcat/Km of 7.58 × 106 M−1 × s−1. This activity was inhibited by acetazolamide (KI of 0.46 µM), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCAβ at millimolar concentrations, but sulfamide (KI of 81 µM), N,N-diethyldithiocarbamate (KI of 67 µM) and sulphamic acid (KI of 6.2 µM) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCAβ is subsequently proposed as a new drug target for which effective inhibitors can be designed.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heidi Aisala
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Ksenia Zueva
- Department of Biology, University of Turku, Turku, Finland
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Martti Tolvanen
- Department of Computing, University of Turku, Turku, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaakko Lumme
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Amit Tripathi
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
14
|
D'Agostino I, Mathew GE, Angelini P, Venanzoni R, Angeles Flores G, Angeli A, Carradori S, Marinacci B, Menghini L, Abdelgawad MA, Ghoneim MM, Mathew B, Supuran CT. Biological investigation of N-methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J Enzyme Inhib Med Chem 2022; 37:986-993. [PMID: 35322729 PMCID: PMC8956313 DOI: 10.1080/14756366.2022.2055009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The enormous burden of the COVID-19 pandemic in economic and healthcare terms has cast a shadow on the serious threat of antimicrobial resistance, increasing the inappropriate use of antibiotics and shifting the focus of drug discovery programmes from antibacterial and antifungal fields. Thus, there is a pressing need for new antimicrobials involving innovative modes of action (MoAs) to avoid cross-resistance rise. Thiosemicarbazones (TSCs) stand out due to their easy preparation and polypharmacological application, also in infectious diseases. Recently, we reported a small library of TSCs (1–9) that emerged for their non-cytotoxic behaviour. Inspired by their multifaceted activity, we investigated the antibacterial, antifungal, and antidermatophytal profiles of derivatives 1–9, highlighting a new promising research line. Furthermore, the ability of these compounds to inhibit selected microbial and human carbonic anhydrases (CAs) was assessed, revealing their possible involvement in the MoA and a good selectivity index for some derivatives.
Collapse
Affiliation(s)
- Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Parri L, Fort A, Lo Grasso A, Mugnaini M, Vignoli V, Capasso C, Del Prete S, Romanelli MN, Supuran CT. Evaluating the efficiency of enzyme accelerated CO 2 capture: chemical kinetics modelling for interpreting measurement results. J Enzyme Inhib Med Chem 2021; 36:394-401. [PMID: 33430654 PMCID: PMC7831361 DOI: 10.1080/14756366.2020.1864631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this paper, the efficiency of the carbonic anhydrase (CA) enzyme in accelerating the hydration of CO2 is evaluated using a measurement system which consists of a vessel in which a gaseous flow of mixtures of nitrogen and CO2 is bubbled into water or water solutions containing a known quantity of CA enzyme. The pH value of the solution and the CO2 concentration at the measurement system gas exhaust are continuously monitored. The measured CO2 level allows for assessing the quantity of CO2, which, subtracted from the gaseous phase, is dissolved into the liquid phase and/or hydrated to bicarbonate. The measurement procedure consists of inducing a transient and observing and modelling the different kinetics involved in the steady-state recovery with and without CA. The main contribution of this work is exploiting dynamical system theory and chemical kinetics modelling for interpreting measurement results for characterising the activity of CA enzymes. The data for model fitting are obtained from a standard bioreactor, in principle equal to standard two-phase bioreactors described in the literature, in which two different techniques can be used to move the process itself away from the steady-state, inducing transients.
Collapse
Affiliation(s)
- Lorenzo Parri
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Ada Fort
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Anna Lo Grasso
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Marco Mugnaini
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Valerio Vignoli
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR -Institute of Biosciences and Bioresources (IBBR-CNR), Napoli, Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR -Institute of Biosciences and Bioresources (IBBR-CNR), Napoli, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Del Prete S, Bua S, Supuran CT, Capasso C. Escherichia coli γ-carbonic anhydrase: characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J Enzyme Inhib Med Chem 2021; 35:1545-1554. [PMID: 32746656 PMCID: PMC7470111 DOI: 10.1080/14756366.2020.1800670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes involved in biosynthetic processes, transport, supply, and balance of CO2/HCO3- into the cell. In Bacteria, CAs avoid the depletion of the dissolved CO2/HCO3- from the cell, providing them to the central metabolism that is compromised without the CA activity. The involvement of CAs in the survival, pathogenicity, and virulence of several bacterial pathogenic species is recent. Here, we report the kinetic properties of the recombinant γ-CA (EcoCAγ) encoded in the genome of Escherichia coli. EcoCAγ is an excellent catalyst for the physiological CO2 hydration reaction to bicarbonate and protons, with a kcat of 5.7 × 105 s−1 and kcat/KM of 6.9 × 106 M−1 s−1. The EcoCAγ inhibition profile with a broad series of known CA inhibitors, the substituted benzene-sulphonamides, and clinically licenced drugs was explored. Benzolamide showed a KI lower than 100 nM. Our study reinforces the hypothesis that the synthesis of new drugs capable of interfering selectively with the bacterial CA activity, avoiding the inhibition of the human α -CAs, is achievable and may lead to novel antibacterials.
Collapse
Affiliation(s)
- Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Silvia Bua
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| |
Collapse
|
17
|
Campestre C, De Luca V, Carradori S, Grande R, Carginale V, Scaloni A, Supuran CT, Capasso C. Carbonic Anhydrases: New Perspectives on Protein Functional Role and Inhibition in Helicobacter pylori. Front Microbiol 2021; 12:629163. [PMID: 33815311 PMCID: PMC8017301 DOI: 10.3389/fmicb.2021.629163] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the function of bacterial carbonic anhydrases (CAs, EC 4.2.1.1) has increased significantly in the last years. CAs are metalloenzymes able to modulate CO2, HCO3 - and H+ concentration through their crucial role in catalysis of reversible CO2 hydration (CO2 + H2O ⇄ HCO3 - + H+). In all living organisms, CA activity is linked to physiological processes, such as those related to the transport and supply of CO2 or HCO3 -, pH homeostasis, secretion of electrolytes, biosynthetic processes and photosynthesis. These important processes cannot be ensured by the very low rate of the non-catalyzed reaction of CO2 hydration. It has been recently shown that CAs are important biomolecules for many bacteria involved in human infections, such as Vibrio cholerae, Brucella suis, Salmonella enterica, Pseudomonas aeruginosa, and Helicobacter pylori. In these species, CA activity promotes microorganism growth and adaptation in the host, or modulates bacterial toxin production and virulence. In this review, recent literature in this research field and some of the above-mentioned issues are discussed, namely: (i) the implication of CAs from bacterial pathogens in determining the microorganism growth and virulence; (ii) the druggability of these enzymes using classical CA inhibitors (CAIs) of the sulfonamide-type as examples; (iii) the role played by Helicobacter pylori CAs in the acid tolerance/adaptation of the microbe within the human abdomen; (iv) the role of CAs played in the outer membrane vesicles spawned by H. pylori in its planktonic and biofilm phenotypes; (v) the possibility of using H. pylori CAIs in combination with probiotic strains as a novel anti-ulcer treatment approach. The latter approach may represent an innovative and successful strategy to fight gastric infections in the era of increasing resistance of pathogenic bacteria to classical antibiotics.
Collapse
Affiliation(s)
- Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy.,Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Naples, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Naples, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, Department of NEUROFARBA, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| |
Collapse
|
18
|
Verma M, Bhaduri GA, Phani Kumar VS, Deshpande PA. Biomimetic Catalysis of CO 2 Hydration: A Materials Perspective. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Manju Verma
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Gaurav A. Bhaduri
- Department of Chemical Engineering, Indian Institute of Technology Jammu, Jammu and Kashmir, 181221, India
| | - V. Sai Phani Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
19
|
Petreni A, De Luca V, Scaloni A, Nocentini A, Capasso C, Supuran CT. Anion inhibition studies of the Zn(II)-bound ι-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2021; 36:372-376. [PMID: 33390061 PMCID: PMC7782983 DOI: 10.1080/14756366.2020.1867122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s-1 and kcat/KM value of 3.9 × 107 M-1 s-1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2-94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71-0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1-9.3 mM.
Collapse
Affiliation(s)
- Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy.,Proteomics and Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| |
Collapse
|
20
|
Urbański LJ, Angeli A, Hytönen VP, Di Fiore A, Parkkila S, De Simone G, Supuran CT. Inhibition of the newly discovered β‑carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules. J Inorg Biochem 2020; 213:111274. [PMID: 33068968 DOI: 10.1016/j.jinorgbio.2020.111274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 01/19/2023]
Abstract
The protozoan pathogen Trichomonas vaginalis encodes two carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the β-class. One of these enzymes, T. vaginalis carbonic anhydrase 1 (TvaCA1), was recently cloned and characterized by our group, and its X-ray crystal structure reported. No inhibitors of this enzyme were reported up until now. Here we investigated the inhibition of TvaCA1 with inorganic anions and small molecules and observed that thiocyanate, cyanide, selenite, selenocyanate and divanadate are sub-millimolar inhibitors, whereas sulfamide, sulfate, phenylboronic acid and phenylarsonic acid are micromolar inhibitors. Finding effective TvaCA1 inhibitors may be useful for developing new antiprotozoan drugs.
Collapse
Affiliation(s)
- Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland; Fimlab Ltd., Arvo Ylpön katu 4, FI-33520 Tampere, Finland
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging of the National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland; Fimlab Ltd., Arvo Ylpön katu 4, FI-33520 Tampere, Finland
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging of the National Research Council, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
21
|
Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020; 30:963-982. [PMID: 32806966 DOI: 10.1080/13543776.2020.1811853] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The clinically licensed drugs used as antibiotics prevent the microbial growth interfering with the biosynthesis of proteins, nucleic acids, microorganism wall biosynthesis or wall permeability, and microbial metabolic pathways. A serious, emerging problem is the arisen of extensive drug resistance afflicting most countries worldwide. AREAS COVERED An exciting approach to fight drug resistance is the identification of essential enzymes encoded by pathogen genomes. Inhibition of such enzymes may impair microbial growth or virulence due to interference with crucial metabolic processes. Genome exploration of pathogenic and nonpathogenic microorganisms has revealed carbonic anhydrases (CAs, EC 4.2.1.1) as possible antibacterial targets. EXPERT OPINION Balancing the equilibrium between CO2 and HCO3 - is essential for microbial metabolism and is regulated by at least four classes of CAs. Classical CA inhibitors (CAIs) such as ethoxzolamide were shown to kill the gastric pathogen Helicobacter pylori in vitro, whereas acetazolamide and some of its more lipophilic derivatives were shown to be effective against vancomycin-resistant Enterococcus spp., with MICs in the range of 0.007-2 µg/mL, better than linezolid, the only clinically used agent available to date. Such results reinforce the rationale of considering existing and newly designed CAIs as antibacterials with an alternative mechanism of action.
Collapse
|