1
|
Liu ZS, Mao L, Huang CH, Tang TS, Chen J, Wang ZH, Chen SY, Zhang HZ, Xie LN, Sheng ZG, Zhu BZ. Molecular Mechanism of Unexpected Metal-Independent Hydroxyl Radical Production by Mercaptotriazole and H 2O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1942-1956. [PMID: 39865867 DOI: 10.1021/acs.est.3c10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
It is well known that hydroxyl radical (·OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/H2O2 organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that ·OH can be unequivocally generated by incubation of H2O2 and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products. More interestingly, among all the products, MTZ-SOH was found to be the critical one directly responsible for the ·OH formation. Not only MTZ, but also its derivatives can activate H2O2 to produce ·OH. Taken together, we found an unexpected sulfenic acid-dependent ·OH production from activation of H2O2 by heterocyclic thiol compounds, which may provide a new free radical perspective to further explore the environmental and biological behaviors of these widely used thiol compounds.
Collapse
Affiliation(s)
- Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zi-Han Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shi-Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao-Zhe Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
El-Emam NA, El-Ashmawy MB, Mohamed AAB, Habib ESE, Thamotharan S, Abdelbaky MSM, Garcia-Granda S, Moustafa MAA. Thiophene-Linked 1,2,4-Triazoles: Synthesis, Structural Insights and Antimicrobial and Chemotherapeutic Profiles. Pharmaceuticals (Basel) 2024; 17:1123. [PMID: 39338288 PMCID: PMC11435084 DOI: 10.3390/ph17091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The reaction of thiophene-2-carbohydrazide 1 or 5-bromothiophene-2-carbohydrazide 2 with various haloaryl isothiocyanates and subsequent cyclization by heating in aqueous sodium hydroxide yielded the corresponding 4-haloaryl-5-(thiophen-2-yl or 5-bromothiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5a-e. The triazole derivatives 5a and 5b were reacted with different secondary amines and formaldehyde solution to yield the corresponding 2-aminomethyl-4-haloaryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones 6a-e, 7a-e, 8, 9, 10a and 10b in good yields. The in vitro antimicrobial activity of compounds 5a-e, 6a-e, 7a-d, 8, 9, 10a and 10b was evaluated against a panel of standard pathogenic bacterial and fungal strains. Compounds 5a, 5b, 5e, 5f, 6a-e, 7a-d, 8, 9, 10a and 10b showed marked activity, particularly against the tested Gram-positive bacteria and the Gram-negative bacteria Escherichia coli, and all the tested compounds were almost inactive against all the tested fungal strains. In addition, compounds 5e, 6a-e, 7a-d and 10a exhibited potent anti-proliferative activity, particularly against HepG-2 and MCF-7 cancer cell lines (IC50 < 25 μM). A detailed structural insight study based on the single crystals of compounds 5a, 5b, 6a, 6d and 10a is also reported. Molecular docking studies of the highly active antibacterial compounds 5e, 6b, 6d, 7a and 7d showed a high affinity for DNA gyrase. Meanwhile, the potent anti-proliferative activity of compounds 6d, 6e and 7d may be attributed to their high affinity for cyclin-dependent kinase 2 (CDK2).
Collapse
Affiliation(s)
- Nada A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud B El-Ashmawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - El-Sayed E Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory and DBT-Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Mohammed S M Abdelbaky
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
| | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo-CINN (CSIC), 33006 Oviedo, Spain
| | - Mohamed A A Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Fateev IV, Sasmakov SA, Abdurakhmanov JM, Ziyaev AA, Khasanov SS, Eshboev FB, Ashirov ON, Frolova VD, Eletskaya BZ, Smirnova OS, Berzina MY, Arnautova AO, Abramchik YA, Kostromina MA, Kayushin AL, Antonov KV, Paramonov AS, Andronova VL, Galegov GA, Esipov RS, Azimova SS, Miroshnikov AI, Konstantinova ID. Synthesis of Substituted 1,2,4-Triazole-3-Thione Nucleosides Using E. coli Purine Nucleoside Phosphorylase. Biomolecules 2024; 14:745. [PMID: 39062460 PMCID: PMC11274511 DOI: 10.3390/biom14070745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
1,2,4-Triazole derivatives have a wide range of biological activities. The most well-known drug that contains 1,2,4-triazole as part of its structure is the nucleoside analogue ribavirin, an antiviral drug. Finding new nucleosides based on 1,2,4-triazole is a topical task. The aim of this study was to synthesize ribosides and deoxyribosides of 1,2,4-triazole-3-thione derivatives and test their antiviral activity against herpes simplex viruses. Three compounds from a series of synthesized mono- and disubstituted 1,2,4-triazole-3-thione derivatives were found to be substrates for E. coli purine nucleoside phosphorylase. Of six prepared nucleosides, the riboside and deoxyriboside of 3-phenacylthio-1,2,4-triazole were obtained at good yields. The yields of the disubstituted 1,2,4-triazol-3-thiones were low due to the effect of bulky substituents at the C3 and C5 positions on the selectivity of enzymatic glycosylation for one particular nitrogen atom in the triazole ring. The results of cytotoxic and antiviral studies on acyclovir-sensitive wild-type strain HSV-1/L2(TK+) and acyclovir-resistant strain (HSV-1/L2/RACV) in Vero E6 cell culture showed that the incorporation of a thiobutyl substituent into the C5 position of 3-phenyl-1,2,4-triazole results in a significant increase in the cytotoxicity of the base and antiviral activity. The highest antiviral activity was observed in the 3-phenacylthio-1-(β-D-ribofuranosyl)-1,2,4-triazole and 5-butylthio-1-(2-deoxy-β-D-ribofuranosyl)-3-phenyl-1,2,4-triazole nucleosides, with their selectivity indexes being significantly higher than that of ribavirin. It was also found that with the increasing lipophilicity of the nucleosides, the activity and toxicity of the tested compounds increased.
Collapse
Affiliation(s)
- Ilya V. Fateev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Sobirdjan A. Sasmakov
- Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan; (J.M.A.); (A.A.Z.); (Sh.Sh.K.); (F.B.E.); (O.N.A.); (S.S.A.)
| | - Jaloliddin M. Abdurakhmanov
- Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan; (J.M.A.); (A.A.Z.); (Sh.Sh.K.); (F.B.E.); (O.N.A.); (S.S.A.)
| | - Abdukhakim A. Ziyaev
- Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan; (J.M.A.); (A.A.Z.); (Sh.Sh.K.); (F.B.E.); (O.N.A.); (S.S.A.)
| | - Shukhrat Sh. Khasanov
- Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan; (J.M.A.); (A.A.Z.); (Sh.Sh.K.); (F.B.E.); (O.N.A.); (S.S.A.)
| | - Farkhod B. Eshboev
- Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan; (J.M.A.); (A.A.Z.); (Sh.Sh.K.); (F.B.E.); (O.N.A.); (S.S.A.)
| | - Oybek N. Ashirov
- Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan; (J.M.A.); (A.A.Z.); (Sh.Sh.K.); (F.B.E.); (O.N.A.); (S.S.A.)
| | - Valeriya D. Frolova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Barbara Z. Eletskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Olga S. Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Maria Ya. Berzina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Alexandra O. Arnautova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Yulia A. Abramchik
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Maria A. Kostromina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Alexey L. Kayushin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Konstantin V. Antonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Alexander S. Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Valeria L. Andronova
- D. I. Ivanovsky Institute of Virology (N. F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation), Gamaleya St. 18, 123098 Moscow, Russia; (V.L.A.); (G.A.G.)
| | - Georgiy A. Galegov
- D. I. Ivanovsky Institute of Virology (N. F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation), Gamaleya St. 18, 123098 Moscow, Russia; (V.L.A.); (G.A.G.)
| | - Roman S. Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Shakhnoz S. Azimova
- Acad. S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan; (J.M.A.); (A.A.Z.); (Sh.Sh.K.); (F.B.E.); (O.N.A.); (S.S.A.)
| | - Anatoly I. Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| | - Irina D. Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (V.D.F.); (B.Z.E.); (O.S.S.); (M.Y.B.); (A.O.A.); (Y.A.A.); (M.A.K.); (A.L.K.); (K.V.A.); (A.S.P.); (R.S.E.); (A.I.M.); (I.D.K.)
| |
Collapse
|
4
|
Saeed S, Saif MJ, Zahoor AF, Tabassum H, Kamal S, Faisal S, Ashraf R, Khan SG, Nazeer U, Irfan A, Bhat MA. Discovery of novel 1,2,4-triazole tethered β-hydroxy sulfides as bacterial tyrosinase inhibitors: synthesis and biophysical evaluation through in vitro and in silico approaches. RSC Adv 2024; 14:15419-15430. [PMID: 38741974 PMCID: PMC11089527 DOI: 10.1039/d4ra01252f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
In this study, a series of 1,2,4-triazole-tethered β-hydroxy sulfide scaffolds 11a-h was synthesized in good to remarkable yields (69-90%) through the thiolysis of oxiranes by the thiols in aqueous basic catalytic conditions. The synthesized 1,2,4-triazole-tethered β-hydroxy sulfides were screened against bacterial tyrosinase enzyme, and Gram-positive and Gram-negative bacterial cultures i.e., (S. aureus) Staphylococcus aureus & (E. coli) Escherichia coli. Among the synthesized derivatives, the molecules 11a (IC50 = 7.67 ± 1.00 μM), 11c (IC50 = 4.52 ± 0.09 μM), 11d (IC50 = 6.60 ± 1.25 μM), and 11f (IC50 = 5.93 ± 0.50 μM) displayed the better tyrosinase inhibitory activity in comparison to reference drugs ascorbic acid (IC50 = 11.5 ± 1.00 μM) and kojic acid (IC50 = 30.34 ± 0.75 μM). The molecule benzofuran-triazol-propan-2-ol 11c proved to be the most potent bacterial tyrosinase inhibitory agent with a minimum IC50 of 4.52 ± 0.09 μM, as compared to other synthesized counterparts and both standards (kojic acid and ascorbic acid). The compound diphenyl-triazol-propan-2-ol 11a and benzofuran-triazole-propan-2-ol 11c showed comparable anti-bacterial chemotherapeutic efficacy with minimum inhibitory concentrations (MIC = 2.0 ± 2.25 mg mL-1 and 2.5 ± 0.00 mg mL-1, respectively) against S. aureus bacterial strain in comparison with standard antibiotic penicillin (MIC = 2.2 ± 1.15 mg mL-1). Furthermore, among the synthesized derivatives, only compound 11c demonstrated better anti-bacterial activity (MIC = 10 ± 0.40 mg mL-1) against E. coli, which was slightly less than the standard antibiotic i.e., penicillin (MIC = 2.4 ± 1.00 mg mL-1). The compound 11c demonstrated a better binding score (-7.08 kcal mol-1) than ascorbic acid (-5.59 kcal mol-1) and kojic acid (-5.78 kcal mol-1). Molecular docking studies also validate the in vitro anti-tyrosinase assay results; therefore, the molecule 11c can be the lead bacterial tyrosinase inhibitor as well as the antibacterial agent against both types of bacterial strains after suitable structural modifications.
Collapse
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Hina Tabassum
- London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar Peshawar 25120 Pakistan
| | - Rabia Ashraf
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
5
|
Salam HAE, Abo-Salem HM, Kutkat O, Abdel-Aziz MS, Montaser AS, El-Sawy ER. Synthesis of 5-heptadecyl-4H-1,2,4-triazole incorporated indole moiety: Antiviral (SARS-CoV-2), antimicrobial, and molecular docking studies. J Mol Struct 2024; 1303:137517. [DOI: 10.1016/j.molstruc.2024.137517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Farghaly TA, Masaret GS, Riyadh SM, Harras MF. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles. Mini Rev Med Chem 2024; 24:1602-1629. [PMID: 38008942 DOI: 10.2174/0113895575277122231108095511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sayed M Riyadh
- Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Feng Y, Chang B, Ren Y, Zhao F, Wang KH, Wang J, Huang D, Lv X, Hu Y. Synthesis of trifluoromethylpyrrolopyrazole derivatives via [3+2] cycloaddition of trifluoromethyl N-acylhydrazones or trifluoroacetohydrazonoyl bromides with maleimides. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Design, synthesis, characterization, antioxidant, antiproliferative activity and molecular docking studies of new transition metal complexes of 1,2,4-triazole as combretastatin A-4 analogues. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Cai BG, Li Q, Xuan J. Copper-catalyzed 2,3-dihydro-1,2,4-triazoles synthesis through [3+2]-cycloaddition of nitrile ylides with azodicarboxylates. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
10
|
Zinc(II) and copper(II) complexes with N-substituted imines derived from 4-amino-1,2,4-triazole: synthesis, crystal structure, and biological activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Pylypenko OO, Okovytyy SI, Sviatenko LK, Voronkov EO, Shabelnyk KP, Kovalenko SI. Tautomeric behavior of 1,2,4-triazole derivatives: combined spectroscopic and theoretical study. Struct Chem 2022. [DOI: 10.1007/s11224-022-02057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Cebeci YU, Ceylan Ş, Karaoğlu ŞA, Altun M. An Efficient
Microwave‐Assisted
Synthesis of Novel
Quinolone‐Triazole
and
Conazole‐Triazole
Hybrid Derivatives as Antimicrobial and Anticancer Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Şule Ceylan
- Artvin Çoruh University, Faculty of Forestry, Department of Forest Industrial Engineering Artvin Turkey
| | | | - Muhammed Altun
- Cankiri Karatekin University, Faculty of Science, Department of Chemistry Cankiri Turkey
| |
Collapse
|
13
|
Ullah I, Ilyas M, Omer M, Alamzeb M, Adnan, Sohail M. Fluorinated triazoles as privileged potential candidates in drug development—focusing on their biological and pharmaceutical properties. Front Chem 2022; 10:926723. [PMID: 36017163 PMCID: PMC9395585 DOI: 10.3389/fchem.2022.926723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Fluorinated heterocycles have attracted extensive attention not only in organic synthesis but also in pharmaceutical and medicinal sciences due to their enhanced biological activities than their non-fluorinated counterparts. Triazole is a simple five-membered heterocycle with three nitrogen atoms found in both natural and synthetic molecules that impart a broad spectrum of biological properties including but not limited to anticancer, antiproliferative, inhibitory, antiviral, antibacterial, antifungal, antiallergic, and antioxidant properties. In addition, incorporation of fluorine into triazole and its derivatives has been reported to enhance their pharmacological activity, making them promising drug candidates. This mini-review explores the current developments of backbone-fluorinated triazoles and functionalized fluorinated triazoles with established biological activities and pharmacological properties.
Collapse
|
14
|
Yaseen Y, Kubba A, Shihab W, Tahtamouni L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new series of niflumic acid (NF) derivatives were synthesized by esterification of (NF) to give ester compound 1, which was treated with hydrazine hydrate to produce (NF) hydrazide 2. Hydrazine-1-carboxamide compounds (3A–C), and hydrazine-1-carbothioamide derivatives (4A–D) were synthesized by treatment of (NF) hydrazide with phenyl isocyanate, and phenyl isothiocyanate derivatives, respectively. The cyclization of (4B–D) and (3B) was achieved using NaOH solution to produce 1,2,4-triazole derivatives (5A–C) and 6, respectively. The prepared compounds were characterized using IR, 1HNMR, 13CNMR, and MS (ESI) spectroscopy. A molecular docking study was performed to evaluate the binding affinity of the synthesized compounds against EGFR and VEGFR kinase domains which revealed that compounds 3B, and 4A had the best binding energy (-7.87, and -7.33 kcal/mol, respectively) against VEGFR, while compound 5A had the best binding energy (-7.95 kcal/mol) against EGFR. The biological investigation results indicated that all the tested compounds caused cell killing in the two cancer cell lines (Hep G2 and A549) studied, with compound 4C being the most cytotoxic, as well as being cancer selective. Additionally, compound 4C-treated Hep G2 cells were arrested at the S and G2/M cell cycle phases. Cytotoxicity of compound 4C was attributed to apoptosis as determined by flow cytometry and qRT-PCR results of the apoptosis markers p53, BAX, and caspase-3. Finally, compound 4C inhibited VEGFR kinase activity, while compound 5B inhibited EGFR kinase activity. In conclusion, the novel (NF) derivatives are potent anticancer agents, inhibiting cell proliferation by inhibiting EGFR and VEGFR tyrosine kinase enzymes.
Collapse
|
15
|
El Ashry ESH, Farahat MM, Awad LF, Balbaa M, Yusef H, Badawy ME, Abd Al Moaty MN. New 4-(arylidene)amino-1,2,4-traizole-5-thiol derivatives and their acyclo thioglycosides as α-glucosidase and α-amylase inhibitors: Design, synthesis, and molecular modelling studies. J Mol Struct 2022; 1259:132733. [DOI: 10.1016/j.molstruc.2022.132733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
2-((4-Phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N′-(1-phenylethylidene)acetohydrazide. MOLBANK 2022. [DOI: 10.3390/m1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A synthesis of 2-((4-phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N’-(1-phenylethylidene)acetohydrazide from 2-[(3-{2-[(4-methylphenyl)amino]ethyl}-4-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-yl)sulfanyl]acetohydrazide and acetophenone is reported. The title compound has been tested to possess 1.5-fold higher antioxidant ability than the control, butylated hydroxytoluene, as determined by a Ferric reducing antioxidant power assay.
Collapse
|
17
|
Dutta A, Saikia RA, Thakur AJ. A Mechanistic approach to Liquid assisted mechanochemical synthesis of 5‐aryl/spiro‐[1,2,4]‐triazolidine‐3‐thiones: a revisit. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anurag Dutta
- Tezpur University Chemical Sciences Napaam 784028 Tezpur INDIA
| | | | | |
Collapse
|
18
|
Antitumor Activity and Physicochemical Properties of New Thiosemicarbazide Derivative and Its Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) Complexes. Molecules 2022; 27:molecules27092703. [PMID: 35566053 PMCID: PMC9100868 DOI: 10.3390/molecules27092703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
A novel biologically active thiosemicarbazide derivative ligand L (N-[(phenylcarbamothioyl)amino]pyridine-3-carboxamide) and a series of its five metal(II) complexes, namely: [Co(L)Cl2], [Ni(L)Cl2(H2O)], [Cu(L)Cl2(H2O)], [Zn(L)Cl2] and [Cd(L)Cl2(H2O)] have been synthesized and thoroughly investigated. The physicochemical characterization of the newly obtained compounds has been performed using appropriate analytical techniques, such as 1H and l3C nuclear magnetic resonance (NMR), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and magnetic measurements. In order to study the pharmacokinetic profile of the compounds, ADMET analysis was performed. The in vitro studies revealed that the synthesized compounds exhibit potent biological activity against A549 human cancer cell line.
Collapse
|
19
|
Riyadh SM, Abolibda TZ, Sayed AR, Gomha SM. Synthetic Utility of Aminomercapto[1,2,4]triazoles in the Preparation of Fused Triazoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220417131159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triazoles and their fused derivatives are regarded as one of the most pharmacologically significant pillars due to their potent, broad and numerous activities. This current review presents recent progress in the synthetic utility of 3-substituted-4-amino-5-mercapto[1,2,4]triazoles as building blocks for a diverse range of fused [1,2,4]triazoles with pharmacological interest eg. pyrazolo-triazoles, triazolo-thiadiazoles, triazolo-triazoles, triazolo-thiadiazines, triazolo-triazines, triazolo-tetrazines, triazolo-thiadiazepines, and others. The biological activity of some triazoles and their fused derivatives are also presented. This suggests that triazoles can be particularly promising synthons in synthesis of functionalized heterocyclic compounds used in the design of novel highly effective pharmaceuticals with a broad spectrum of bioresponses. All of these topics are drawn in this review during the period from 2000 to 2020.
Collapse
Affiliation(s)
- Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351 Saudi Arabia
| | - Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, KFU, Hofuf, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-suef, Egypt
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351 Saudi Arabia
| |
Collapse
|
20
|
Khomenko DM, Doroshchuk RO, Ohorodnik YM, Ivanova HV, Zakharchenko BV, Raspertova IV, Vaschenko OV, Dobrydnev AV, Grygorenko OO, Lampeka RD. Expanding the chemical space of 3(5)-functionalized 1,2,4-triazoles. Chem Heterocycl Compd (N Y) 2022; 58:116-128. [PMID: 35340781 PMCID: PMC8940976 DOI: 10.1007/s10593-022-03064-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/30/2022] [Indexed: 01/30/2023]
Abstract
An efficient approach to the gram-scale synthesis of 3(5)-substituted, 1,3- and 1,5-disubstituted 1,2,4-triazole-derived building blocks is described. The key synthetic precursors - 1,2,4-triazole-3(5)-carboxylates (20 examples, 35-89% yield) were prepared from readily available acyl hydrazides and ethyl 2-ethoxy-2-iminoacetate hydrochloride. Further transformations were performed following the convergent synthetic strategy and allowed the preparation of 1,3- and 1,5-disubstituted 1,2,4-triazole-derived esters (16 examples, 25-75% yield), 3(5)-substituted, 1,3- and 1,5-disubstituted carboxylate salts (18 examples, 78-93% yield), amides (5 examples, 82-93% yield), nitriles (5 examples, 30-85% yield), hydrazides (6 examples, 84-89% yield), and hydroxamic acids (3 examples, 73-78% yield). Considering wide applications of the 1,2,4-triazole motif in medicinal chemistry, these compounds are valuable building blocks for lead-oriented synthesis; they have also great potential for coordination chemistry. Supplementary Information The online version contains supplementary material available at 10.1007/s10593-022-03064-z.
Collapse
Affiliation(s)
- Dmytro M. Khomenko
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Roman O. Doroshchuk
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Yulia M. Ohorodnik
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Hanna V. Ivanova
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Borys V. Zakharchenko
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Ilona V. Raspertova
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | | | - Alexey V. Dobrydnev
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd., 78 Chervonotkatska St., Kyiv, 02094 Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| | - Rostyslav D. Lampeka
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv, 01601 Ukraine
| |
Collapse
|
21
|
Venkatesham P, Shyam P, Pooja, Chedupaka R, Vedula RR. Facile One-Pot Multi-Component Synthesis, Characterization, Molecular Docking Studies, Biological Evaluation of 1,2,4-Triazolo Isoindoline-1,3-Diones and Their DFT Calculations. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2042333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Papisetti Venkatesham
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Perugu Shyam
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Pooja
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Raju Chedupaka
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
22
|
Bhagat DS, Bumbrah GS, Chawla PA, Gurnule WB, Shejul SK. Recent advances in synthesis and anticancer potential of triazole containing scaffolds. Anticancer Agents Med Chem 2022; 22:2852-2875. [PMID: 35176982 DOI: 10.2174/1871520622666220217161346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the most lethal disease that may be found anywhere on the globe. Approximately 10% of individuals die as a result of cancer of various types, with 19.3 million new cancer cases and 10 million deaths expected in 2020. More than 100 medications are commercially available for the treatment of cancer, but only a few candidates have high specificity, resulting in several side effects. The scientific community has spent the past decades focusing on drug discovery. Natural resources are used to isolate pharmaceutically active candidates, which are then synthesized in laboratories. More than 60% of all prescribed drugs are made from natural ingredients. Unique five-membered heteroaromatic center motifs with sulfur, oxygen and nitrogen atoms are found in heterocyclic compounds such as indazole, thiazole, triazole, triazole, and oxazole, and are used as a core scaffold in many medicinally important therapies. Triazole possesses a wide range of pharmacological activities including anticancer, antibacterial, antifungal, antibiotic antiviral, analgesic, anti-inflammatory, anti-HIV, antidiabetic, and antiprotozoal activities. Novel Triazole motifs with a variety of biological characteristics have been successfully synthesized using versatile synthetic methods. We intend here to facilitate the rational design and development of innovative triazole-based anti-cancer medicines with increased selectivity for various cancer cell lines by providing insight into various ligand-receptor interactions.
Collapse
Affiliation(s)
- Devidas S Bhagat
- Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad 431 004, (MS), India
| | - Gurvinder S Bumbrah
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University, 122413, Haryana, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Wasudeo B Gurnule
- Department of Chemistry, Kamla Nehru Mahavidyalaya, Nagpur-440024, (MS) India
| | - Sampada K Shejul
- Department of Life Science, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431 001, (MS), India
| |
Collapse
|
23
|
Pann J, Erharter K, Langerreiter D, Partl G, Müller T, Schottenberger H, Hummel M, Hofer TS, Kreutz C, Fliri L. Mechanistic Insights into the Formation of 1-Alkylidene/Arylidene-1,2,4-triazolinium Salts: A Combined NMR/Density Functional Theory Approach. J Org Chem 2022; 87:1019-1031. [PMID: 34978817 PMCID: PMC8790756 DOI: 10.1021/acs.joc.1c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/29/2022]
Abstract
In a recent report on the synthetic approach to the novel substance class of 1-alkylidene/arylidene-1,2,4-triazolinium salts, a reaction mechanism suggesting a regioselective outcome was proposed. This hypothesis was tested via a combined NMR and density functional theory (DFT) approach. To this end, three experiments with 13C-labeled carbonyl reactants were monitored in situ by solution-state NMR. In one experiment, an intermediate as described in the former mechanistic proposal was observed. However, incorporation of 13C isotope labels into multiple sites of the heterocycle could not be reconciled with the "regioselective mechanism". It was found that an unproductive reaction pathway can lead to 13C scrambling, along with metathetical carbonyl exchange. According to DFT calculations, the concurring reaction pathways are connected via a thermodynamically controlled cyclic 1,3-oxazetidine intermediate. The obtained insights were applied in a synthetic study including aliphatic ketones and para-substituted benzaldehydes. The mechanistic peculiarities set the potential synthetic scope of the novel reaction type.
Collapse
Affiliation(s)
- Johann Pann
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute
of Organic Chemistry and Center for Molecular Bioscience Innsbruck
(CMBI), Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniel Langerreiter
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 0076 Aalto, Finland
| | - Gabriel Partl
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thomas Müller
- Institute
of Organic Chemistry and Center for Molecular Bioscience Innsbruck
(CMBI), Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Herwig Schottenberger
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michael Hummel
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 0076 Aalto, Finland
| | - Thomas S. Hofer
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute
of Organic Chemistry and Center for Molecular Bioscience Innsbruck
(CMBI), Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lukas Fliri
- Institute
of General, Inorganic Chemistry and Theoretical Chemistry, Faculty
of Chemistry and Pharmacy, University of
Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 0076 Aalto, Finland
| |
Collapse
|
24
|
Dewangan D, Vaishnav Y, Mishra A, Jha AK, Verma S, Badwaik H. Synthesis, molecular docking, and biological evaluation of Schiff base hybrids of 1,2,4-triazole-pyridine as dihydrofolate reductase inhibitors. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100024. [PMID: 34909659 PMCID: PMC8663949 DOI: 10.1016/j.crphar.2021.100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
In this study novel derivatives of 1,2,4-triazole pyridine coupled with Schiff base were obtained in altered aromatic aldehyde and 4-((5-(pyridin-3-yl)-4H-1,2,4-triazol-3-ylthio)methyl)benzenamine reactions. Thin layer chromatography and melting point determination were employed to verify the purity of hybrid derivatives. The structures of the hybrid derivatives were interpreted using methods comprising infrared, nuclear magnetic resonance, and mass spectroscopy. The in vitro anti-microbial properties and minimum inhibitory concentration were determined with Gram-positive and Gram-negative bacteria. Among the derivatives produced, two derivatives comprising (Z)-2-((4-((5-(pyridine-3-yl)-4H-1,2,4-triazol-3-ylthio)methyl)phenylimino)methyl)phenoland (Z)-2-methoxy-5-((4-((5-(pyridine-3-yl)-4H-1,2,4-triazol-3- ylthio)methyl)phenylimino)methyl)phenol obtained promising results as antibacterial agents. After synthesizing different derivatives, docking studies were performed and the scores range from −10.3154 to −12.962 kcal/mol. Synthesis and evaluation of Schiff Base Hybrids of 1, 2, 4-Triazole-Pyridine as DHFR Inhibitors. Schiff Base Hybrids shown promising antibacterial results. Docking studies reveals a good binding affinity in range of -10.3154 to -12.962 kcal/mol with DHFR.
Collapse
Affiliation(s)
- D Dewangan
- Shri Shankaracharya Technical Campus, Shri Shankaracharya Group of Institutions, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Y Vaishnav
- Shri Shankaracharya Technical Campus, Shri Shankaracharya Group of Institutions, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - A Mishra
- Shri Shankaracharya Technical Campus, Shri Shankaracharya Group of Institutions, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - A K Jha
- Shri Shankaracharya Technical Campus, Shri Shankaracharya Group of Institutions, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - S Verma
- University College of Pharmacy, Pt. Deendayal Upadhyay Memorial Health Sciences and Ayush University of Chhattisgarh Raipur
| | - H Badwaik
- Rungta College of Pharmaceutical Science and Research, Bhilai, 490023, Chhattisgarh., India
| |
Collapse
|
25
|
Recent advances in the chemistry of 1,2,4-triazoles: Synthesis, reactivity and biological activities. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Han X, Nie X, Feng Y, Wei B, Si C, Lin G. Intermolecular [4 + 2] process of N-acyliminium ions with simple olefins for construction of functional substituted-1,3-oxazinan-2-ones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Sanina NA, Isaeva YA, Utenyshev AN, Dorovatovskii PV, Ovanesyan NS, Emel'yanova NS, Pokidova OV, Tat'yanenko LV, Sulimenkov IV, Kotel'nikov AI, Aldoshin SM. Synthesis, structure, and PDE inhibiting activity of the anionic DNIC with 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiolyl, the nitric oxide donor. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Fizer M, Slivka M, Baumer V. Efficient synthesis of substituted [1,3]thiazolo[3,2-b][1,2,4]triazol-7-ium hexabromotellurates. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Fizer M, Slivka M, Sidey V, Baumer V, Fizer O. On the protonation of a polysubstituted 1,2,4-triazole: A structural study of a hexabromotellurate salt. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Kokovina TS, Gadomsky SY, Terentiev AA, Sanina NA. A Novel Approach to the Synthesis of 1,3,4-Thiadiazole-2-amine Derivatives. Molecules 2021; 26:molecules26175159. [PMID: 34500593 PMCID: PMC8434302 DOI: 10.3390/molecules26175159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
The main purpose of the study was the development of a new method for synthesis of 1,3,4-thiadiazol-2-amine derivatives in a one-pot manner using the reaction between a thiosemicarbazide and carboxylic acid without toxic additives such as POCl3 or SOCl2. The reaction was investigated in the presence of polyphosphate ester (PPE). It was found that, in the presence of PPE, the reaction between the thiosemicarbazide and carboxylic acid proceeds in one-pot through three steps with the formation of corresponding 2-amino-1,3,4-thiadiazole. Using the developed approach five, 2-amino-1,3,4-thiadiazoles were synthesized. The structures of all compounds were proven by mass spectrometry, IR, and NMR spectroscopies.
Collapse
Affiliation(s)
- Tatiana S. Kokovina
- Institute of Problems of Chemical Physics, The Russian Academy of Sciences, 142432 Chernogolovka, Russia; (T.S.K.); (A.A.T.); (N.A.S.)
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Svyatoslav Y. Gadomsky
- Institute of Problems of Chemical Physics, The Russian Academy of Sciences, 142432 Chernogolovka, Russia; (T.S.K.); (A.A.T.); (N.A.S.)
- Correspondence:
| | - Alexei A. Terentiev
- Institute of Problems of Chemical Physics, The Russian Academy of Sciences, 142432 Chernogolovka, Russia; (T.S.K.); (A.A.T.); (N.A.S.)
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Medicinal Chemistry Science and Education Center, Moscow Region State University, 141014 Mytishchi, Russia
| | - Nataliya A. Sanina
- Institute of Problems of Chemical Physics, The Russian Academy of Sciences, 142432 Chernogolovka, Russia; (T.S.K.); (A.A.T.); (N.A.S.)
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Medicinal Chemistry Science and Education Center, Moscow Region State University, 141014 Mytishchi, Russia
| |
Collapse
|
31
|
Alimi Z, Hatamjafari F, Shiroudi A, Pourshamsian K, Oliaey AR. Synthesis and Spectral Characterization of New 2-(5-Aryl-4H-1,2,4-triazol-3-yl)-1H-isoindole-1,3(2H)-dione Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Qi Y, Liu J, Li C, Hu W, Tang S, Shao L, Wang Z, Ouyang G. Novel 3-Thioether-4-indolimino-4 H-1,2,4-triazole Derivatives Bearing Pyridyl Moiety: Design, Synthesis and Bioactivity Evaluation in vitro. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202008057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Kassab RM, Khalil FSAM, Abbas AA. Synthesis and Antimicrobial Activities of Some New Bis(Schiff Bases) and Their Triazole-Based Lariat Macrocycles. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Refaie M. Kassab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Ashraf A. Abbas
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|