1
|
Chetia B, Shakya A, Ghosh SK, Vinayagam S, Patgiri SJ, Bhowmick IP, Singh UP, Bhat HR. Molecular docking, toxicity study and in vitro antimalarial evaluation of pyrazole substituted 1,3,5-triazine derivatives. Exp Parasitol 2025; 273:108945. [PMID: 40280398 DOI: 10.1016/j.exppara.2025.108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/20/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The development of resistance to antimalarial drugs such as chloroquine, amodiaquine, artemisinin, and antifolates is a major health concern, prompting more research into new antimalarial therapies. In the present study, we intend to develop pyrazole substituted 1,3,5-triazine derivatives 7(a-j) as antimalarial agents. These compounds were synthesized using conventional methods and analyzed using various spectroscopic techniques. The docking results showed that compounds 7j and 7i exhibited an excellent binding interactions with PRO A:113, ILE A:164, SER A:111, PHE A:58, LEU A:46, LEU A:119, VAL A:45, ILE A:112 (-204.97to -118.41 kcal/mol) and TYR A:170, CYS A:15, PRO A:113, ILE A:112, ALA A:16, PHE A:58, MET A:55, SER A:111 (-216.24to -152.06 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR-TS. Compounds 7j and 7i exhibited considerable antimalarial efficacy against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of P. falciparum, with IC50 values ranging from 23.78 to 83.36 μM and 30.89-64.24 μM, respectively. These pyrazole-substituted 1,3,5-triazine derivatives could be utilized to find a novel class of Pf-DHFR-TS inhibitors.
Collapse
Affiliation(s)
- Bonita Chetia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sathishkumar Vinayagam
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, 786001, Assam, India
| | - Saurav Jyoti Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, 786001, Assam, India
| | - Ipsita Pal Bhowmick
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, 786001, Assam, India
| | - Udaya Pratap Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, 211007, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India.
| |
Collapse
|
2
|
Khaled NA, Ibrahim MA, Mohamed NA, Ahmed SA, Ahmed NS. DFT studies on N-(1-(2-bromobenzoyl)-4-cyano-1H-pyrazol-5-yl). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124864. [PMID: 39067358 DOI: 10.1016/j.saa.2024.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
In this work, molecular descriptors of N-(1-(2-bromobenzoyl)-4-cyano-1H-pyrazol-5-yl) halogenated benzamides (1a-h) have been computed using a quantum chemical technique through DFT. Prior work involved the synthesis of compounds (1a-h) and the assessment of their anticancer activity on breast, colon, and liver tumors: MCF-7, HCT-116, and HepG-2 cell lines respectively. Since 1a, 1b, and 1d showed the most potential anticancer impact, their ability to inhibit EGFRWT was investigated. Based on the biological data, 1b inhibited EGFRWT the most. According to the docking evaluation, an H-bond with the threonine residue was one of the main non-covalent contacts between 1b and the EGFRWT active site residues. PES, MESP, HOMOs, LUMOs, energy band gap, global reactivity indices [electron affinity (A), ionization energies (I), electrophilicity index (ω), nucleophilicity index (ε), chemical potential (μ), electronegativity (χ), hardness (η), and softness (S)], condensed Fukui functions, NBO, and NCIs are the molecular descriptors of 1a-h that were computed using DFT technique. According to the theoretical investigation results, compounds (1a-h) might have anticancer effects; these findings are consistent with the biological findings from our previous research. Compound 1b had the lowest binding energy, according to an assessment of the binding energies between the threonine and the three most active compounds (1a, 1b, and 1d). This is consistent with the outcomes of the docking study and the biological examination of the influence of 1a, 1b, and 1d on EGFRWT.
Collapse
Affiliation(s)
- Nada A Khaled
- Therapeutical Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Medhat A Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Neama A Mohamed
- Therapeutical Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; Basic Science Department, Faculty of Engineering, Nahda University Beni-Suef (NUB), Beni Suef, Egypt
| | - Nesreen S Ahmed
- Therapeutical Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
3
|
Alkafaas SS, Khedr SA, ElKafas SS, Hafez W, Loutfy SA, Sakran M, Janković N. Targeting JNK kinase inhibitors via molecular docking: A promising strategy to address tumorigenesis and drug resistance. Bioorg Chem 2024; 153:107776. [PMID: 39276490 DOI: 10.1016/j.bioorg.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Among members of the mitogen-activated protein kinase (MAPK) family, c-Jun N-terminal kinases (JNKs) are vital for cellular responses to stress, inflammation, and apoptosis. Recent advances have highlighted their important implications in cancer biology, where dysregulated JNK signalling plays a role in the growth, progression, and metastasis of tumors. The present understanding of JNK kinase and its function in the etiology of cancer is summarized in this review. By modifying a number of downstream targets, such as transcription factors, apoptotic regulators, and cell cycle proteins, JNKs exert diverse effects on cancer cells. Apoptosis avoidance, cell survival, and proliferation are all promoted by abnormal JNK activation in many types of cancer, which leads to tumor growth and resistance to treatment. JNKs also affect the tumour microenvironment by controlling the generation of inflammatory cytokines, angiogenesis, and immune cell activity. However, challenges remain in deciphering the context-specific roles of JNK isoforms and their intricate crosstalk with other signalling pathways within the complex tumor environment. Further research is warranted to delineate the precise mechanisms underlying JNK-mediated tumorigenesis and to develop tailored therapeutic strategies targeting JNK signalling to improve cancer management. The review emphasizes the role of JNK kinases in cancer biology, as well as their potential as pharmaceutical targets for precision oncology therapy and cancer resistance. Also, this review summarizes all the available promising JNK inhibitors that are suggested to promote the responsiveness of cancer cells to cancer treatment.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt.
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Sara Samy ElKafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, Russia
| | - Wael Hafez
- NMC Royal Hospital, 16th St - Khalifa City - SE-4 - Abu Dhabi, United Arab Emirates; Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| |
Collapse
|
4
|
Sung J. ( E)-1-(3,4-Di-meth-oxy-phen-yl)-3-(1,3-diphenyl-1 H-pyrazol-4-yl)prop-2-en-1-one. IUCRDATA 2024; 9:x240866. [PMID: 39371670 PMCID: PMC11451031 DOI: 10.1107/s2414314624008666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
In the title compound, C26H22N2O3, the dihedral angle between the benzene and pyrazole rings of the chalcone unit is 88.3 (1)°. The pyrazole ring has two attached phenyl rings that form dihedral angles with the pyrazole ring of 22.6 (2) and 40.0 (1)°. In the crystal, pairwise C-H⋯O hydrogen bonds generate R 2 2(20) inversion dimers.
Collapse
Affiliation(s)
- Jiha Sung
- Department of Applied Chemistry Dongduk Women’s UniversitySeoul 136-714 Republic of Korea
| |
Collapse
|
5
|
Naglah AM, Almehizia AA, Al-Wasidi AS, Alharbi AS, Alqarni MH, Hassan AS, Aboulthana WM. Exploring the Potential Biological Activities of Pyrazole-Based Schiff Bases as Anti-Diabetic, Anti-Alzheimer's, Anti-Inflammatory, and Cytotoxic Agents: In Vitro Studies with Computational Predictions. Pharmaceuticals (Basel) 2024; 17:655. [PMID: 38794225 PMCID: PMC11125359 DOI: 10.3390/ph17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In this innovative research, we aim to reveal pyrazole-based Schiff bases as new multi-target agents. In this context, we re-synthesized three sets of pyrazole-based Schiff bases, 5a-f, 6a-f, and 7a-f, to evaluate their biological applications. The data from in vitro biological assays (including antioxidant and scavenging activities, anti-diabetes, anti-Alzheimer's, and anti-inflammatory properties) of the pyrazole-based Schiff bases 5a-f, 6a-f, and 7a-f showed that the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f possess the highest biological properties among the compounds evaluated. The cytotoxicity against lung (A549) and colon (Caco-2) human cancer types, as well as normal lung (WI-38) cell lines, was evaluated. The data from the cytotoxicity investigation demonstrated that the three Schiff bases 5d, 5e, and 7a are active against lung (A549) cells, while the two Schiff bases 5e and 7a exhibited the highest cytotoxicity towards colon (Caco-2) cells. Additionally, the enzymatic activities against caspase-3 and Bcl-2 of the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f were evaluated. Furthermore, we assessed the in silico absorption, distribution, metabolism, and toxicity (ADMT) properties of the more potent pyrazole-based Schiff bases. After modifying the structures of the six pyrazole-based Schiff bases, we plan to further extend the studies in the future.
Collapse
Affiliation(s)
- Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulrahman A. Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Asma S. Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Amirah Senaitan Alharbi
- King Khalid Hospital, King Saud University Medical City, P.O. Box 7805, Riyadh 11472, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt;
| |
Collapse
|
6
|
Lusardi M, Wehrle-Haller B, Sidibe A, Ponassi M, Iervasi E, Rosano C, Brullo C, Spallarossa A. Novel 5-aminopyrazoles endowed with anti-angiogenetic properties: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 260:115727. [PMID: 37597434 DOI: 10.1016/j.ejmech.2023.115727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
The promising anti-angiogenetic properties of previously synthesized pyrazolyl ureas provided the rationale for the synthesis of novel 5-aminopyrazoles 2-5, differently decorated on the pyrazole nucleus. All the derivatives were tested by MTT assays and proved to be non-cytotoxic against eight different tumor cell lines and normal fibroblasts. An EdU proliferation assay was carried out on human foreskin fibroblasts and VEGF stimulated human umbilical vein endothelial cells which confirmed the absence of cytotoxicity of the compounds on human cells up to 20 μM concentration. To evaluate the influence of the newly synthesized pyrazoles on MAPK and PI3K signaling pathways, the phosphorylation of ERK1/2 and Akt was analyzed by Western blots from HFF and HUVEC cell lysates stimulated with growth factors in the presence or absence of the compounds. Pyrazoles 3b and 3c showed a significant inhibition of Akt phosphorylation in both tested cell lines with lower phosphorylation levels than the reference compound GeGe-3 in HUVEC. Furthermore, derivatives 2 and 3 appeared to strongly affect the migration of HFF cells in a wound healing assay, confirming their potential ability to interfere with the angiogenesis process. The new pyrazole library extends the structure-activity relationships of the previously isolated compounds and highlights the attractiveness of this chemical class for pathological cell migration and angiogenesis.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Adama Sidibe
- Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Camillo Rosano
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, Section of Medicinal Chemistry, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132, Genova, Italy.
| |
Collapse
|
7
|
Milani G, Budriesi R, Tavazzani E, Cavalluzzi MM, Mattioli LB, Miniero DV, Delre P, Belviso BD, Denegri M, Cuocci C, Rotondo NP, De Palma A, Gualdani R, Caliandro R, Mangiatordi GF, Kumawat A, Camilloni C, Priori S, Lentini G. hERG stereoselective modulation by mexiletine-derived ureas: Molecular docking study, synthesis, and biological evaluation. Arch Pharm (Weinheim) 2023; 356:e2300116. [PMID: 37460390 DOI: 10.1002/ardp.202300116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 10/06/2023]
Abstract
Long QT syndrome (LQTS) is a disorder of cardiac electrophysiology resulting in life-threatening arrhythmias; nowadays, only a few drugs are available for the management of LQTS. Focusing our attention on LQT2, one of the most common subtypes of LQTS caused by mutations in the human ether-à-go-go-related gene (hERG), in the present work, the stereoselectivity of the recently discovered mexiletine-derived urea 8 was investigated on the hERG potassium channel. According to preliminary in silico predictions, in vitro studies revealed a stereoselective behavior, with the meso form showing the greatest hERG opening activity. In addition, functional studies on guinea pig isolated left atria, aorta, and ileum demonstrated that 8 does not present any cardiac or intestinal liability in our ex vivo studies. Due to its overall profile, (R,S)-8 paves the way for the design and development of a new series of compounds potentially useful in the treatment of both congenital and drug-induced forms of LQTS.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | | | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies, and Environment, University Aldo Moro of Bari, Bari, Italy
| | - Pietro Delre
- Chemistry Department, University of Bari Aldo Moro, Bari, Italy
- CNR-Institute of Crystallography, Bari, Italy
| | | | | | | | - Natalie Paola Rotondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies, and Environment, University Aldo Moro of Bari, Bari, Italy
| | - Roberta Gualdani
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Amit Kumawat
- Department of Biosciences, University of Milan, Milano, Italy
| | - Carlo Camilloni
- Department of Biosciences, University of Milan, Milano, Italy
| | - Silvia Priori
- ICS-Maugeri IRCCS, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Edilova YO, Osipova EA, Slepukhin PA, Saloutin VI, Bazhin DN. Exploring Three Avenues: Chemo- and Regioselective Transformations of 1,2,4-Triketone Analogs into Pyrazoles and Pyridazinones. Int J Mol Sci 2023; 24:14234. [PMID: 37762539 PMCID: PMC10531707 DOI: 10.3390/ijms241814234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
A convenient approach to substituted pyrazoles and pyridazinones based on 1,2,4-triketones is presented. Chemo- and regiocontrol in condensations of t-Bu, Ph-, 2-thienyl-, and CO2Et-substituted 1,2,4-triketone analogs with hydrazines are described. The direction of preferential nucleophilic attack was shown to be switched depending on the substituent nature in triketone as well as the reaction conditions. The acid and temperature effects on the selectivity of condensations were revealed. Regiochemistry of heterocyclic core formation was confirmed by NMR and XRD studies. The facile construction of heterocyclic motifs bearing acetyl and (or) carbethoxy groups suggests them as promising mono- or bifunctional building blocks for subsequent transformations.
Collapse
Affiliation(s)
- Yulia O. Edilova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620108 Yekaterinburg, Russia (V.I.S.)
| | - Ekaterina A. Osipova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620108 Yekaterinburg, Russia (V.I.S.)
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Eltsin, 620002 Yekaterinburg, Russia
| | - Pavel A. Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620108 Yekaterinburg, Russia (V.I.S.)
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620108 Yekaterinburg, Russia (V.I.S.)
| | - Denis N. Bazhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620108 Yekaterinburg, Russia (V.I.S.)
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Eltsin, 620002 Yekaterinburg, Russia
| |
Collapse
|
9
|
Nitulescu GM, Stancov G, Seremet OC, Nitulescu G, Mihai DP, Duta-Bratu CG, Barbuceanu SF, Olaru OT. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023; 28:5359. [PMID: 37513232 PMCID: PMC10385367 DOI: 10.3390/molecules28145359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The altered activation or overexpression of protein kinases (PKs) is a major subject of research in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best available option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal chemistry and drug development strategies, playing a vital role as a fundamental framework in the structure of various PKIs. This scaffold holds major importance and is considered a privileged structure based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement function. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK, B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring within the clinically tested PKI and on the additional required elements of their chemical structures. Related important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine, pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.
Collapse
Affiliation(s)
| | | | | | - Georgiana Nitulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (G.M.N.)
| | | | | | | | | |
Collapse
|
10
|
Lusardi M, Spallarossa A, Brullo C. Amino-Pyrazoles in Medicinal Chemistry: A Review. Int J Mol Sci 2023; 24:ijms24097834. [PMID: 37175540 PMCID: PMC10177828 DOI: 10.3390/ijms24097834] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
A pyrazole nucleus is an easy-to-prepare scaffold with large therapeutic potential. Consequently, the search for new pyrazole-based compounds is of great interest to the academic community as well as industry. In the last ten years, a large number of papers and reviews on the design, synthesis, and biological evaluation of different classes of pyrazoles and many pyrazole-containing compounds have been published. However, an overview of pyrazole derivatives bearing a free amino group at the 3, 4, or 5 position (namely, 3-aminopyrazoles, 4-aminopyrazoles, and 5-aminopyrazoles, respectively) and their biological properties is still missing, despite the fact that aminopyrazoles are advantageous frameworks able to provide useful ligands for receptors or enzymes, such as p38MAPK, and different kinases, COX and others, as well as targets important for bacterial and virus infections. With the aim to fill this gap, the present review focuses on aminopyrazole-based compounds studied as active agents in different therapeutic areas, with particular attention on the design and structure-activity relationships defined by each class of compounds. In particular, the most relevant results have been obtained for anticancer/anti-inflammatory compounds, as the recent approval of Pirtobrutinib demonstrates. The data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "aminopyrazole" as the keyword.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Andrea Spallarossa
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| |
Collapse
|
11
|
Rosales-Hernández MC, Mendieta-Wejebe JE, Padilla-Martínez II, García-Báez EV, Cruz A. Synthesis and Biological Importance of 2-(thio)ureabenzothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186104. [PMID: 36144837 PMCID: PMC9502297 DOI: 10.3390/molecules27186104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The (thio)urea and benzothiazole (BT) derivatives have been shown to have a broad spectrum of biological activities. These groups, when bonded, result in the 2-(thio)ureabenzothizoles (TBT and UBT), which could favor the physicochemical and biological properties. UBTs and TBTs are compounds of great importance in medicinal chemistry. For instance, Frentizole is a UBT derivative used for the treatment of rheumatoid arthritis and systemic lupus erythematosus. The UBTs Bentaluron and Bethabenthiazuron are commercial fungicides used as wood preservatives and herbicides in winter corn crops. On these bases, we prepared this bibliography review, which covers chemical aspects of UBTs and TBTs as potential therapeutic agents as well as their studies on the mechanisms of a variety of pharmacological activities. This work covers synthetic methodologies from 1935 to nowadays, highlighting the most recent approaches to afford UBTs and TBTs with a variety of substituents as illustrated in 42 schemes and 13 figures and concluded with 187 references. In addition, this interesting review is designed on chemical reactions of 2-aminobenzothiazoles (2ABTs) with (thio)phosgenes, iso(thio)cyanates, 1,1′-(thio)carbonyldiimidazoles [(T)CDI]s, (thio)carbamoyl chlorides, and carbon disulfide. This topic will provide information of utility for medicinal chemists dedicated to the design and synthesis of this class of compounds to be tested with respect to their biological activities and be proposed as new pharmacophores.
Collapse
Affiliation(s)
- Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Jessica E. Mendieta-Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Itzia I. Padilla-Martínez
- Instituto Politécnico Nacional-UPIBI, Laboratorio de Química Supramolecular y Nanociencias, Av. Acueducto s/n, Barrio la Laguna Ticomán, Mexico City 07340, Mexico
| | - Efrén V. García-Báez
- Instituto Politécnico Nacional-UPIBI, Laboratorio de Química Supramolecular y Nanociencias, Av. Acueducto s/n, Barrio la Laguna Ticomán, Mexico City 07340, Mexico
| | - Alejandro Cruz
- Instituto Politécnico Nacional-UPIBI, Laboratorio de Química Supramolecular y Nanociencias, Av. Acueducto s/n, Barrio la Laguna Ticomán, Mexico City 07340, Mexico
- Correspondence:
| |
Collapse
|
12
|
Brullo C, Caviglia D, Spallarossa A, Alfei S, Franzblau SG, Tasso B, Schito AM. Microbiological Screening of 5-Functionalized Pyrazoles for the Future Development of Optimized Pyrazole-Based Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14091770. [PMID: 36145518 PMCID: PMC9503297 DOI: 10.3390/pharmaceutics14091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The pyrazole ring represents a widely applied chemical scaffold in medicinal chemistry research and we have observed that the physicochemical and biological features of highly substituted pyrazoles can be successfully improved by their encapsulation in dendrimer nanoparticles (NPs). For the future development of new optimized antibacterial delivery systems, we report the synthesis and biological evaluation of 5-amino functionalized pyrazole library (compounds 2–7). In detail, new derivatives 2–7 were differently decorated in C3, C4 and C5 positions. An in silico study predicted pyrazoles 2–7 to exert good drug-like and pharmacokinetic properties. Compounds 3c and 4b were endowed with moderate, but nanotechnologically improvable activity against multidrug-resistant (MDR) clinical isolates of Gram-positive species, especially of the Staphylococcus genus (MICs = 32–64 µg/mL). In addition, derivatives 3c and 4a showed moderate activities against Mycobacterium tuberculosis and 4a evidenced activity also against MDR strains. Overall, the collected evidence supported that, upon nano-formulation with proper polymer matrices, the new synthesized compounds could provide new pyrazole-based drug delivery systems with an enhanced and enlarged-spectrum of antibacterial activity.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
- Correspondence:
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Andrea Spallarossa
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Silvana Alfei
- Department of Pharmacy (DIFAR), Section of Organic Chemistry, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Bruno Tasso
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| |
Collapse
|
13
|
Dasgupta A, van Ingen Y, Guerzoni MG, Farshadfar K, Rawson JM, Richards E, Ariafard A, Melen RL. Lewis Acid Assisted Brønsted Acid Catalysed Decarbonylation of Isocyanates: A Combined DFT and Experimental Study. Chemistry 2022; 28:e202201422. [PMID: 35560742 PMCID: PMC9541586 DOI: 10.1002/chem.202201422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 12/16/2022]
Abstract
An efficient and mild reaction protocol for the decarbonylation of isocyanates has been developed using catalytic amounts of Lewis acidic boranes. The electronic nature (electron withdrawing, electron neutral, and electron donating) and the position of the substituents (ortho/meta/para) bound to isocyanate controls the chain length and composition of the products formed in the reaction. Detailed DFT studies were undertaken to account for the formation of the mono/di-carboxamidation products and benzoxazolone compounds.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Yara van Ingen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Michael G. Guerzoni
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Kaveh Farshadfar
- Department of ChemistryIslamic Azad UniversityCentral TehranBranch, PoonakTehran1469669191Iran
| | - Jeremy M. Rawson
- Department of Chemistry and BiochemistryUniversity of Windsor401 Sunset Ave.WindsorON N9B 3P4Canada
| | - Emma Richards
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Alireza Ariafard
- School of Natural Sciences-ChemistryUniversity of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| |
Collapse
|
14
|
Farghaly TA, Dawood KM. Inhibitory Activities of Pyrazolo-Oxazine Heterocyclic Derivatives. Mini Rev Med Chem 2021; 22:1256-1267. [PMID: 34967287 DOI: 10.2174/1389557522666211229114446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Despite several reports and reviews addressing the biological significance of pyrazoles and oxazines, no comprehensive work on the pyrazolo oxazine fused ring system has been published so far.We report all biological evaluations on pyrazolo-oxazine derivatives in this mini-review to provide an avenue for medicinal and pharmacological researchers to conduct further in-depth exploration.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
15
|
Silva VLM, Silva AMS. Special Issue "Recent Advances in the Synthesis, Functionalization and Applications of Pyrazole-Type Compounds". Molecules 2021; 26:molecules26164989. [PMID: 34443577 PMCID: PMC8401411 DOI: 10.3390/molecules26164989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Vera L. M. Silva
- Correspondence: (V.L.M.S.); (A.M.S.S.); Tel.: +351-234-370704 (V.L.M.S.); +351-234-370714 (A.M.S.S.)
| | - Artur M. S. Silva
- Correspondence: (V.L.M.S.); (A.M.S.S.); Tel.: +351-234-370704 (V.L.M.S.); +351-234-370714 (A.M.S.S.)
| |
Collapse
|
16
|
Morretta E, Belvedere R, Petrella A, Spallarossa A, Rapetti F, Bruno O, Brullo C, Monti MC. Novel insights on the molecular mechanism of action of the anti-angiogenic pyrazolyl-urea GeGe-3 by functional proteomics. Bioorg Chem 2021; 115:105168. [PMID: 34284173 DOI: 10.1016/j.bioorg.2021.105168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
In recent years, 5-pyrazolyl-ureas have mostly been known for their attractive poly-pharmacological outline and, in particular, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl) ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a capable anti-angiogenic compound. This paper examines its interactome by functional proteomics using a label-free mass spectrometry based platform, coupling Drug Affinity Responsive Target Stability and targeted Limited Proteolysis-Multiple Reaction Monitoring. Calreticulin has been recognized as the GeGe-3 principal target and this evidence has been supported by immunoblotting and in silico molecular docking. Furthermore, cell studies have shown that GeGe-3 lowers cell calcium mobilization, cytoskeleton organization and focal adhesion kinase expression, thus linking its biological potential to calreticulin binding and, ultimately, shedding light on the reasonable action mechanism of this molecule as an anti-angiogenic factor.
Collapse
Affiliation(s)
- Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| | - Andrea Spallarossa
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Federica Rapetti
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Olga Bruno
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
17
|
Jin J, Huang X, Xu J, Li T, Peng X, Zhu X, Zhang J, Jin Z, Chi YR. Carbene-Catalyzed Atroposelective Annulation and Desymmetrization of Urazoles. Org Lett 2021; 23:3991-3996. [PMID: 33979174 DOI: 10.1021/acs.orglett.1c01191] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An NHC-catalyzed atroposelective reaction between ynals and urazoles is disclosed. The reaction establishes a chiral C-N axis via an atroposelective [3 + 2] annulation/desymmetrization process. Our reaction allows efficient access to axially chiral and heteroatom-rich urazole derivatives with potential applications in bioactive molecules and catalysis.
Collapse
Affiliation(s)
- Jiamiao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Tingting Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaolin Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
18
|
Li T, Mou C, Qi P, Peng X, Jiang S, Hao G, Xue W, Yang S, Hao L, Chi YR, Jin Z. N‐Heterocyclic Carbene‐Catalyzed Atroposelective Annulation for Access to Thiazine Derivatives with C−N Axial Chirality. Angew Chem Int Ed Engl 2021; 60:9362-9367. [DOI: 10.1002/anie.202010606] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tingting Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Chengli Mou
- School of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Puying Qi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Xiaolin Peng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Shichun Jiang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Gefei Hao
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Wei Xue
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Song Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Lin Hao
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| |
Collapse
|
19
|
Li T, Mou C, Qi P, Peng X, Jiang S, Hao G, Xue W, Yang S, Hao L, Chi YR, Jin Z. N‐Heterocyclic Carbene‐Catalyzed Atroposelective Annulation for Access to Thiazine Derivatives with C−N Axial Chirality. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tingting Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Chengli Mou
- School of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Puying Qi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Xiaolin Peng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Shichun Jiang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Gefei Hao
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Wei Xue
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Song Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| | - Lin Hao
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
- Division of Chemistry & Biological Chemistry School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang 550025 China
| |
Collapse
|
20
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
21
|
Sever B, Soybir H, Görgülü Ş, Cantürk Z, Altıntop MD. Pyrazole Incorporated New Thiosemicarbazones: Design, Synthesis and Investigation of DPP-4 Inhibitory Effects. Molecules 2020; 25:molecules25215003. [PMID: 33126761 PMCID: PMC7662656 DOI: 10.3390/molecules25215003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibition has been recognized as a promising approach to develop safe and potent antidiabetic agents for the management of type 2 diabetes. In this context, new thiosemicarbazones (2a-o) were prepared efficiently by the reaction of aromatic aldehydes with 4-[4-(1H-pyrazol-1-yl)phenyl]thiosemicarbazide (1), which was obtained via the reaction of 4-(1H-pyrazol-1-yl)phenyl isothiocyanate with hydrazine hydrate. Compounds 2a-o were evaluated for their DPP-4 inhibitory effects based on a convenient fluorescence-based assay. 4-[4-(1H-pyrazol-1-yl)phenyl]-1-(4-bromobenzylidene)thiosemicarbazide (2f) was identified as the most effective DPP-4 inhibitor in this series with an IC50 value of 1.266 ± 0.264 nM when compared with sitagliptin (IC50 = 4.380 ± 0.319 nM). MTT test was carried out to assess the cytotoxic effects of compounds 2a-o on NIH/3T3 mouse embryonic fibroblast (normal) cell line. According to cytotoxicity assay, compound 2f showed cytotoxicity towards NIH/3T3 cell line with an IC50 value higher than 500 µM pointing out its favourable safety profile. Molecular docking studies indicated that compound 2f presented π-π interactions with Arg358 and Tyr666 via pyrazole scaffold and 4-bromophenyl substituent, respectively. Overall, in vitro and in silico studies put emphasis on that compound 2f attracts a great notice as a drug-like DPP-4 inhibitor for further antidiabetic research.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
| | - Hasan Soybir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
| | - Şennur Görgülü
- Medicinal Plant, Drug and Scientific Research and Application Center, Anadolu University, 26470 Eskişehir, Turkey;
| | - Zerrin Cantürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey;
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.S.); (H.S.)
- Correspondence: ; Tel.: +90-222-335-0580
| |
Collapse
|